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Abstract

In the present paper, we investigate consequence relations that are both paraconsistent and plausible (but still
monotonic). More precisely, we put the focus on pivotal consegquence relations, i.e. those relations that can
be defined by a pivot (in the style of e.g. D. Makinson). A pivot is a fixed subset of valuations which are
considered to be the important ones in the absolute sense. We worked with a general notion of valuation that
coverse.g. theclassical valuations aswell as certain kinds of many-valued valuations. |nthe many-valued cases,
pivotal consequence relations are paraconsistant (in addition to be plausible), i.e. they are capable of drawing
reasonable conclusions which contain contradictions. We will provide in our general framework syntactic
characterizations of several families of pivotal relations. In addition, we will provide, again in our genera
framework, characterizations of several families of pivotal-discriminative consequence relations. The latter are
defined exactly asthe plain version, but contradictory conclusions are rejected. We will also answer negatively
a representation problem that was left open by Makinson. Finally, we will put in evidence a connexion with
X-logics from Forget, Risch, and Siegel. The motivations and the framework of the present paper are very
close to those of a previous paper of the author which isabout preferential consequence relations.

*Thisisan updated version of the paper of the sametitle published in The Journal of Logic and Computation. Thisversion
just contains a better presentation (so the numbering of definitions and propositions is different).



1 Introduction

One of the main motivations of this paper is to combine some tools used in Paraconsistent Reason-
ing on the one hand and Plausible Reasoning on the other hand to deal with both incomplete and
inconsistent information. Actually, the motivations of the present paper are very close to those of a
previous paper of the author which is about preferential consequence relations [BNO5].

Many-valued consequence relations have been developed with the aim of dealing with inconsis-
tent information. These relations are defined in frameworks where valuations can assign more than
two different truth values to formulas. In fact, they tolerate contradictions within the conclusions,
but reject the principle of explosion according to which a single contradiction entails the deduction
of every formula

Independently, plausible (generally non-monotonic) consequence rel ations have been devel oped
with the aim of dealing with incomplete information. Choice functions are central tools to define
plausible relations. Indeed, suppose we have at our disposal a function p, called a choice function,
which chooses in any set of valuations V', those elements which are preferred, not necessarily in the
absolute sense, but when the valuationsin V' are the only ones under consideration. Then, we can
define a plausible consequence relation in the following natural way: aformula« follows from a set
of formulas T iff every model for I chosen by 1 isamodel for a.

In the present paper, we put the focus on a particular family of choice functions. Let us present
it. Suppose some valuations are considered to be the important ones in the absol ute sense and collect
theminaset Z, called apivot. Thisdefines naturally a choice function. Indeed, simply choosein any
set of valuations, those elements that belong to Z. Those choice functions which can be defined in
this manner constitute the aforementioned family. The consequence relations defined by this family
are called pivotal consequencerelations. Their importance has been put in evidence by D. Makinson
in[Mak03, Mak05] whereit isshown that they constitute an easy conceptual passage between classi-
cal and plausible non-monotonic relations. Indeed, they are perfectly monotonic but already display
some of the distinctive features (i.e. the choice functions) of plausible non-monotonic relations.

For a long time, research efforts on paraconsistent relations and plausible relations were sep-
arated. However, in many applications, the information is both incomplete and inconsistent. For
instance, the semantic web or big databases inevitably contain inconsistencies. This can be due to
human or material imperfectionsaswell as contradictory sources of information. On the other hand,
neither the web nor big databases can contain “al” information. Indeed, there are rules of which
the exceptions cannot be enumerated. Also, some information might be left voluntarily vague or in
concise form. Consequently, consequence relations that are both paraconsistent and plausible are
useful to reason in such applications.

Such relationsfirst appear in e.g. [Pri91, Bat98, KL92, AA0O, KM02]. Theideabeginsby taking
amany-valued framework to get paraconsistency. Then, only those models that are most preferred
according to some particular binary preferencerelation on valuations (in the style of [ Sho88, Sho87])
are relevant for making inference, which provides plausibility (and in fact also non-monotonicity).
In [ALO1b, ALO14], A. Avron and |. Lev generalized the study to families of binary preference
relations which compare two val uations using, for each of them, this part of a certain set of formulas
it satisfies. The present paper follows this line of research by combining many-valued frameworks
and choice functions.

More explicitly, we will investigate pivotal consequence relations in a general framework. Ac-
cording to the different assumptions which will be made about the latter, it will cover various kinds
of frameworks, including e.g. the classical propositional one as well as some many-valued ones.
Moreover, in the many-valued frameworks, pivotal relations lead to non-trivial conclusionsis spite



of the presence of contradictions and are thus useful to deal with both incomplete and inconsistent
information. However, they will not satisfy the Disunctive Syllogism (from « and —« VvV 3 we can
conclude 3), whilst they satisfy it in classical frameworks.

In addition, we will investigate pivotal-discriminative conseguence relations. They are defined
exactly asthe plain version, but any conclusion such that its negation is also aconclusion is rejected.
In the classical framework, they do not bring something really new. Indeed, instead of concluding
everything in the face of inconsistent information, we will simply conclude nothing. On the other
hand, in the many-valued frameworks, where the conclusions are rational even from inconsistent
information, the discriminative version will reject the contradictions among them, rendering them
all the morerational.

As a first contribution, we will characterize, in our genera framework, several families of
pivotal (-discriminative) consequence relations. To do so, we will use techniques very similar to
those of a previous paper of the author [BNO5]. The latter is about another family of choice func-
tions. Let us present it. Suppose we are given a binary preference relation < on states labelled by
valuations (in the style of e.g. [KLM90, LM92, Sch04]). This defines naturally a choice function.
Indeed, choose in any set of valuations V', each element which labels a state which is <-preferred
among those states which are labelled by the elements of V. Those choice functions which can
be defined in this manner constitute the af orementioned family. The consequence relations defined
by this family of choice functions are called preferential (-discriminative) consequence relations. In
fact, the present paper provides an example of how the techniques developed in [BNO5] (especially,
in the discriminative case) can be adapted to new families of choice functions. Note that, in the
non-discriminative case, the techniques of [BNO5] are themselves strongly inspired by the work of
K. Schlechta[Sch04].

In many cases, our characterizationswill be purely syntactic. This has alot of advantages, let us
guote some important ones. Take a set of syntactic conditionsthat characterizes a family of pivotal
consequence relations. This gives a syntactic point of view on this family defined semantically,
which enables us to compareit to conditions known on the “market”, and thus to other consequence
relations. This can also give rise to questions like: if we modified the conditions in such and such
a natural-looking way, what would happen on the semantic side? More generally, this can open the
door to questions that would not easily come to mind otherwise or to techniques of proof that could
not have been employed in the semantic approach.

Some characterizations of pivotal consequence relations, valid in classical frameworks, can be
foundin theliterature, e.g. [Rot01, Mak03, Mak05]. But, to the author knowledge, the present paper
contains the first systematic work of characterization for them in non-classical frameworks. Simi-
larly, it seems that the author is the first to investigate pivotal -discriminative consequence rel ations.

As asecond contribution, we will answer negatively a representation problem that was |eft open
by Makinson, namely, in an infinite classical framework, there does not exist a “normal” charac-
terization for the family of all pivotal consequence relations. Approximatively, a characterization
is called normal iff it contains only conditions universally quantified and of limited size. This con-
stitutes the more innovative part of the paper. A last contribution is that a certain family of pivotal
consequence relations will be shown to be precisely a certain family of X -logics, which were intro-
duced by Forget, Risch, and Siegel [FRS01].

Therest of the paper is organized asfollows. In Section 2.1, we introduce our general framework
and the different assumptions which will sometimes be made about it. We will see that it coversin
particular the many-valued frameworks of the well-known paraconsistent logics FOUR and J 5. In
Section 2.2, we present choice functionsand some of their well-known properties. Wewill seewhich
properties characterize those choice functions that can be defined by a pivot. In Section 2.3, we



define pivotal (-discriminative) consequence rel ations and give examples of them in both the classical
and the many-valued frameworks. In Section 3, we provide our characterizations. In Section 4, we
answer negatively the problem that was left open by Makinson. In Section 5, we put in evidence a
connexion with X -logics. Finally, we conclude in Section 6.

2 Background

2.1 Semantic structures
2.1.1 Deéfinitionsand properties

The framework is exactly the one presented in [BN05]. We will work with general formulas, val-
uations, and satisfaction. A similar approach has been taken in two well-known papers [Mak05,
Leh01].

Definition 1 We say that S is a semantic structure iff S = (F,V, =) where F isaset, V isaset,
and = isarelationonV x F.

Intuitively, F is a set of formulas, V a set of valuations for these formulas, and = a satisfaction
relation for these objects (i.e. v = a meansthe formula « is satisfied in the valuation v, i.e. visa
model for «).

