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Abstract. In many large multi-agent systems (for example e-commerce
applications), the users have to choose the agents to interact with. But
this choice is difficult, in particular because the agents are too numerous.
For the same reason, it is impossible to call a trusted arbiter that can
judge every one of them. However, the agents provide a lot of informa-
tion about their peers (for example feedbacks from past transactions).
Consequently, the goal is to construct from this information an object
helping the users to make decisions about the agents. Many reputation
systems have been developed to achieve this goal. In the present sketch,
we develop and begin to analyze, from an axiomatic point of view, new
systems favoring those agents that have a more balanced profile. More
precisely, the information available about the agents is modeled by a sup-
port graph, that is, the nodes represent the agents and an arrow means
that the source agent supports the importance of the destination agent.
The object constructed from this information is a ranking of the agents
showing the relative importance of each agent. Our ranking methods are
based on the following principle: for an agent, to reach a certain position
in the ranking, it is necessary to pass a certain threshold both in the
quantity of supporters and in their quality.
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1 Introduction

In many large multi-agent systems, the users have decisions to make about the
agents. In particular, a user has to choose those to interact with. But this choice
is difficult, particularly because the agents are too numerous. For the same rea-
son, it is impossible to call a trusted arbiter that can judge every one of them.
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However, the agents provide a lot of information about their peers. So, the goal
is to construct, on the basis of this information, an object helping the users to
make decisions. Many reputation systems have been developed to achieve this
goal. They are called so because the object constructed typically gives a good
account of the reputation of the agents.

Let us mention some important applications where a reputation system is
needed. First of all, there are e-commerce applications, like Ebay. The agents
are the buyers and the sellers and the information available about them takes
the form of feedbacks from past transactions. Next, there are the webpages and
their hypertext links. Indeed, a page can be seen as an agent and a link as the
fact that the source page supports the importance of the destination page. Next,
there are papers and their citations. Again, a paper can be seen as an agent and
a citation as a positive opinion. As a last example, let us mention the bindings
entity-key and the public key certificates. A binding 〈E, K〉 can be seen as an
agent and a certificate written by E, signed with K, and supporting the validity
of a binding 〈E′, K ′〉 can be seen as a positive opinion of 〈E, K〉 on 〈E′, K ′〉.

The present sketch contains work in progress. It is designed for a workshop
intended primarily as a forum for interaction and discussion. Consequently, it is
largely incomplete in several aspects, in particular bibliography, formal defini-
tions, and results. Concerning the contributions, we develop two new reputation
systems based on the following principle: those agents that have a more bal-
anced profile are preferred. To properly introduce this principle, we need to
specify what we mean by the terms reputation system and what particular kind
of such systems we investigate.

By reputation system, we mean a system composed of two parts. The first
part is an environment containing many agents that have the possibility of pro-
viding information about their peers. The second part is a method that, in any
possible situation, constructs from this information an object helping the users
to make decisions about the agents.

In the present work, the information available about the agents is modeled by
a support graph. A node represents an agent and an arrow means that the source
agent supports the importance of the destination agent. The object constructed
from such a graph is a ranking of the agents showing the relative importance of
each agent. By ranking, we mean a reflexive, transitive, and total binary relation
� where a � b means that a is at least as important as b. The rank of an agent
can be seen as a good representation of its reputation, since it is determined
by what is said about that agent. Although this framework is very simple, it is
sufficient to provide solutions for all the aforementioned applications.

When comparing two agents, we consider two criteria: the number of sup-
porters and their importance. Our ranking methods are based on the following
principle: the agents that receive a more balanced kind of support are preferred.
In other words, we want to prevent the agents that have a big flaw in some crite-
rion from getting a high position in the ranking. More precisely, for an agent, to
reach a certain position in the ranking, it is necessary to pass a certain thresh-



old both in the quantity of supporters and in their quality. We call this the
more-balanced-support principle.

