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Abstract Geographical information systems are ones of
the most important application areas of belief revision. Re-
cently, Würbel and colleagues (Proceedings of the seventh
international conference about principles of knowledge rep-
resentation and reasoning, KR2000, pp. 505–516, 2000)
have applied the so-called “removed sets revision” (RSR)
to the problem of assessment of water heights in a flooded
valley. The application was partially satisfactory since only
a small part of the valley has been handled. This paper goes
one step further, and proposes an extension of (RSR) called
“Prioritized Removed Sets Revision” (PRSR). We show that
(PRSR) performed using answer set programming makes
possible to solve a practical revision problem provided by a
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real application in the framework of geographical informa-
tion system (GIS). We first show how PRSR can be encoded
into a logic program with answer set semantics, we then
present an adaptation of the smodels system devoted to effi-
ciently compute the answer sets in order to perform PRSR.
The experimental study shows that the answer set program-
ming approach gives better results than previous implemen-
tations of RSR and in particular it allows to handle the whole
valley. Lastly, some experimental studies comparing our en-
coding with implementations based on SAT-solvers are also
provided.

Keywords Belief revision · Answer set programming ·
Knowledge representation

1 Introduction

In many applications, intelligent agents face incomplete, un-
certain and inaccurate information, and often need a revision
operation in order to manage their beliefs change in presence
of a new item of information. The agent’s epistemic state
represents his reasoning process and belief revision consists
in modifying his initial epistemic state in order to maintain
consistency, while keeping new information and removing
the least possible previous information.

During the last 20 years, the question of how to perform
revision gave rise to numerous works according to the rep-
resentation of epistemic states and different strategies have
been proposed (e.g., [1, 14, 35]). Most of the revision ap-
proaches have been developed at the theoretical level, except
few applications [37] and it turns out that in the general case
the theoretical complexity of revision is high [11, 20].

Among the belief revision approaches the so-called “Re-
moved Sets Revision”, (also known as a lexicographic-based
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approach or cardinality based approach) has been proposed
in [3, 18, 19, 27] for revising a set of propositional formu-
las. This approach stems from removing a minimal number
of formulas, called removed set, to restore consistency.

Recently, Würbel and colleagues [38] have applied the
“Removed Sets revision” (RSR) to geographical informa-
tion, more precisely to the problem of assessment of water
heights in a flooded valley. As it will be precised below, the
result was partially satisfactory since only a small part of the
valley has been handled.

This paper goes one step further in the application of be-
lief revision in the geographical information. It considers a
prioritized form of Removed Sets Revision, called Priori-
tized Removed Sets Revision (PRSR). It shows how the en-
coding of PRSR using answer set programming allows us to
solve a practical revision problem coming from a real appli-
cation in the framework of geographical information system.
In particular this paper focuses on the following three issues:

– The notion of priority is very important in the study of
knowledge-based systems [13]. When priorities attached
to pieces of knowledge are available, the task of coping
with inconsistency is greatly simplified, since conflicts
have a better chance to be solved. Gärdenfors [14] has
proved that upon arrival of a new piece of propositional
information, any revision process of a belief set which
satisfies natural requirements, is implicitly based on a pri-
ority ordering. In this paper we generalize the Removed
Sets Revision, to revise prioritized belief bases, called Pri-
oritized Removed Sets Revision.

– In the last decade, answer set programming is considered
as one of convenient tools to handle non-monotonic rea-
soning systems. Logic programs with answer sets seman-
tics can be equivalently described in terms of reducing
logic programs to default logic, autoepistemic logic or cir-
cumpscription. Moreover, several efficient systems have
been developed [7, 12, 21, 25, 29]. We propose to formal-
ize the Prioritized Removed Sets Revision in terms of an-
swer set programming and to adapt the smodels system in
order to compute preferred answer sets which correspond
to prioritized removed sets.

– When dealing with GIS we face incomplete and uncertain
information. Since the data come from different sources
characterized by various data qualities, they may con-
flict and require belief revision operations. Moreover, ge-
ographic information systems are characterized by a huge
amount of data. In [38, 39] three different implementa-
tions of Removed Sets Revision have been experimented
and compared on application on geographic information
system concerning the flooding problem. The result was
that an adaptation of Reiter’s algorithm for diagnosis [30]
gave the best results. Moreover, the Removed Sets Revi-
sion has been translated into a SAT problem and an im-
plementation has been performed using an efficient SAT-
solver MiniSat [10]. However, these approaches were not

able to handle the whole geographical area (composed of
120 compartments) and only a part of it composed of 20
compartments for the adaptation of Reiter’s algorithm and
composed of 40 compartments for the SAT translation has
been considered.