Notation 2 Let (F,V, =) beasemantic structure, ' C F,and V' C V. Then,
Mr:={veV:Vael,vEa}l,

TV)={acF:V C M},

D:={VCV:3T CF,Mr=V}

Suppose L is alanguage, — aunary connective of £, and F the set of all wffsof £. Then,
Tag(V):={ae F:VCM,andV € M_,},
C={VCV:VaeF,VZM,orV L M.}

Intuitively, M isthe set of all modelsfor " and T'(V') the set of al formulassatisfied in V. Roughly
spesking, T(V') is this part of 7'(V') that is not contradictory. D is the set of all those sets of
valuationsthat are definable by a set of formulas and C the set of all those sets of valuations that do
not satisfy both aformulaand its negation. Asusual, Mt ., T'(V,v) stand for respectively My (a3,
T(V U {v}), etc.

Remark 3 The notations M, T'(V'), etc. should contain the semantic structure on which they are
based. To increase readability, we will omit it. There will never be any ambiguity. We will omit
similar things with other notationsin the sequel, for the same reason.

A semantic structure defines a basic consequence relation:

Notation 4 We denote by P the power set operator.
Let (F,V, ) beasemantic structure.
We denote by F therelationon P(F) x F suchthat VI C F,V« € F,

T+ aiff Mp C M,,.

Let |~ bearelation on P(F) x F. Then,

) ={aeF:T | a}l.

Suppose L is alanguage, — aunary connective of £, F the set of all wffsof £, andT" C F.
Then, we say that T" isconsistent iff Va € F, Tt/ a or T' t —a.



Thefollowing trivial facts hold, we will use them implicitly in the sequel:

Remark 5 Let (F,V, =) beasemantic structureandI', A C F. Then:
Mr A = Mr N Ma;

HT) = T(My);

Mr = M (ry;

I CHA)IffHT) CHA) iff Ma C Mr.

Sometimes, we will heed to make some of the following assumptions about a semantic structure:

Definition 6 Let (F,V, =) be asemantic structure.
The define the following assumptions:

(A0) Mgy =0;

(A1) Visfinite.

Suppose L isalanguage, — aunary connective of £, and F the set of all wffsof £. Then, define:
(A2) VI C F,Va e F,ifa ¢ T(Mr) and ~a & T(Mr), then My N M, € M-_,.

Suppose v and A are binary connectivesof £. Then, define;

(A3) Vo, B € F, wehave:
Mavﬁ =M,U Mﬁ;
Ma/\ﬁ =M,N Mﬁ;
Mﬁﬁa = s
M- (avp) = M-an-g;
M- (ang)y = M-av-g.

Clearly, those assumptions are satisfied by classical semantic structures, i.e. structures where 7, V,
and |~ are classical. In addition, we will see, in Sections 2.1.2 and 2.1.3, that they are also satisfied
by certain many-valued semantic structures.

2.1.2 Thesemantic structuredefined by FOUR

The logic FOUR was introduced by N. Belnap in [Bel77a, Bel77b]. This logic is useful to deal
with inconsistent information. Several presentations are possible, depending on the language under
consideration. For the needs of the present paper, aclassical propositional languagewill be sufficient.
The logic has been investigated intensively in e.g. [AA94, AA96, AA98], where richer languages,
containing an implication connective O (first introduced by A. Avron [Avr91]), were considered.

Notation 7 We denote by .4 a set of propositional symbols (or atoms).

We denote by L. the classical propositional language containing .4, the usual constants false and
true, and the usual connectives—, Vv, and A.

We denote by F.. the set of all wffsof L.

We briefly recall a meaning for the logic FOUR (more details can be found in [CLM99, Bel 773,
Bel77b]). Consider a system in which there are, on the one hand, sources of information and, on the
other hand, a processor that listens to them. The sources provide information about the atoms only,
not about the compound formulas. For each atom p, there are exactly four possibilities: either the
processor is informed (by the sources, taken as a whole) that p is true; or he is informed that p is
false; or heisinformed of both; or he has no information about p.



Notation 8 Denote by 0 and 1 the classical truth values and define:
f:={0}; t:={1}; T:={0,1}; L:=0.

The global information given by the sourcesto the processor can be modelled by afunction s from .A
to{f,t, T, L}. Intuitively, 1 € s(p) meansthe processor is informed that p is true, whilst 0 € s(p)
means heisinformed that p isfalse.

Then, the processor naturally builds information about the compound formulas from s. Before
he starts to do so, the situation can be be modelled by a function v from F. to {f,t, T, L} which
agrees with s about the atoms and which assigns L to al compound formulas. Now, take p and ¢ in
A and suppose 1 € v(p) or 1 € v(q). Then, the processor naturally adds 1 to v(p V ¢). Similarly, if
0 € v(p)and 0 € v(q), thenheadds0 inv(p V q). Of course, such rules hold for — and A too.

Suppose all those rules are applied recursively to all compound formulas. Then, v representsthe
“full” (or developed) information given by the sources to the processor. Now, the valuations of the
logic FOUR can be defined as exactly those functions that can be built in this manner (i.e. like v)
from some information sources. More formally,

Definition 9 We say that v isafour-valued valuationiff v isafunction from F. to {f,t, T, L} such
that v(true) = t, v(false) = fandV «, 5 € F,

1 € v(—a)iff 0 € v(a);

0 € v(—a)iff 1 € v(a);

1ev(aVvP)iff1 ev(a)orlev(B);
0€v(aVp)iff0ev(a)and0 € v(B);
lev(anP)iffl € v(a)andl € v(B);
0cv(anp)iff0 € v(a)ord e v(f).

We denote by V), the set of all four-valued valuations.

The definition may become more accessible if we see the four-valued valuations as those functions
that satisfy Tables 1, 2, and 3 below:

v(B) v(B)

v(a)  v(—a) f t T L f t T L
f t f|f ¢t T 1 f|f £ f f
t f t|t t t ¢t t|f t T L
T SR A I I S P LGOI P S
1 1 rlL t t L Lr|f L f 1

Table 1. v(aV 3) v(a A B)
Table 2. Table 3.

Inthelogic FOUR, aformulac is considered to be satisfied iff the processor isinformed that it is
true (it does not matter whether heis aso informed that « isfalse).

Notation 10 We denote by |=4 therelationon V4 x F. suchthat Vv € V4,V a € F., we have
v g aiff 1 € v(a).

Proof systems for the consequence relation + based on the semantic structure (F ., V4, =4) (i.e. the
semantic structure defined by FOUR) can befound in e.g. [AA94, AA96, AA9S].

Note that the FOUR semantic structure satisfies (A0) and (A3). In addition, if A isfinite, then
(A1) isaso satisfied. However, (A2) is not satisfied by this structure. In Section 2.1.3, weturnto a
many-valued semantic structure which satisfies (A2).



2.1.3 Thesemantic structure defined by J3

Thelogic J3 was introduced in [DdAC70] to answer a question posed in 1948 by S. JaSkowski, who
wasinterested in systematizing theories capable of containing contradictions, especialy if they occur
indialectical reasoning. The step frominformal reasoning under contradictionsand formal reasoning
with databases and information was done in [CMdA0Q] (also specialized for real database modelsin
[dACMO02]), where another formulation of .J 3 called L FI 1 wasintroduced, and itsfirst-order version,
semantics and proof theory were studied in detail. Investigations of J 3 have also been madein e.g.
[Avr91], wherericher languages than our £ . were considered.

The valuations of the logic J3 can be given the same meaning as those of the logic FOUR,
except that the consideration is restricted to those sources which always give some information
about an atom. Moreformally,

Definition 11 We say that v isathree-valued valuation iff v isafunction from F . to {f,t, T} such
that v(true) = t, v(false) = fandV o, 5 € F,

1 € v(—a)iff 0 € v(a);

0 € v(-a)iff 1 € v(a);

1ev(aVvp)iff1 ev(a)orlev(B);

0€v(aVp)iff0cv(a)and0 € v(B);

lev(anp)iffl € v(a)andl € v(B);

0cv(anp)iff0 € wv(a)ord e v(f).

We denote by V5 the set of all three-valued valuations.

As previously, the definition may become more accessible if we see the three-valued valuations as
those functionsthat satisfy Tables 4, 5, and 6 below:

v(B) v(B)
v(a) v(-a) f t T f t T
f t f|f t 7T f|f £ f
t f ve) |t |t t t] o) |t |f t T
T T T T t T T|f T T
Table 4. v(a V) v(a A f)
Table 5. Table 6.

We turn to the satisfaction relation.

Notation 12 We denote by |=3 therelationon V3 x F. suchthat Vv € Vs,V a € F., we have
v s aiff 1 € v(a).

Proof systems for the consequence relation - based on the semantic structure (F ., Vs, =3) (i.e. the
semantic structure defined by J3) have been provided in e.g. [Avr9l, DAC70] and chapter IX of
[Eps90]. The J3 structure satisfies (A0), (A3) and (A2). Inaddition, if A isfinite, then it satisfies
(A1) too.