We develop two completely different methods that follow this principle. One
is based on refinements, the other on improvements. But actually, we strongly
believe that both methods always give the same ranking, that is, we believe that
they are two different ways to define the same ranking function. If this is indeed
the case, this would indicate that the ranking function in question is relatively
central, because it would be motivated from two completely different points of
view.

Next, it is crucial to analyze ranking methods from an axiomatic point of
view. To our knowledge, the first axiomatic study of such methods was started
in a paper of M. Tennenholtz [Ten04] and further developed in several papers
written in collaboration with A. Altman, in particular [AT05], [AT06], [AT07a],
[AT07b], and [AT08]. In the present sketch, we begin to analyze our methods.
More precisely, we present two axioms that are among the most important for
the kind of ranking methods considered: transitivity and strict transitivity. We
are very confident that both of our methods satisfy these axioms, which would
provide theoretical justifications for them.

2 Axioms

Recall that a support graph is a graph where a node represents an agent and an
arrow means that the source agent supports the importance of the destination
agent. In addition, recall that a ranking method is a function that transforms
any support graph into a ranking of the agents showing the relative importance
of each agent. We present two important properties for the kind of ranking
methods considered. Actually, they could be seen as two parts of one property,
but to improve readability, we present them separately:

• Transitivity. Consider two agents a and b, and suppose that the group A of
all supporters of a is at least as important as the group B of all supporters
of b, then a should be ranked at least as high as b. We consider that A is at
least as important as B iff B = ∅ or there exists an injective function f from
B to A such that for each element x of B, f(x) is ranked at least as high as x.

• Strict transitivity. If the group A supporting a is strictly more important
than the group B supporting b, then a should be ranked strictly higher than
b. We consider that A is strictly more important than B iff (0) or (1) holds,
where (0) is the following: A 6= ∅ and B = ∅, and (1) is that there exists an
injective function f from B to A such that, first, for each element x of B,
f(x) is ranked at least as high as x, and second, |B| < |A| or there exists x

in B such that f(x) is ranked strictly higher than x.

These axioms are discussed in detail in [AT08]. There exist several other desirable
properties, but in the framework of this preliminary work, we investigate only
those two.



3 A refinement-based ranking method

We develop a first ranking method based on the more-balanced-support princi-
ple. Note that a ranking on a set can be seen as an ordered partition of this set.
By category, we mean an element of this partition. The idea is to begin with the
trivial ranking R0 that puts every agent in the same category, then we refine R0

an infinite number of times, which gives R1, R2, etc. A final ranking is derived
as follows: an agent is at least as important as another one iff this is the case in
all the preliminary rankings.

In each refinement step, a new, finer, view on the quality of the agents becomes
accessible. Our goal is to refine in such a way that, in the end, the following holds:
for an agent, to reach a certain position in the final ranking, it is necessary to
pass a certain threshold in every criterion. By criterion, we mean the quantity
of supporters or any view on their quality.

Let us take a closer look at the first refinement step. When comparing two
agents, a certain number of factors are considered: the quantity of supporters
and every view on their quality. The influence of each factor is represented by a
certain number of points. Concerning quantity, an agent naturally scores 1 point
for each of its supporters. On the other hand, concerning the views on quality,
no point can yet be scored. Indeed, in the first refinement step, these views are
not yet accessible. They are precisely under construction. Therefore, they cannot
have any influence on the first refinement.

So, each agent gets a certain score determined only by the quantity of sup-
porters. If we were to refine R0 on the basis of these scores, we would put in the
top category those agents that have a maximal number of supporters, regardless
of their importance. This does not correspond to our guideline. To counterbal-
ance the absence of influence of quality, we limit the influence of quantity. More
precisely, we cap the number of supporters considered in this step at 1, the
minimal value such that the quantity of supporters still has some influence.

To summarize, if an agent has at least 1 supporter, it scores 1 point, and
that is all. In other words, in the first refinement step, we consider two levels of
quality: the level corresponding to a score of 0 and the level corresponding to a
score of 1. The agents are evaluated on the basis of these two levels and ranked
accordingly. The resulting ranking is called R1.