In this paper we apply our answer sets programming
encoding of PSRS to the framework of Geographic Infor-
mation Systems. An experimental study shows that our
approach gives better results than the adaptation of Re-
iter’s algorithm for diagnosis and than an implementation
based on a SAT-solver. These good results hold even if
no priority is introduced. The introduction of priorities al-
lows to handle the whole area.

The rest of this paper is organized as follows. Section 2 fixes
the notations and gives a refresher on revision and on answer
set programming. Section 3 presents the Removed Sets Re-
vision and the Prioritized Removed Sets Revision. Section 4
shows how Prioritized Removed Sets Revision is encoded
into logic programming with answer sets semantics. Sec-
tion 5 presents an adaptation of the smodels system for com-
puting answer sets for performing Prioritized Removed Sets
Revision. Section 6 details an experimental study which il-
lustrates the approach on a real scale application, the flood-
ing problem, provided by CEMAGREF. We show that the
answer set programming implementation gives better results
than the one obtained using an adaptation of Reiter’s algo-
rithm and than an implementation based on a SAT-solver. In
Sect. 7, we compare our approach with the existing ones.
Finally, Sect. 8 concludes the paper.

2 Background

2.1 Notations

In this paper we use propositional calculus, denoted by LPC ,
as knowledge representation language with the usual con-
nectives ¬, ∧, ∨, →, ↔. The symbols � and ⊥ denote the
constants TRUE and FALSE respectively. Lower case let-
ters a, b, c, . . . , are used to denote propositional variables,
lower case Greek letters φ, ψ , . . . , to denote formulas, up-
per case letters A, B , C, denote sets of formulas and also
formulas,1 and upper case Greek letters � , �, . . . , are used
to denote epistemic states. We denote by W the set of in-
terpretations and by Mod(ψ) the set of models of ψ , that
is Mod(ψ) = {ω ∈ W,ω |= ψ} where |= denotes the infer-
ence relation used for drawing conclusions. Let ψ and φ

be formulas and X be a set of formulas, ψ |= φ denotes
that Mod(ψ) ⊆ Mod(φ) and X |= φ denotes that ∀ψ ∈ X,

1We maintain both notations for formulas used in literature in order to
express some results in their original form.
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Mod(ψ) ⊆ Mod(φ). The symbol ≡ denotes logical equiva-
lence, and ψ ≡ φ means that ψ |= φ and φ |= ψ . A set of
logical conclusions is such that, let X be a set of formulas,
Cn(X) denotes the set of consequences of X, A ∈ Cn(X) iff
X |= A. A theory, also called deductively closed set of for-
mulas, is such that, let X be a set of formulas, X is a theory
iff Cn(X) = X. Since propositional formulas are equivalent
to their Conjunctive Normal Forms (CNF), in the follow-
ing propositional formulas and sets of propositional formu-
las are considered as sets of clauses.

2.2 Revision

Belief revision is the study of the rational means an agent
uses in order to modify his epistemic state in view of new
information. In general, agent’s epistemic state is a com-
plex structure. It contains agent’s current beliefs and also
strategies to revise his beliefs. The epistemic state has to
be changed in order to restore consistency, keeping the new
item of information and removing the least possible amount
of previous information. The first formalizations of revision
arose from philosophical logic with the work of Gärden-
fors 1978, where revision is interpreted as belief change. Al-
chourron, Gärdenfors and Makinson 1985 formulated postu-
lates, called the AGM postulates [1], in order to characterize
revision. These postulates stem from three principal ideas:
(1) the consistency principle (a revision operation has to
produce a consistent set of beliefs); (2) the principle of mini-
mal change (a revision operation should change the smallest
possible number of beliefs); (3) priority is given to the new
item of information. These postulates focus on the logical
structure of beliefs. They are based on the theory of consis-
tency and do not take into account the justification of beliefs
such as in TMS systems [9, 17].

2.2.1 AGM postulates

Alchourron, Gärdenfors and Makinson [1] proposed a for-
mal framework in which revision is interpreted as belief
change and an epistemic state is considered as a theory of
LPC (a deductively closed set of formulas). Focusing on the
logical structure of beliefs, they formulate eight postulates
that a revised theory must verify. More formally.

Let T be a theory, and let A and B be formulas. T � A

denotes the theory T revised by A. T + A is the smallest
deductively closed set of formulas containing both T and A.
T ⊥ denotes the set of all formulas.

(G � 1) T � A is a theory.
(G � 2) A ∈ T � A.
(G � 3) T � A ⊆ T + A.
(G � 4) If ¬A �∈ T then T � A = T + A.
(G � 5) T � A = T ⊥ only if A is unsatisfiable.
(G � 6) If A ≡ B then T � A = T � B .

(G � 7) T � (A ∧ B) ⊆ (T � A) + B .
(G � 8) If ¬B �∈ T � A then (T � A) + B = T � (A ∧ B).