2.2 Choicefunctions

2.2.1 Définitionsand properties

In many situations, an agent has some way to choose in any set of valuations V', those elements that
are preferred (the bests, the more normal, etc.), not necessarily in the absolute sense, but when the



valuationsin V are the only ones under consideration. In Social Choice, thisis modelled by choice
functions[Cheb4, Arr59, Sen70, AM81, Leh02, Leh01].

Definition 13 Let V beaset, V C P(V), W C P(V), and p afunctionfromV to W.
We say that 1 isachoice functioniff VvV € V, u(V) C V.

Several properties for choice functions have been put in evidence by researchersin Social Choice.
For the sake of completeness, we present two important ones though we will not investigate them in
the present paper (a better presentation can be found in [Leh01]).

Suppose W isaset of valuations, V isasubset of W, and v € V isapreferred valuation of 1.
Then, a natural requirement is that v is a preferred valuation of V. Indeed, in many situations, the
larger a set is, the harder it isto be a preferred element of it, and he who can do the most can do the
least. This property appearsin [Che54] and has been given the name Coherencein [Mou85].

Weturnto the second property. Suppose W isaset of valuations, V' isasubset of W, and suppose
all the preferred valuations of 1 belong to V. Then, they are expected to include all the preferred
valuations of V. The importance of this property has been put in evidence by [Aiz85, AM81] and
has been given the name Local Monotonicity in e.g. [Leh01].

In [SchOQ], Schlechta showed that Coherence and Local Monotonicity characterize those choice
functions that can be defined by a binary preference relation on states |abelled by valuations (in the
style of e.g. [KLM90]).

Now, we turn to propertiesrelevant for the paper, i.e. properties which characterize those choice
functionsthat can be defined by a pivot (in the style of e.g. D. Makinson [Mak03, Mak05]). A pivot
is a fixed subset of valuations which are considered to be the important ones in the absolute sense.
Details will be givenin Section 2.2.2.

Definition 14 LetV beaset, V C P(V), W C P(V), and p achoicefunction fromV to W.
We say that 1 is strongly coherent (SC) iff VV, W € V,

p(W)Nv C u(v).
Suppose (F, V, |=) is asemantic structure.
We say that 1 is definability preserving (DP) iff
YV evnD, u(V)eD.

In addition, suppose V € V.
We say that 1 is universe-codefinable (UC) iff

V\ u(V) € D.

Definability Preservation hasbeen put in evidencefirst in[Sch92]. One of its advantagesis that when
the choice functions under consideration satisfy it, we will provide characterizations with purely
syntactic conditions. To the author knowledge, Strong Coherence and Universe-codefinability are
first introduced in the present paper. An advantage of Universe-codefinability is that it provides a
link with X -logics [FRS01]. We will seeit in Section 5.

Now, weturn to alast property:

Definition 15 Suppose £ is a language, — a unary connective of £, F the set of all wffs of L,
(F,V, =) asemantic structure, V. C P(V), W C P(V), and . be achoicefunctionfromV to W.
We say that 1. is coherency preserving (CP) iff

VVevVncC, uV)ecC.



To the author knowledge, Coherency Preservation has been first introduced in [BNO5]. An advantage
of itisthat when the choice functionsunder consideration satisfy it, wewill not need to assume (A2)
to show our characterizations (in the discriminative case).

2.2.2 Pivots

Suppose some valuations are considered to be the important ones in the absolute sense and collect
theminaset Z, called apivot. Then, Z defines naturally a choice function ;. 7 which choosesin any
set of vauations, simply those elements which belong to Z. Moreformally,

Definition 16 Let V be a set.

We say that 7 isapivoton V iff Z C V.

LetZ beapivoton V.

We denote by 1z thefunction from P (V) to P(V) suchthatVV C V,

pr(V)=vVnZI.

Pivots have been investigated extensively by D. Makinson in [Mak03, Mak05]. In the present sec-
tion, we show that the properties of Strong Coherence, Definability Preservation, and Universe-
codefinability characterize those choice functions that can be defined by a pivot. More precisely:

Proposition 17 Let V beaset, V,W C P(V), and 1 achoicefunction fromV to W. Then:

(0) pisSCiff thereexistsapivotZ onV suchthatVVv € V, u(V) = uz(V).

Suppose (F, V, |=) isasemantic structureand V € V. Then:

(1) pisSCand DPiff thereexistsapivotZ onV suchthatZ € DandVV € V, u(V) = uz(V);
(2) pisSCandUCIff thereexistsapivotZ onV suchthat V\Z € D andVV € V, u(V) = puz(V).

Proof Proof of (0). Direction: “—".
LeZ={veV:3VeV,vepuV)}adsupposeV € V.
If v e u(V), thenwv € V and, by definition of Z, v € Z. Consequently, u(V) C VNZ.
lfveVNZ,then3W € V,v e u(W),thus, by SC,v € u(W)NV C u(V).
Consequently, V N Z C u(V).

Direction: “«".
ThereexistsZ C V suchthatVV e V, u(V) =V NZ.
We show that y satisfies SC.
LetV,W € V. Then, u(W)NV =WNINV CINV = p(V).

Proof of (1). Direction: “—".
Takethe same 7 asfor (0). Then, by verbatim the same proof, VV € V, u(V) =V NZ.
It remainsto show that Z € D.
AsMy=V,V € D. Thus aspisDP, u(V) € D. But, u(V) = VNI =1.
Direction: “«".
Verbatim the proof of (0), except that in addition Z € D.
We show that 1 isDP. Let V € VN D.
Then, 3T C F, Mr = V. Similarly,asZ ¢ D,3A C F, Ma = 1.
Therefore, (V) =V NZ = Mr N Ma = Mrua € D.



Proof of (2). Direction: “—".

Takethe same 7 asfor (0). Then, by verbatim the same proof,VV € V, u(V) =V NZ.

Itremainstoshow V\Z € D. AspisUC, V\ (V) € D.But, V\ u(V) =V\ (VNI)=V\ZI.
Direction: “«".

Verbatim the proof of (0), except that in addition V \ Z € D.

We show that ;¢ isUC: V\ p(V) =V\ (VNZI)=V\ZeD. |

2.3 Pivotal(-discriminative) consequence relations
2.3.1 Deéfinitions

Suppose we are given a semantic structure and a choice function i on the valuations. Then, it is
natural to conclude a formula o from a set of formulas I' iff every model for I chosen by p is a
model for a. Moreformally:

Definition 18 Let (F,V, =) beasemantic structure and |~ arelationon P(F) x F.
We say that |~ is apivotal conseguence relation iff there exists a SC choice function p from D to
P(V)suchtha VI C F,Va e F,

I «iff u(Mr) C M,
In addition, if 1» isDP, CP, etc., then sois |~.

We called these relations “ pivotal” because, in the light of Proposition 17, they can be defined equiv-
alently with pivots, instead of SC choice functions. Their importance has been put in evidence
by D. Makinson in e.g. [Mak03, Mak05], where he showed that they constitute easy conceptual
passage from basic to plausible non-monotonic consequence relations. Indeed, they are perfectly
monotonic but aready display some of the distinctive features (i.e. the choice functions) of plausi-
ble non-monotonic relations. Note that pivotal (resp. DP pivotal) consequence relations correspond
to Makinson’s pivotal-valuation (resp. pivotal-assumption) relations. We will give an example of
how they can be used to draw plausible conclusions from incomplete information in Section 2.3.2.

Moreover, if amany-valued semantic structureis considered, they lead to rational and non-trivia
conclusionsis spite of the presence of contradictionsand are thus useful to treat both incomplete and
inconsistent information. However, they will not satisfy the Disjunctive Syllogism. We will give an
examplewith the FOUR semantic structure in Section 2.3.3.

Characterizations of pivotal consequence relations, valid in classical frameworks, can be found
in the literature. For instance, the following result appears to be part of folklore for decades. DP
pivotal consequencerelations correspond precisely to those supraclassical closure operationsthat are
compact and satisfy Digjunction in the premisses. For more details see e.g. [Rot01, Mak03, Mak05].

Now, we turn to a qualified version of pivotal consequence. It captures the idea that the contra-
dictionsin the conclusions should be rejected.

Definition 19 Let £ bealanguage, — aunary connectiveof £, F the set of al wffsof L, (F,V, )
asemantic structure, and |~ arelationon P(F) x F.

We say that |~ is a pivotal-discriminative consequence relation iff there exists a SC choice function
pwfromD toP(V) suchthaa VI C F,Va € F,

T o iff p(Mr) € M, and u(Mr) € M-,
In addition, if 1 is DP, CP, etc., then sois |~.
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If aclassical semantic structure is considered, the discriminative version does not bring something
realy new. Indeed, the only difference will be to conclude nothing instead of everything in the
face of inconsistent information. On the other hand, with a many-valued structure, the conclusions
are rational even from inconsistent information. The discriminative version will then reject the
contradictionsin the conclusions, rendering the latter al the more rational.