Next, we enter the second refinement step. Thanks to the scores obtained
in the first step, we have now access to a first, rough, view on the quality of
the agents. More precisely, we can distinguish between a basic and a non-basic
agent. By basic agent, we mean an agent having no supporter. But, we cannot
yet distinguish between two non-basic agents of different importance. This first
view on quality will influence the second refinement.

More precisely, if a supporter becomes more important in the first view on
quality, then the agent supported naturally scores 1 point. By becoming more
important in the first view, we mean getting a score of 1 in the first refinement
step. In parallel, we lift a bit the limitation on the quantity of supporters, so this
factor keeps having some minimal influence. More precisely, we increase the cap



on the number of supporters considered by 1. In other words, if an agent has at
least 2 supporters, it scores an additional point.

So, each agent gets a score determined by the quantity of supporters and the
first view on their quality. If we were to refine R1 on the basis these scores, we
would put in the top category the agents having a maximal number of supporters
that are important in the first view on quality, regardless of their importance in
the next, finer, views that will become accessible later. This does not correspond
to our guideline. Consequently, we limit the influence of the first view.

More precisely, the advancement of only one supporter is taken into account
at a time. Therefore, we have to choose the order in which the supporters will be
treated. We adopt the following strategy: the more a supporter is important, the
earlier its advancement will be taken into account. More precisely, we introduce
some linear ordering l(R1) on the agents that agrees with R1. The choice of this
linear ordering has no effect on the result. In the second refinement step, only
the advancement of the best supporter of a in l(R1) will possibly allow a to
score a point. In the next step, we will take into account the advancement of the
second best supporter, and so on.

To summarize, if an agent a has at least 2 supporters, it scores 1 point. If the
best supporter of a in l(R1) exists and gets a score of 1 in the first step, then a

scores 1 point. In other words, for each category of R1, three levels of quality are
considered: the levels corresponding respectively to a score of 0, 1, and 2. The
agents are evaluated on the basis of these three levels and ranked accordingly
inside each category of R1. The resulting ranking is called R2.

Next, we enter the third refinement step. Thanks to the scores obtained in
the second step, we have now access to a second, finer, view on the quality of the
agents. This second view will influence the third refinement. More precisely, if a
supporter becomes more important in this second view, then the agent supported
scores a certain number of points. In addition, the more a supporter becomes
important, the more the agent supported scores many points. More precisely,
if a supporter makes x advances in the second view on quality, then the agent
supported scores x points. By making x advances in the second view, we mean
getting a score of x in the second refinement step. As previously, we limit the
influence of this second view on the current refinement. In parallel, we lift a bit
the limitations on the two other factors: the quantity of supporters and the first
view on their quality.

To summarize, if an agent a has at least 3 supporters, it scores 1 point. If
the second best supporter of a in l(R1) exists and gets a score of 1 in the first
step, then a scores 1 point. If the best supporter of a in l(R2) exists and gets a
score of x in the second step, then a scores x points. So, for each category of R2

a certain number of levels of quality are considered, one for each possible score.
The agents are evaluated on the basis of these levels, and ranked accordingly
inside each category of R2. The resulting ranking is called R3. And so on.

More generally, in each refinement step, we have access to a new, finer, view
on the quality of the agents. When a new view becomes accessible, we limit
its influence on the current refinement. We do it in order to give time to the



next, finer, views to become accessible and to influence significantly the final
ranking. In parallel, we lift a bit the limitations on the quantity of supporters
and on the already accessible views on their quality, so these factors keep having
some minimal influence. As a result, for each agent and for each position in the
ranking, the following holds: for that agent to reach that position, it is necessary
to pass a certain threshold in the quantity of supporters and in every view on
their quality, which corresponds to our guideline.

Here is for example a support graph containing 9 agents, and below are the
five first rankings obtained from it by the refinement-based method:

Example 1.