The postulate (G � 1) expresses the fact that a theory re-
vised by a formula is a theory. (G � 2) specifies that the for-
mula A belongs to the revised theory. (G � 3) and (G � 4)

give the result of the revision when A is consistent with T .
(G � 5) is linked to the preservation and the restoration of
consistency, (G � 6) specifies that the result of the revision
must be independent from the syntactic form of the added
formula. (G � 7) and (G � 8) point out that when A is consis-
tent with T the change has to be minimal. Minimally revis-
ing T to include both A and B should reduce to an expansion
of T � A, as long as B does not contradict T � A.

Katsuno and Mendelzon [16] proposed a reformulation
of the AGM postulates when an epistemic state is repre-
sented by only one propositional formula ψ . They showed
that a revision operation satisfying the AGM postulates is
equivalent to a total pre-order on interpretations.

More formally, let W be the set of all interpretations and
Mod(ψ) be the set of models of ψ . A pre-order on W , de-
noted ≤ψ , is linked with ψ . The relation <ψ is defined from
≤ψ as usual: ω <ψ ω′ iff ω ≤ψ ω′ and ω′ �≤ψ ω. Katsuno
and Mendelzon introduced the notion of faithful assignment.
A function that maps an epistemic state ψ to a total pre-
order ≤ψ is a faithful assignment if and only if it verifies the
following conditions:

(1) if ω,ω′ ∈ Mod(ψ) then ω <ψ ω′ does not hold;
(2) if ω ∈ Mod(ψ) and ω′ �∈ Mod(ψ) then ω <ψ ω′ holds;
(3) ψ ≡ φ iff ≤ψ=≤φ .

A minimal interpretation may thus be defined as follows. Let
M ⊆ W , ω is minimal in M according to ≤ψ , if ω ∈ M
and there is no ω′ ∈ M such that ω′ <ψ ω. The set of
minimal interpretations in M according to ≤ψ is denoted
Min(M,≤ψ). Katsuno and Mendelzon proved that a revi-
sion operator ◦ satisfies postulates (G � 1)–(G � 8) iff there
exists a faithful assignment which associates to each epis-
temic state ψ a total pre-order ≤ψ such that:

Mod(ψ ◦ μ) = min(Mod(μ),≤ψ).

2.3 Answer set programming

In the last decade, logic programs with answer sets seman-
tics have been used to implement non-monotonic reasoning
and Answer Set Programming (ASP) can be viewed as an
effective knowledge representation tool. We briefly remind
some definitions about Answer Set Programming.

2.3.1 Answer sets

We deal with normal logic programs which contain the
symbol not, which stands for negation as failure. A nor-
mal logic program is a set of rules of the form c ←



S. Benferhat et al.

a1, . . . , an,not b1, . . . ,not bm where c, ai (1 ≤ i ≤ n), and
bj (1 ≤ j ≤ m) are propositional atoms. A rule is a
fact if n = m = 0, it is a basic rule if m = 0. For a
rule r like above, we define head(r) = c and body(r) =
{a1, . . . , an, b1, . . . , bm}. Furthermore, let body+(r) =
{a1, . . . , an} denotes the set of positive body atoms and
body−(r) = {b1, . . . , bm} the set of negative body atoms.
By extension, a basic program is a program containing only
basic rules.

Let r be a rule, r+ denotes the rule head(r) ← body+(r),
obtained from r by deleting all negative body atoms in the
body of r .

Definition 1 A set of atoms X is closed under a basic
program P iff for any rule r ∈ P , head(r) ∈ X whenever
body(r) ⊆ X. The smallest set of atoms which is closed un-
der a basic program P is denoted by CN(P ).

Definition 2 The reduct (or GL-transformation), P X of a
program P relatively to a set X of atoms is defined by P X =
{r+ | r ∈ P and body−(r) ∩ X = ∅}.

Definition 3 A set of atoms X is an answer set of a program
P iff CN(P X) = X.

An answer set of a program P intuitively represents a
possible set of beliefs a rational agent may hold on the basis
of the information expressed by rules of the program P . Ef-
ficient implementation systems have been proposed for an-
swer set programming, smodels [25, 33], dlv [12], xsb [29],
DeRes [7], noMoRe [21]. In the following we will use the
smodels system to compute answer sets.

2.3.2 smodels system

We briefly describe the smodels system proposed by Nieme-
la and Simons [25, 33] to compute answer sets of a logic

program P , since we need to modify the answer sets com-
putation function in order to compute preferred answer sets.
We first need to introduce the following definitions. Let L

be a set of literals. Pos(L) (resp. Neg(L)) denotes the set of
positive (resp. negative) literals of L.

Definition 4 Let L be a set of literals and A be a set of
atoms. A agrees with L iff Pos(L) ⊆ A and Neg(L)∩A = ∅.

Definition 5 Let L be a set of literals and A be a set of
atoms. L covers A iff A ⊆ Atom(L).