2.3.2 Examplein the classical framework

Let £ beaclassical propositiona language of which the atoms are r, ¢, and p. Intuitively, » means
Nixon is arepublican, ¢ means Nixon is a quaker, and p means Nixon is a pacifist. Let F be the set
of al wffsof £,V theset of all classical two-valued valuationsof £, and |= the classical satisfaction
relation for these objects. Then, V is the set of the 8 following valuations: v, vy, v2, v3, V4, U5, Ve,
and v7, which are defined in the obviousway by the following table:

r1q|p
v {|0]0]0
U1 0101
V2 0(11]0
V3 0]1(1
V4 1{0|0
Vs 1101
Vg 1{1/0
vr 111

Now, consider the class of al republicans and the class of al quakers. Consider that a republican
isnormal iff heis not a pacifist and that a quaker is normal iff heis a pacifist. And, consider that a
valuation is negligible iff (in it) Nixon is a non-normal individual of some class. Then, collect the
non-negligible valuationsin apivot Z. More formally:

I={veV:ifulr thenv | —-p; andif v |= ¢, thenv = p}.

Finally, let |~ be the pivotal consequence relation defined by the SC choice function y 7.

Then, |~ leads to “jump” to plausible conclusions from incomplete information. For instance,
r |~ —p and ¢ |~ p. But, wefdl into triviality if we face new information that contradict previous
“hasty” conclusions. For instance, {r,p} I~ o, Vo € £, and {¢,—p} I a, Va € L. Thisisthe
priceto pay for being monotonic, whereas conclusionsthat are only plausible are accepted.

In addition, |~ is not paraconsistent and some sets of formulas are rendered useless because
thereis no model in the pivot for them, though there are models for them. For instance, {q, 7} |~ «,
VaeL.

2.3.3 Examplein the FOUR framework

Consider the FOUR semantic structure (F., V4, =4) and suppose A = {r, ¢, p} (these objectshave
been defined in Section 2.1.2). In addition, make the same considerations about Nixon, the classes,

normality, etc., asin Section 2.3.2, except that this time avaluation is considered to be negligible iff

(init) the processor isinformed that Nixonis an individual of some class, but he is not informed that

Nixon isanormal individual of that class. See Section 2.1.2 for recalls about the sources-processor
systems. Again, collect the non-negligible valuationsin apivot Z. More formally:

I={veVy:ifvl=r thenv = —p; andif v |= ¢, thenv = p}.

11



Let |~ be the pivotal consequence relation defined by the SC choice function p 7.

Then, again |~ leads to “jump” to plausible conclusions from incomplete information. For in-
stance, » |~ —p and ¢ |~ p. Moreover, though “hasty” conclusions are never withdrawn, we do not
fal into triviality when we face new information that contradict them. For instance, {r,p} |~ p and

{r,p} I —pand {r,p} |~ rand {r,p} X —r.

In addition, |~ is paraconsistent. For instance, {p,—p,q} |~ p and {p,—p,q} I~ —p and
{p,—»,q} I~ qand {p,—p,q} ¥ —q. And, less sets of formulas are rendered useless because
there is no model in the pivot for them, though there are models for them. For instance, this time,

{¢,r} pand{q,r} |~ -pand{q,r}  gand {q,r} ¥ ~gand {q,r} |~ r and {q, r} |~ —r.
However, |~ does not satisfy the Disjunctive Syllogism. Indeed, for instance, {—r,r V ¢} ¥ g.

3 Characterizations

The first contributions of the paper are characterizations (in many cases, with purely syntactic con-
ditions) of several families of pivotal and pivotal-discriminative consequence relations. Sometimes,
we will need to make some assumptions about the semantic structure under consideration. However,
no assumption will be needed for the two following families:

¢ the pivotal consequence relations (Section 3.2);

o the DP pivotal consequencerelations (Section 3.1).
We will assume (A0) for:

e the UC pivotal consequencerelations (Section 3.2).
We will need (A3) and (A1) for:

¢ the CP pivotal-discriminative consequence relations (Section 3.4);

o the CP DP pivotal-discriminative consequence rel ations (Section 3.3).
We will assume (A3), (A1), and (A2) for:

o the pivotal-discriminative consequence relations (Section 3.4);

o the DP pivotal-discriminative consequence relations (Section 3.3).
We will assume (A0), (A3), and (A1) for:

e the CP UC pivotal-discriminative conseguence relations (Section 3.4).
We will need (A0), (A3), (A1), and (A2) for:

¢ the UC pivotal -discriminative consequence rel ations (Section 3.4).

3.1 Thenon-discriminative and definability preserving case

In the present section, we provide, in ageneral framework, a characterization for the family of all DP
pivotal consequence relations. We will use techniques very similar to those of [BNO5] (see the DP
and non-discriminative case). The latter are themselves strongly inspired by the work, in a classical
propositional framework, of K. Schlechta (see Proposition 3.1 of [Sch00]). Theideaisto get to the
remarkable equality: ;«(Mr) = M ry. Thankstoit, propertieslike Strong Coherence can be easily
translated in syntactic terms (i.e. using only the language, |-, |~, etc.).

12



Definition 20 Let (F,V, =) beasemantic structure and |~ be arelation on P(F) x F.
Then, consider the following conditions. vV I', A C F,

(r0) if () = H(A), then (') = ~(A);
(~1) () = F(~(I);

(~2) T €~ (I);

(~3) () € F((A),T).

Note that those conditions are purely syntactic when there is a proof system available for - (which
isthe case with e.g. the classical, FOUR, and J3 semantic structures).

Proposition 21 Let (F,V, =) beasemantic structureand |~ be arelation on P(F) x F.
Then, |~ is an DP pivotal consequence relation iff ~ satisfies (|~0), (1), (~2), and (~3).

Proof Direction: “—".
There exists an DP SC choicefunction 1 fromD to P(V) suchthat VI C F, ~(T) = T'(u(Mr)).
We will show:

) VYT CF,u(M,
1) |~ satisfies (j~
2) | satisfies (v
3) |~ setisfies (p~
4) |~ satisfies (j~
Direction: “«".
Suppose ~ satisfies (~0), (1), (~v2), and (~3).

Let 1 bethefunctionfrom D to P(V) suchthat VI C F, u(Mr) = M ().
We will show:

(5) wiswell-defined;

(6) wisaDP choicefunction;

(7) wisSGC;

(8) VI CF,p(I) = T(u(Mr)).

r) = My (r);

);
);
);
)-

(0
( 0
( 1
( 2
( 3

Proof of (0). LetT' C F. Asp isDP, u(Mr) € D. Thus, 3A C F, u(Mr) = MAa.
Therefore, ILL(MF) = Ma = MT(Z\/IA) = MT(M(MF)) = M|N(F)-

Proof of (1). LetT', A C F and suppose-(I") = F(A).
Then, Mr = Ma. Thus, (T') = T'(w(Mr)) = T(u(Ma)) = (A).

Proof of (2). LetT" C F. Then, (') = T'(u(Mr)) = T(Mr(uarey)) = T(Mpry) = H(R(T)).
Proof of (3). LetT" C F. Then, I C T'(Mt) C T'(u(Mr)) = p~(I).

Proof of (4). LetT", A C F. Then, by (0) and SC,

M|~(A) r= M\N(A) N Mp = (MA) N Mr C M(MF) = M|~(p).

Therefore, by (1), weget ~(T') = F(~(T)) = T(Mvr)) € T(Mpa),r) = F(~(A),T).

Proof of (5). Let ", A C F and suppose Mt = Ma.
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Then, F(F) = F(A) Thus, by (I’VO), M‘N(F) = M|N(A)-

Proof of (6). LetT" C F. Then, by (p2), u(Mr) = My € Mr.
Consequently, 1 is achoice function. In addition, i is obviously DP.

Proof of (7). LetT', A C F.
Then, by (I’\/3), we get ,U,(MA) N Mr = M\N(A) NMr = M\N(A),F - M|N(F) = N(MF>-

Proof of (8). LetT" C F. Then, by (p1), (T) = H(v(T)) = T(Mory) = T(u(Mr)). 1

3.2 Thenon-discriminative and not necessarily definability preserving case

In the present section, we will investigate in particular the family of all pivotal consequence rela
tions. Unlike in Section 3.1, the choice functions considered here are not necessarily definability
preserving. As a consequence, we will no longer have at our disposal the remarkable equality:
p(Mr) = M ). Therefore, we cannot translate properties like Strong Coherence in syntactic
terms. Moreover, we will put in evidence, in Section 4, some limits of what can be done in this
area. Approximatively, we will show, in an infinite classical framework, that there does not exist a
characterization (of the aforementioned family) made of conditions which are universally quantified
and of limited size.