The initial ranking, denoted by R0, puts every agent in the same category.
We enter the first refinement step. The agents a0 and a1 have no supporter, so
they get a score of 0. Actually, if an agent gets a score of 0 in some step, it will
get a score of 0 in all the subsequent steps. The other agents do have supporters,
so they all get a score of 1. These scores represent a first, rough, view on the
quality of the agents. The resulting ranking is denoted by R1.

We enter the second refinement step. The agent a3 gets a score of 0. The
agents a2, a4, a6, and b1 get a score of 1. More precisely, a2 scores 1 point
because it has 2 supporters. Concerning a4, a6, and b1, they score 1 point because
they have a supporter that makes an advance in the first view on the quality
of the agents. The agents a5 and b0 both get a score of 2. Indeed, they score 1
point because they have two supporters and an additional point because they
have a supporter that makes an advance in the first view on quality. These scores
represent a second, finer, view on the quality of the agents. The resulting ranking
is denoted by R2.

We enter the third refinement step. The agents a2, a4, and a5 get a score
of 0. The agent b0 gets a score of 1, because it has a supporter that makes an
advance in the second view on quality. The agents a6 and b1 both get a score of
2, because they have a supporter that makes 2 advances in the second view on
quality. These scores represent a third, finer, view on quality. We denote by R3

the resulting ranking.

We enter the fourth step. The agent a6 gets a score of 0. The agent b1 gets a
score of 1, because it has a supporter that makes an advance in the third view
on quality. The agent b0 gets a score of 2, because it has a supporter that makes
2 advances in the third view. The resulting ranking is denoted by R4.

All the subsequent refinements leave R4 unchanged, so R4 is the final ranking
obtained in this example by our refinement-based method.

4 An improvement-based ranking method

We develop a second, completely different, ranking method based on the more-
balanced-support principle. Suppose a support graph is given. The idea is to
imagine that the support links generate, step by step, two kinds of improvements:
improvements in the importance of an agent and improvements in the importance
of an improvement generated earlier. More precisely, we construct step by step
from the support graph, an improvement graph where a node represents either
an agent or an improvement, and an arrow means that the source element is an
improvement in the importance of the destination element.

Initially, the improvement graph contains only a certain number of nodes,
no link. These nodes represent exactly the same agents as those of the support
graph. Next, for each agent a and each agent b, if a supports b, we introduce
a new node p representing an improvement, and an arrow from p to b meaning
that p is an improvement in the importance of b. In other words, the support a

provides to b generates an improvement in the importance of b.



In the second step, for each agent a and each improvement p introduced in
the first step, if a supports the agent (providing the support) that generated p,
then we introduce a new improvement p′ and an arrow from p′ to p. In other
words, the support a provides to an agent b generates an improvement in the
importance of every improvement generated by b.

More generally, in the ith step, for each agent a and each improvement p

introduced in the (i − 1)th step, if a supports the agent that generated p, then
we introduce a new improvement p′ and an arrow from p′ to p.

In some sense, we unfold the support graph, that is, we replace a graph
possibly containing cycles by a graph with no cycle, but possibly containing
infinite chains.

Here is for example the improvement graph obtained from the support graph
presented in Example 1:

Example 2.

For each agent a, we extract from the improvement graph, the subgraph S(a)
of all improvements related (directly or indirectly) to a. This subgraph is called
the improvement structure of a. The crucial point is that the form of S(a) gives
a good idea what kind of support a receives. More precisely, the more S(a) is
horizontally large, the more the supporters of a are numerous. The more it is
vertically large, the more they are important. So, the idea is to rank the agents
on the basis of the form of their improvement structures. More precisely, suppose
we have at our disposal a ranking of the improvement structures showing the
relative quality of the form of each structure. Then, we define that an agent a is
at least as important as an agent b iff S(a) is ranked at least as high as S(b).