We provide a solution with semi-syntactic conditions. To do so, we will use techniques very
similar to those of [BNO5] (see the non-DP and non-discriminative case). The latter are themselves
strongly inspired by the work of K. Schlechta (see Proposition 5.2.5 of [Sch04]). Technically, the
ideabegins by building fromany function f, aSC choicefunction . ; such that whenever f “covers’
some SC choice function, it necessarily covers . ¢.

Definition 22 Let V beaset, V C P(V), W C P(V) and f afunction fromV to W.
We denote by 1 the functionfrom 'V to P(V) suchthat vV € V,

pr(V)={veV:YWeV,ifveW, thenve f(W)}.

Lemma23 LetVbeaset, VC P(V), W C P(V)and f afunctionfromV to W.
Then, 11+ isaSC choice function.

Proof 1 isobviously achoice function. We show that it satisfies Strong Coherence.
Suppose the contrary, i.e. suppose3 V., W € Vand3v € uy(W)NV suchthat v & ps(V).
Then,asveVandv & us(V),wehave3Z e V,v e Z,andv ¢ f(2).

Therefore, simply by definition of i, v & p (W), whichisimpossible. [

Lemma24 LetV beaset, V, W, and X subsets of P(V), f afunctionfrom V to W, and p» a SC
choicefunctionfromV to X suchthat vV € V, f(V) = My, vy). Then:

(O) VYV e V, f(V) = MT(;Lf(V))-
Suppose (F, V, =) is asemantic structure satisfying (A0), D C V, and 1 isUC. Then:
(1) ur (V) = nV).
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Proof Proof of (0). Suppose V' € V. We show f (V') = Mz, (v))-

Casel:Jve u(V),vé&pp(V).

Aspu(V) CV,wehavev € V.

Thus, by definitionof py, 3W € V,v € W,andv & f(W) = Mpuwy) 2 p(W).

On the other hand, as 11 is SC, (V) N W C pu(W). Thus, v € u(W), which isimpossible.
Case2: (V) S pg(V).

Case2.l: Jv e pus(V),v & f(V).

Then,3W € V,v € W,andv ¢ f(W). Indeed, just take V' itself for the choice of V.
Therefore, by definitionof 1, v & py(V'), whichisimpossible.

Case2.2: uy (V) C f(V).

Then, f(V') = Mr(uwvy) © Mrou,vy) € Mrsv)) = Mrrny) = Mrey) = f(V).

Proof of (1). Direction: “C”.
Suppose the contrary, i.e. suppose 3 v € p¢(V), v & u(V).
Then,v € V\ p(V). But,as pisUC, V\ u(V) e D C V.
Ontheother hand, asv € puf(V), weget VIV € V, if v € W, thenv € f(W).
Therefore, v € f(V \ ,LL(V)) = MT(;L(V\H(V)))'
But, we will show:
(L0) u(V\u(yV))=0.
Therefore, M. o\u(vy)) = Mr(@) = M.
But, by (A0), Mz = . Therefore, v € (J, which isimpossible.
Direction: “2".
Suppose the contrary, i.e. suppose 3 v € u(V), v & p (V).
AsveVandv & us(V),weget 3W € V,v e Wandv € f(W) = Mpguwyy 2 p(W).
But, as 1 isSC, u(V) N W C u(W). Therefore, v € u(W), whichisimpossible.

Proof of (1.0). Supposethe contrary, i.e. suppose I v € u(V \ u(V)).
AsisSC, u(V\ (V) NV C pu(V). Thus, v € p(V). Therefore, v & V' \ (V).
But, u(V \ u(V)) CV\ u(V). Thus, v & u(V \ u(V)), whichisimpossible.

Definition 25 Let (F,V, =) beasemantic structureand |~ bearelation on P(F) x F.
Then, consider the following conditions: VI" C F,

(h4) @) =T({ve Mr:VACF, ifve Ma, thenv e My (a)});

(5) VN\{veV:VACF, ifve M, thenv € M a)} € D.

Proposition 26 Let (F,V, =) beasemantic structure and |~ arelation on P(F) x F. Then:
(0) |~ isapivota consequencerelation iff |~ satisfies (~4).

Suppose (F, V, ) satisfies (A0). Then:

(1) p~isaUC pivotal consequencerelation iff |~ satisfies (~4) and (~5).

Proof Proof of (0). Direction: “—"

There exists a SC choice function i from D to P(V) suchthat VI C F, ~(T') = T'(u(Mr)).
Let f bethefunctionfromD to D suchthat vV € D, wehave f(V) = Mp,vy).

By Lemma24,vVV € D,wehave f(V) = My, v))-

Notethat VI' C F, f(]\/fp) = MT(M(MF)) = M|~(p).
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We show that (~4) holds. LetT" C F.
Then, ~(I') = T'(u(Mr)) = T(Mr(umry)) = T(f(Mr)) = T(Mr(u,(vey) = T(pg(Mr)) =
T({ve Mr:VW e€D,ifveW,thenve f(W)}) =
T({ve Mpr:VACF,ifve Ma,thenv e f(Ma)}) =
({’U e Mr:VACUEF,ifve Ma,thenv € M|~(A)})
Direction: “«".
Suppose |~ satisfies (~4).
Let f bethefunctionfromD to D suchthat vVI' C F, wehave f(Mr) = My ().
Notethat f iswell-defined. Indeed, if I', A C F and M = Ma, then, by (~4), ~(T) = ~(A).
In addition, by (j~4), we clearly haveVF CF, () =T(us(Mr)).
And finally, by Lemma23, 1 isaSC choice function.

Proof of (1). Direction: “—".
Verbatim the proof of (0), except that in addition (A0) holds and 1 is UC.
We show that |~ satisfies (~5). Asp isUC, V \ u(V) € D. But, by Lemma 24, (V) = s (V) =
{veV:VWeD,ifveW,thenve f(W)} =
{veV:VACF,ifve Ma, thenve f(Ma)} =
{’U ceV:VACF,ifve Ma,thenv € M|~(A)}-
Direction: “«".
Verbatim the proof of (0), except that in addition (A0) holdsand |~ satisfies (j~5).
But, because of (~5), V \ (V) € D. Therefore iy isUC.
Notethat in thisdirection (A0) isnotused. |}

3.3 Thediscriminative and definability preserving case

Inthe present section, wewill characterize certain families of DP pivotal -discriminative consequence
relations. We need an inductive construction introduced in [BNO5]:

Notation 27 N denotesthe natural numbers: {0,1,2,...} and
N the positive natural numbers: {1,2,...}.

Definition 28 Let £ be alanguage, — aunary connectiveof £, F the set of al wffsof L, (F,V, )
asemantic structure, ~ arelationon P(F) x F,andI’ C F. Then,

H(D) ={-peF :Ber )\ T)and-5 ¢, ~T))}
Let: € Nwithi > 2. Then,

[ BeRT, T r yH; (T (I') and
i) = e e e Ty T
H(I):= | Hi(T)
€Nt

We turn to the representation result:

Definition 29 Suppose £ is alanguage, — a unary connective of £, v abinary connective of £, F
the set of all wffsof £, (F,V, =) asemantic structure, and |~ arelation on P(F) x F.
Then, consider the following conditions. VI', A C F,V «a, 3 € F,
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(h6) if 8 € (I, ~(I) \ (') and —a € H(T, ~(I'), =6), then o & ~(T);

(r7) ifa e B, (1) \ () and 5 € H(I, (), =) \ (1), thenar v 5 & ~(T);
(h8) ifa € ~(T'), then o & (T, ()5

(F9) T UHT) CHA, (A), H(A),T),

(I~10) if T is consistent, then |~(T") is consistent, I' C |~(T"), and F(j~(T')) = |~(I).

Note that those conditions are purely syntactic when there is a proof system available for -

Proposition 30 Suppose £ is alanguage, — a unary connective of £, vV and A binary connectives
of £, F the set of all wffsof £, (F,V, =) asemantic structure satisfying (A3) and (A1), and |~ a
relationon P(F) x F. Then:

(0) |~ is a CP DP pivotal-discriminative consequence relation iff |~ satisfies (|~0), (~6), ()7),
(r8), (r9), and (}~10).

Suppose (F, V, |=) satisfies (A2). Then:

(1) P isaDP pivotal-discriminative consequence relation iff |~ satisfies (~0), (p6), (~7), (~8)
and (p9).

Before we show Proposition 30, we need to introduce Lemmas 31 and 32 bel ow, taken from [BNO5]:

Lemma 31 From[BNO5].

Suppose £ isalanguage, — aunary connectiveof £, vV and A binary connectivesof £, F the set of all
wifsof £, (F,V, ) asemantic structure satisfying (A3) and (A1), and |~ arelationon P(F) x F
satisfying (~6), (~7), and (8).

Then, VI C F, (') = Ta(Mr,jo(r), 1(r))-

Lemma 32 From [BNO5].

Suppose £ is alanguage, — a unary connective of £, vV and A binary connectives of £, F the set of
al wffsof £, (F,V, =) asemantic structure satisfying (A3) and (A1), V C P(V), u aDP choice
functionfromD to V, |~ therelation on P(F) x F suchthat VT C F, ~(T') = Ty(u(Mr)), and
I' C F. Then:

(0) p satisfies (~6), (~7), and (1~8);

(1) if (F,V, |=) satisfies (A2) too, then pu(Mr) = Mrp o1y, 1 (1)
(2) if p is coherency preserving, then pu(Mr) = Mrp (), 5 (r)-
We come to the proof of Propaosition 30.

Proof Proof of (0). Direction: “—".

There exists a CP DP SC choice function i from D to P (V) such that
VT C F, M(T) = Ta(u(Mr)).

We will show:

(0.0) |~ setisfies (|~0).

By Lemma32 (0), |~ satisfies (p~6), (p~7), and (|~8).
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By Lemma 32 (2) and Strong Coherence of y, p~ satisfies (|~9).
We will show:
(0.1) |~ setisfies (~10).
Direction: “«".
Suppose |~ satisfies (~0), (~6), (7). (r-8), (r9), and ((~10).
Then, let 1 be the functionfrom D to P(V) suchthat VT C F, u(Mr) = Mrp (1), 5 (r)-
We will show:
(0.2) piswell-defined.
Clearly, 1 is a DP choice function.
In addition, as |~ satisfies (|~9), u is strongly coherent.
We will show:
(0.3) pisCP
Andfinally, by Lemma31,VT C F, ~(T) = Ta(u(Mr)).

Proof of (0.0). LetT', A C F and suppose (") = H(A). Then, M = Ma.
Therefore, ((T) = Ty(u(Mr)) = Ta(u(Ma)) = (A).

Proof of (0.1). LetI' C F and supposeI" is consistent.

Then, M € DN C. Thus, as 1 isCP, u(Mr) € C. Therefore, Ty(pu(Mr)) = T (u(Mr)).
Consequently, I' € T'(Mr) C T(u(Mr)) = Ta(u(Mr)) = (T).

In addition, M\N(F) = MTd(M(MF)) = MT(,LL(IVIF))- But, ,u(Mp) € C. Thus, MT(,LL(IVIF)) e C.
Consequently, |~(T") is consistent.

Andfinaly, (I') = Ta(p(Mr)) = T((Mr)) = T(Mr(umry) = T (M) = H(R(T)).

Proof of (0.2). LetT', A C F and suppose M = MAa.
Then, H(T) = H(A). Thus, by (0), ~(T) = R (A).
Consequently, H(F) = H(A) Therefore, MF,\N(F),H(F) = MA,|~(A),H(A)-

Proof of (0.3). SupposeV € DNC. Then, 3T C 7,V = Mr.

Case1: Hy(I) # 0.

Thus, 35 € F, ¢ |N(F> and MF,|~(F) - Mg.

BY (I10), T C [~(I') and H(((I')) = p(I'). Thus, My vy = Miry. Thus, My r) € M.
Therefore, 3 € T'(M ) = H(p(T')) = p~(I'), which isimpossible.

Case2: Hi(T') = 0.

Then, H(F) = 0. Thus, M(V) = M(MF) = Mp,‘N(p) H() = M|~(p).

But, by (h~10), (') is consistent. Therefore, My € C.

Proof of (1). Direction: “—".
Verbatim the proof of (0), except that 1 is no longer CP, whilst (A2) now holds.
Notethat, in (0), CP was used only to show (~9) and (~10).
But, (~10) isno longer required to hold and we are going to get (|~9) by another mean.
Indeed, by Lemma 32 (1) and Strong Coherence of y, (|~9) holds.

Direction: “«".
Verbatim the proof of (0), except that (j~10) does no longer hold, whilst (A2) now holds.
However, in (0), (~10) was used only to show that . is CP, which is nho longer required.
Note that we do not need to use (A2) in thisdirection. |
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3.4 Thediscriminative and not necessarily definability preserving case

Unlike in Section 3.3, the conditions of the present section will not be purely syntactic. The trans-
lation of properties like Strong Coherence in syntactic terms is blocked because we do no longer
have the following useful equality: p(Mr) = Mr (1), #(r), which hold when the choice functions
under consideration are definability preserving (but thisis not the case here). Thanksto Lemmas 23
and 24 (stated in Section 3.2), we will provide a solution with semi-syntactic conditions.

Definition 33 Let £ bealanguage, — aunary connectiveof £, F the set of al wffsof L, (F,V, )
asemantic structure, and |~ arelationon P(F) x F.
Then, consider the following conditions. VI C F,

(|N11) I—(F, |N(F),H(F)) = T({’U e Mr:VAC .7:, ifve MA, thenv € M\~(A),H(A)});
(F12) V\{v eV : VA CF, ifve Ma, thenv € M\N(A)7H(A)} € D.

Proposition 34 Suppose £ is alanguage, — a unary connective of £, vV and A binary connectives
of £, F theset of all wffsof £, (F,V, =) asemantic structure satisfying (A3) and (A1), and |~ a
relationon P(F) x F. Then:

(0) |~ isaCP pivotal-discriminative consequence relation iff |~ satisfies (~0), (~6), (~7), (~8),
(P~10), and (}~11).

If (F,V, ) satisfies (A0) too, then:

(1) |~ isaCP UC pivotal-discriminative consequence relation iff |~ satisfies (~0), (~6), (p7),
(P8), (P10), (p11), and (p~12).

If (F,V, ) satisfies (A2) too, then:

(2) P isapivotal-discriminative consequencerelation iff |~ satisfies (~0), (~6), (~7), (~8), and
(po11).

If (F,V, ) satisfies (40) and (A2) too, then:

(3) p isaUC pivotal-discriminative consequencerelation iff | satisfies (~0), (~6), (7), (~8),
(P11), and (J12).

Proof Proof of (2). Direction: “—".

There exists a SC choice function i from D to P(V) suchthat VI' C F, (T') = Tq(pu(Mr)).
Then, |~ satisfies obviously (~0).

Let f bethefunctionfromD to D suchthat V'V € D, f(V) = My, vy)-

Then, by Lemma24,VV € D, f(V) = My, (v))-

Moreover, VI C F, f(MF) = MT(M(MF)) - MT(MF) = Mr.

Therefore, f isachoice function.

Obvioudly, f isDP.

In addition, VI CF, }’V(F) = Td(N(MF)) = Td(MT(;L(IVIF))) = Td(f(Mp))

Consequently, by Lemma 32 (0), |~ satisfies (~6), (~7), and (~8).

Inaddition, by Lemma32 (1), VI C F, f(Mr) = Mp j (1), ()

We show that |~ satisfies (j~11). LetT' C F.

Then, (I, b(T), H(I)) = T(My vy sa(ry) = T(f(Mr)) = T(Mr,(aary)) = Tpa (Mr)) =
T{ve Mp: VW eD,ifveW,thenve f(W)}) =
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TH{ve Mpr:VACF,ifve Ma,thenv e f(Ma)}) =
T({U EMpr:VACF,ifve Ma,thenv € MA7\~(A)7H(A)}> =
T({U EMpr:VACF, ifve Ma, thenv € M|~(A)H(A)})
Direction: “«".
Suppose (~0), (~6), (~7), (r8), and ({~11) hold.
Let f bethefunctionfromD to D suchthat vV I" C F, f(Mr) = Mrp (1), m(r)-
By ([~0), f iswell-defined.
By Lemma3l, VI C F, |N(F) = Td(MF,|~(F),H(F)) = Td(f(Mp))
By (l’vll),VF C F, f(MF) = MT(,uf(IVIF))-
Therefore, VI' C F, (') = Ta(f(Mr)) = Ta(Mr(uy (arr))) = Ta(ps(Mr)).
But, by Lemma 23, s isaSC choice function.

Proof of (3). Direction: “—".
Verbatim the proof of (2), except that in addition (A0) holds and 1 isUC.
We show that (~12) holds. As 1 isUC, V \ u(V) € D. But, by Lemma24 (1), u(V) = p (V) =
{veV:VWeD,ifveW,thenve f(W)} =
{veV:VACF,ifve Ma, thenv e f(Ma)} =
{’U EV:VACF, ifve Ma, thenv e MA7\~(A)7H(A)} =
{U eV:VACF, ifve Ma, thenv e M|~(A),H(A)}-
Direction: “«".
Verbatim the proof of (2), except that in addition (A0) holdsand |~ satisfies (|~12).
But, because of (~12), V \ us(V) € D. Therefore 1 isUC.
Notethat (A0) isnot used in this direction.