So, it remains to construct a ranking of the improvement structures. In accor-
dance with the more-balanced-support principle, we favor those structures that
have a more balanced form. In other words, for a structure, to reach a certain
position in the ranking, it is necessary to pass a certain threshold both in the
horizontal and in the vertical development. To meet this requirement, we adopt
the following strategy: the rank of an improvement structure is determined by
the rate at which it can be constructed under certain limitations. Let us explain
this strategy.

A construction of an improvement structure S(a) is a step-by-step develop-
ment that begins with a and ends with S(a), or is more and more approaching
S(a). In each step, two restrictions are imposed on the development of the struc-
ture under construction. First, only improvements that are directly connected
to the existing elements can be added. In other words, it is impossible to add
(in one step) a chain of improvements. This limits the vertical development. The
second restriction is the following: for each existing element, at most one new
improvement can be introduced and attached to it. This limits the horizontal
development.

In more precise terms, a construction of S(a) is an infinite sequence of graphs
〈S0, S1, . . .〉 such that the three following points hold: first, S0 consists only of a;
second, the union of all Si’s is identical to S(a); and third, Si+1 can be obtained
from Si by introducing, for each node p of Si, at most one new node p′ and a
link from p′ to p.

For example, consider the improvement graph given in Example 2. Here is a
construction of S(a6):

Example 3.

Intuitively, because of the development restrictions, the following holds: for
an improvement structure, to be constructible at a certain rate, it is necessary
to be sufficiently developed both horizontally and vertically. In other words, it
is necessary to be sufficiently balanced. So, we rank the improvement structures
on the basis of the rate of their constructions. More precisely, suppose we have
at our disposal a ranking of the constructions showing the relative intensity of
the rate of each construction. Then, we define that the form of a structure S is
at least as good as the form of a structure S′ iff some construction of S is ranked
at least as high as every construction of S′.



So, the last step is to construct a ranking of the constructions. A construc-
tion 〈S0, S1, . . .〉 defines a certain sequence of increases, that is, the sequence
〈n0, n1, . . .〉 such that every ni is equal to the number of new elements intro-
duced in Si. For example, the sequence of increases defined by the construction
of S(a6) given in Example 3 is 〈1, 1, 1, 2, 0, 0, . . .〉.

We consider that the rate of a construction 〈S0, S1, . . .〉 is at least as high
as the rate of a construction 〈S′

0, S
′

1, . . .〉 iff both constructions define the same
sequence of increases, or 〈S0, S1, . . .〉 defines a lexicographically greater sequence,
that is, in some step i, more improvements are introduced in Si than in S′

i, and
in every previous step j, the same number of improvements are introduced in Sj

and S′

j .
To summarize, we define a ranking showing the relative intensity of the rate

of each construction, from which we define a ranking showing the relative quality
of the form of each improvement structure, from which we finally define a ranking
showing the relative importance of each agent. Put differently, an agent a is at
least as important as an agent b iff there exists a construction of S(a) such that
the rate of this construction is at least as high as the rate of every construction
of S(b).

For example, consider the support graph introduced in Example 1. For every
agent a, we have chosen one of the highest-ranked construction of S(a), and
we have displayed below the sequence of increases defined by this construction.
Finally, the ranking of the agents obtained from the support graph of Example 1
by the improvement-based method is also displayed below. It is identical to the
one obtained by the refinement-based method.

Example 4.



5 Conclusion

To conclude, we have developed two new ranking methods based on the following
principle: for an agent, to reach a certain position in the ranking, it is necessary
to pass a certain threshold both in the quantity of supporters and in their quality.
We are very confident that both of our methods satisfy transitivity and strict
transitivity, which would provide theoretical justifications for them. In addition,
we strongly believe that these two methods are actually two different ways to
define the same ranking function. If this is the case, this would mean that the
ranking function in question is relatively central, because it would be motivated
from two completely different points of view. We are working on these conjectures
and on a complete axiomatization of our ranking methods.
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