Proof of (0). Direction: “—".
Verbatim the proof of (2), except that (A2) does no longer hold, whilst 1 is now CP.
Notethat (A2) wasused, in (2), only toapply Lemma32 (1) toget VI’ C F, f(Mr) = Mr oy, m(r)-
But, we will get this equality by another mean.
Indeed, if V. € DN C, then, as 1 isCP, (V) € C, thus M,y € C,thus f(V) € C.
Therefore f isCP.
Consequently, by Lemma 32 (2), weget VI C F, f(Mr) = Mp o0y, 5(r)-
In addition, by verbatim the proof of (0.1) of Proposition 30, |~ satisfies (|~10).
Direction: “«".
Verbatim the proof of (2), except that (A2) does no longer hold, whilst |~ satisfies now (j~10).
But, in thisdirection, (A2) was not used in (2).
It remains to show that 1. ¢ is CP.
By verbatim the proof of (0.3) of Proposition 30, we get that f is CP.
LetV e DN C. Then, f(V) € C. Thus, M7, (v)) € C. Thus, u; (V) € C and we are done.

Proof of (1). Direction: “—".
Verbatim the proof of (2), except that (A2) does no longer hold, whilst (A0) now holds and 1 is
now UC and CP.
Notethat (A2) wasused, in (2), only toapply Lemma32 (1) toget VI’ C F, f(Mr) = Mr oy, m(r)-
But, by verbatim the proof of (0), weget anyway VI C F, f(Mr) = Mr (), a(r)-
In addition, by verbatim the proof of (0.1) of Proposition 30, |~ satisfies (|~10).
And, by verbatim the proof of (3), p~ satisfies (|~12).
Direction: “«".
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Verbatim the proof of (2), except that (A2) does no longer hold, whilst (A0) now holds and |~
satisfies now (~10) and (~12).

But, in thisdirection, (A2) was not used in (2).

In addition, by verbatim the proof of (0), iy isCP.

And, because of ()~12), V \ us(V) € D. Therefore iy isUC.

Notethat (A0) isnot used in thisdirection. |

4 Nonexistence of normal characterizations

4.1 Definition

Let F beaset, R aset of relationson P(F) x F,and |~ arelationon P(F) x F.
Approximatively, a characterization of R will be called “normal” iff it contains only conditions
which are universally quantified and “ apply” |~ at most || times. More formally,

Definition 35 Let F beaset and R aset of relationson P(F) x F.
We say that that C is anormal characterization of R iff C = (X, @), where A < |F| isa(finite or
infinite) cardinal and ® isarelation on P(F)2* such that for every relation ) on P(F) x F,

beR Iff VIq,...,TACF, (T1,...,Tx,(T1),...,~(T0)) € D.

Now, suppose there is no normal characterization of R. Here are examples (i.e. (C1), (C2), and
(C3) below) that will givethe reader (we hope) agood ideawhich conditions cannot characterize R.
This will thus make clearer the range of our impossibility result (Proposition 37 below). To begin,
consider the following condition;

(C1) YT,A € F CP(F), M U (A)) = 0.

Then, (C'1) cannot characterize R. Indeed, suppose the contrary, i.e.

suppose |~ € Riff VI,A € F, ~(TU ~(A)) = 0.

Then, take A = 3 and therelation ® suchthat (I'1, T2, 's, T4, 5, T's) € @ iff

(Fl,FQ cFandI'3 =14 UF5) entailsT'g = .

Then, (3, ®) isanormal characterization of R. We give the easy proof of this, so that the reader can
check that a convenient relation ® can be found quickly for all simple conditionslike (C'1).

Proof Direction: “—".

Suppose |~ € R.

Then, VI, A € F, ~(T U R(A)) =0.

LetTy,[y, T3 C F.

We show (Fl,rg,rg, |"“(F1); P‘V(Fg), |f‘V(F3)) c .

SupposeI';, T2 € FandT's =T'; U |~(T'2).

Then,asT'y,T's € F, weget (' U ~(T2)) = 0.

But, ~(T'y U ~(T'2)) = p~(T's). Therefore, ~(T's) = 0.
Direction; “«".

SupposeVFl,Fg,Fg C F, (Fl,rg,rg, 'I\J(Fl), "V(F2)7 |~(F3)) € .

Weshow [~ € R. LetT',A € F.

Takel'y =1, T, = A, I's=T1 U I’V(FQ)

Then,wehaveT'; € F,T'; € F,andT's = T'; U |~(T'2).

But, (Fl, 'y, s, |"“(F1); P‘V(Fg), |f‘V(F3)) c .
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Therefore, by definition of ®, |~(I'3) = 0.
BUt, o('s) = (s U po(I)) = (DU (A)).

But actually, we are not limited to simple operations (like e.g. U, N, \). More complex conditions
than (C1) are also excluded. For instance, let f be any function from P(F) to P(F) and consider
the following condition:

(C2) VI,A € F, ~(f(T) U(A)) = 0.

Then, (C2) cannot characterize R. Indeed, suppose it characterizes R.

Then, take therelation ® such that (I'y, 'y, '3, T4, T'5,Tg) € @ iff

(Fl,FQ cFandT'3 = f(F1> UF5) entailsT'g = .

It can be checked that (3, ) isanormal characterization of R. We leave the easy proof to the reader.
We can even go further combining universal (not existential) quantifiers and functions like f.

For instance, let G be a set of functionsfrom P (F) to P(F) and consider the following condition:

(C3) VILAeF,Vfeg r(f(D)UR(A)) =0.

Then, (C3) cannot characterize R. Indeed, supposeit characterizes R.

Then, take therelation ® suchthat (T'y,T'5, '3, T4, T'5,Tg) € @ iff

Vf eg,if (Fl,rg ¢ Fand I's = f(Fl) U F5), then I's = .

It can be checked that (3, @) is anormal characterization of R. The easy proof isleft to the reader.
Finally, agood example of acondition which is not excluded is (|~4). We have seen in Proposi-

tion 26 that it characterizesthe family of all pivotal consequencerelations.

4.2 Impossibility results

In the present section, we will show, in an infinite classical framework, that there is no normal
characterization for the family of all pivotal consequence relations (in other words, (j~4) cannot
be replaced by a simpler condition in Proposition 26). In the same vein, in Proposition 5.2.15 of
[Sch04], K. Schlechta showed that there does not exist a normal characterization for the family of
all preferential consequence relations.

Note that he used the word “normal” in a more restrictive sense (see Section 1.6.2.1 of [Sch04]).
Approximatively, acharacterization of R iscalled normal by Schlechtaiff it contains only conditions
like (C1), i.e. conditions which are universally quantified, “apply” |~ a most || times, and use
only elementary operationslikee.g. U, N, \ (complex structures, functions, etc are not allowed). We
have been inspired by the techniques of Schlechta. We will need Lemma5.2.14 of [Sch04]:

Lemma 36 From [Sch04].

Suppose A isinfiniteand (F., V, =) isaclassica propositional semantic structure.
LetV C{V CV:|V]| < |A|} satisfying the two following conditions:

first,if Ve VandW C V,then W € V;

andsecond, VV, W € V,if [VUW| < |A|,thenVUW € V.

Then,vI' C F.,3Vr €V,

0) T(Nvev Mrm\vy) = T(Mr \ Vr);
Recall that A and F. have been introduced in Section 2.1.2. Note that the subscript in V- iswritten
just to keep in mind that V- dependsonT'.
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Proposition 37 Suppose A isinfiniteand (., V, =) isaclassical propositional semantic structure.
Then, theredoesn’t exist anormal characterizationfor thefamily of all pivotal consequencerelations.

Proof Suppose the contrary, i.e. suppose there exist a cardina A\ < |F.| and a relation ¢ over
P(F.)?* such that for every relation |~ on P(F.) x F., |~ is a pivotal consequence relation iff
VT,...,Tx C Fe, (T1,...,Tx, M(T1), ..., ~(Ty)) € ®. Then, define:

V. ={VCV:|V| <A}

In addition, let |~ betherelation on P(F.) x F. suchthat VI C F,,

r~(I) = T(m\/ev MT(MF\V))-

We will show:

(0) YV CV,if V| <|A|,thenT(V)=T(V\V);

(1) 3T4,...,T\ C Fesuchthat (Tq, ..., Ty, (T1), ..., (T)) € D.

Now, by lemma 36, we get:

(2) VI CF,,3Vr eV, ) =TMr\Vr)andVV € V,T(Mp\ V) CT(Mr\ Vr).
Then, define:

X = Ure{rl ,,,,, ) V-

Then, wewill show:

(3) VL €{ly,...,I\}, @) =T(Mr \ X).

Let 11 bethefunctionfromD to P(V) suchthat VV € D, (V) =V \ X.

We will show:

(4) pisaSC choicefunction.

Let ' bethe pivotal consequence relation defined by .

We will show the following, which entails a contradiction:

(5) ' isnot apivotal consequence relation.

Proof of (0). Let V' C V and suppose |V| < |A].

Obvioudy, T'(V) C T(V\ V).

Weshow T(V\ V) CT(V).

Suppose the contrary, i.e. suppose3 o € T(V\ V), a € T(V).
Then, 3v e V,v & M,.

Now, define:

W = {w € V : for al atom ¢ occurringin o, w(q) = v(q)}.
Then,Vw € W, we havew(a) = v(«o) and thusw ¢ M.

As the number of atoms occurring in a isfinite and A isinfinite, we get |[IW| = 241,
Therefore, |V| < |A| < |W|. Thus,3w e W\V CV\V.

Thus, V\ V € M,. Therefore,« ¢ T'(V \ V'), whichisimpossible.

Proof of (1). It suffices to show that |~ is not a pivotal consequence relation.

Suppose the contrary, i.e. suppose there exists a SC choice function 1 from D to P (V) such that
VI C Fo, () = T(u(Mr)).

As Aisinfinite, 3 p € A. We show that all cases areimpossible.

Casel:Jv e u(V), v &M,

LetT’ = T'(v). Then, Mt = {v}.

By SC of u, we have u(Mr) = u(Mr) NV C p(V). Thus, p(Mr) C p(V) N Mr.

On the other hand, again by SC, (V) N Mt C p(Mr). Consequently, (V) N Mr = u(Mr).
Therefore, [~(T') = T'(u(Mr)) = T(u(V) N Mr) = T(u(V) N {v}) = T(v).

But, p € T'(v). Thus, p & |~(T).

However, M € V. Therefore, nVEV MT(IVIF\V) - MT(MF\MF) = MT((]J) = ]\4_7:c = 0.
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Therefore, by definition of |~, we have (T') = T(0) = F..
Thus, p € ~(T"), which isimpossible.
Case 2: (V) C M,

Then, by (0), ~(0) = Ty y Mron,
But,V € M,. Thus,p & T(V) = |~(0).
On the other hand, |~(0) = T'(u(My)) =
But, (V) C M. Thus, p € T'(u(V

v)) = T(Nyev Mr)y) = T(Mrpp)y) =T(V).

0)) =T (u(V)).
)) = (), which isimpossible.

Proof of (3). LetT" € {T'y,...,T'»}. Direction: “C".
We have Vi C X. Thus, Mr \ X C Mr \ Vr.
Therefore, by (2), (') = T(Mr \ Vr) C T (Mrp \ X).
Direction: “2".
As Aisinfinite, |A| = |F.|. Therefore, A < |A|. Thus, |X| < |A|? = |A].
Thus, X € V. Thus, by (2), T(Mr \ X) C T(Mp \ Vr) = p~(T).

Proof of (4). n isclearly achoice function. We show that 1, setisfies SC. Let V, W C V.
Then, (W) NV =W\ X)NV =WnNV)\X CV\X=pnulV).

Proof of (5). By (3), VT € {T'y,.... T}, () = T(u(Mr)) = T(Mp \ X) = p(I).
But, (T'1,...,Tx, ;e(T'1), ..., (') € . Therefore, (T'y, ..., Ty, '(T1), ..., ~(T)) € .

Consequently, as (A, @) isanormal characterization, |~' is not a pivotal consequencerelation. |

5 Alink with X-logics

In this section, we investigate a link between pivotal consequence relations and pertinence conse-
guencerelations (alias X -logics) which were first introduced by Forget, Risch, and Siegel [FRS01].
Suppose some formulas are considered to be the pertinent ones in the absolute sense and collect
theminaset £. Then, it is natura to conclude a formula o from a set of formulas I iff every per-
tinent basic consequence of ' U {«} is a basic consequence of T' (i.e. the addition of o to I' does
not yield more pertinent formulas than with T" alone). This constitutes a pertinence consequence
relation. More formally,

Definition 38 Let (F,V, =) beasemantic structureand |~ arelationon P(F) x F.
We say that |~ is a pertinence conseguence relation (alias X -logic) iff there exists £ C F such that
VI CF,VacekF,

' aiff T, a)NE C H().

In addition, if H(&) = &, we say that |~ is closed.
We introduce a new assumption about semantic structures (in fact, simply aweak version of (A3)):

Definition 39 Suppose £ is alanguage, \VV abinary connective of £, F the set of al wffsof £, and
(F,V, =) asemantic structure. Then, define the following condition:

(A4) Ya,B € F, Ma\/ﬁ = MaUMg.

We will show that when (A4) isassumed, then UC pivotal consequencerelations are precisely closed
pertinence consequence relations. We need before Notation 40 and the very easy Proposition 41
(which we will useimplicitly in the sequel).
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Notation 40 Suppose £ isalanguage, v abinary connectiveof £, F the set of all wffsof £,T" C F
and A C F. Then:
F''vA:={aVvf:aecTandp e A}.

Proposition 41 Suppose £ is a language, Vv a binary connective of £, F the set of all wffs of £,
(F,V, =) asemantic structure satisfying (44), T C F,and A C F.
Then, M+ U Ma = Mrya.

Proof Direction: “C”.

Suppose the contrary, i.e. suppose I v € Mr U Ma,v € Mrya.

Then,J3ael, 35 € A, v & Mayyg.

But, by (A4), v € Mr U Ma C M, U Mg = M,yg, whichisimpossible.
Direction: “2".

Suppose the contrary, i.e. suppose I v € Mpya, v € Mp U Ma.

Then,3aeTl,v¢g Myand3 B € A, v & Mg.

Therefore, by (A4), v & My U Mg = Mqyg.

However o vV 3 € T'V A. Thus, v € Mpya Whichisimpossible. |}

Proposition 42 Suppose £ isalanguage, v abinary connective of £, F the set of all wffsof £, and
(F,V, =) asemantic structure satisfying (A4).
Then, UC pivotal consegquencerelations are precisely closed pertinence consequence relations.

Proof Direction: “C”.
Let )~ bean UC pivotal consequence relation.
Then, thereis an UC SC choice function from D to P(V) suchthat VT C F, ~(T') = T'(u(Mr)).
Thus, by Proposition 17, thereexistsZ C V suchthat V\Z € DandvVI' C F, (') = T(MrNZ).
Define: £ :=T(V\ 7).
Then, H(&) =T (Me) = T(Mrong) =T(V\I) = €.
Inaddition,asV \ Z € D, wehave Mg = Mponz) = V\ T.
We show:
(0) VI CFVaeF,TraiffbT,a)n& CHD).
Consequently, |~ is a closed pertinence consequence relation.
Direction: “2".
Let | be aclosed pertinence consequence relation.
Then, thereis& C Fsuchthat £ =H(€) andVI C F,Va e F,T p aiff HT,a) NE C HT).
Define: 7 := V' \ Ms.
Then, V\Z = Mg € D.
We will show:
(1) VI CF, ) =TMrNI).
Let i be the choicefunctionfromD to P(V) suchthat V'V € D, u(V) =V NT.
Then, VT C F, |~(T) = T(u(Mr)).
In addition, by Proposition 17, i isa UC SC choice function.
Consequently, |~ isan UC pivotal consequence relation.

Proof of (0). LetT' C Fand o € F. Then:
T~ aiff

MrNZC M, iff

Mr C M, U (V\Z) iff
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Mr € M, U Mg iff

Mrp C Mr‘u{a} U Mg iff

Mr € M(rygayyve iff
T(Mrugayve) € T(Mr) iff
(MFU{a} UMe) C T(MF) iff
(MFU{a}) NT(Mg) C T(My) iff
(T, ) NH(E) C H(T) iff

(T,a) NE CH(D).

T T

Proof of (1). LetT' C Fand o € F. Then:
T o aiff

(T, ) NE C H(T) iff

HT,a) NH(E) C H(T) iff
T(MFU{a}) NT (M, ) - T(MF) iff
T(MFU{a} UMeg) C T(MF) iff
T(Mrugayve)) € T(Mr) iff

Mr C M(rugayyve) iff

Mrp C Mr‘u{a} U Mg iff

Mr C M, U Mg iff

Mrn (V\ Mg) C M, iff
MrNICM,. |

6 Conclusion

We provided, in ageneral framework, characterizations for families of pivotal (-discriminative) con-
sequence relations. We showed, in an infinite classical framework, that there is no normal char-
acterization for the family of all pivotal consequence relations. And, we showed that UC pivotal
consequencerelations are precisely those X -logics such that X is closed under the basic entailment.
Beyond the contributions, an interest of the present paper isto give an example of how the techniques
developedin [BNO5] (in particular in the discriminative case) can be adapted to new properties (here
Strong Coherence in the place of Coherence). So naturally, we turn now to conclusions similar to
those of [BNO5]. In many cases, our conditions are purely syntactic. In fact, when the choice func-
tions under consideration are not necessarily definability preserving, we provided solutions with
semi-syntactic conditions. We managed to do so thanksto Lemmas 23 and 24. An interesting thing
is that we used them both in the plain and the discriminative versions. This suggests that they can
be used in yet other versions. In addition, Lemmas 31 and 32 have been applied both here and
previously in [BNO5] to characterize families of consequence relations defined in the discriminative
manner by DP choice functions. But, [BNO5] is about coherent choice functions, whilst the present
paper is about strongly coherent choice functions. This suggests that these lemmas can be applied
with yet other properties.
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