Let L be a finite set of literals, the function smodels(P,L)

returns the set of answer sets of P which agree with L. To
do so, properties of answer sets are used in order to con-
struct a set of literals L′ as big as possible such that an
answer set agrees with L iff it agrees with L′. Moreover,
L ⊆ L′ ⊆ Lit(P ), where Lit(P ) denotes the set of literals
occurring in P . Three cases hold:

1. if L′ is inconsistent then there is no answer set that agrees
with L′, therefore there is no answer set which agrees
with L;

2. if L′ is consistent and covers Atom(P ) then Pos(L′) is an
answer set. Since L′ covers Atom(P ), Pos(L′) is the only
answer set which agrees with L′, therefore it is the only
answer set which agrees with L;

3. if L′ is consistent and does not cover Atom(P ) then using
some heuristics a new atom a ∈ Atom(P ) such that a �∈
L′ is selected and the algorithm constructs two new sets
L′ ∪ {a} and L′ ∪ {¬a}.

The algorithm of the function smodels(P,L) is described in
Fig. 1.

In the original algorithm Simons [33] introduces three
procedures. The first one, named Expand(P,L), returns a
set L′ as big as possible such that an answer set agrees
with L iff it agrees with L′. The second one is called

function SMODELS(P,L) � L and L′ are sets of literals, a is an atom
L′ ← Expand(P,L)

if L′ is inconsistent then
return ∅

else
if L′ covers Atom(P ) then

return {Pos(L′)}
else

a ← Heuristic(P,L′)
return smodels(P,L′ ∪ {a}) ∪ smodels(P,L′ ∪ {¬a})

end if
end if

end function

Fig. 1 The algorithm of the function smodels(P,L)
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Lookahead(P,L) which tries to find a literal l such that an
answer set agrees with L iff it agrees with L ∪ {l} and such
that L∪{l} is consistent. If it succeeds it returns L∪{l}, else
it returns L. The third one is called Heuristic(P,L), and re-
turns an atom a ∈ Atom(P )\L such that Expand(P,L∪{a})
and Expand(P,L ∪ {¬a}) are as big as possible.

The meaning of the function smodels(P,L) is that, given
a program P , the answers sets of P are the result of the call
smodels(P,∅).

3 Removed Sets Revision

We now present the Removed Sets Revision (RSR) which is
a cardinality based or lexicographic approach of revision.

Let � be an epistemic state and Bel(�) its corresponding
belief set which is a propositional formula. Since a proposi-
tional formula is equivalent to its conjunctive normal form,
we denote by K the set of clauses such that Mod(Bel(�)) ≡
Mod(K). From now on, belief bases and formulas are con-
sidered like finite set of clauses. However, following [22],
belief bases are not assumed to be deductively closed.

3.1 RSR syntactic approach

Most of the approaches dedicated to belief bases revision
concentrated to the construction of maximal2 consistent sub-
bases while the intuition in our approach was to focus on
minimal inconsistent subsets. More precisely, in the case
where the added formula is inconsistent with the belief base,
by the compacity theorem, there exists at least one minimal
inconsistent subset. The strategy is to determine which min-
imal subsets of formulas from the initial belief base intersect
with the inconsistent subsets. This leads to the notion of re-
moved sets [27], that is the minimal number of clauses to
remove from the initial belief base to restore consistency.
More formally:

Definition 6 Let K and A be two consistent finite sets of
clauses. R a subset of clauses of K , is a removed set of K ∪
A iff

(i) (K\R) ∪ A is consistent;
(ii) ∀R′ ⊆ K , if (K\R′) ∪ A is consistent then |R| ≤ |R′|.3

Example 1 Let K = {¬c, a∨c, b∨c}, and A = {¬a,¬b, d∨
e,¬d ∨ ¬e}. K ∪ A is inconsistent and there are 5 possi-
ble subsets of K to remove to restore consistency. Namely
R1 = {¬c}, R2 = {a ∨ c, b ∨ c}, R3 = {¬c, a ∨ c}, R4 =
{¬c, b ∨ c}, R5 = {¬c, a ∨ c, b ∨ c}, but R1 is the only re-
moved set according to Definition 6.

2Maximality in terms of inclusion or cardinality.
3|R| denotes the number of clauses of R.

Let us denote by R(K ∪ A) the set of removed sets of
K ∪ A, the following proposition holds.

Proposition 1 Let K and A be two consistent sets of
clauses. If K ∪ A is inconsistent then R(K ∪ A) �= ∅, other-
wise R(K ∪ A) = {∅}.

The removed sets revision (RSR) is defined by a selection
function, denoted by s, that selects a non-empty subset of
R(K ∪ A) provided R(K ∪ A) is non empty, ∅ otherwise.

Definition 7 Removed Sets Revision (RSR) Let K and A

be two consistent sets of clauses. The removed set revision
is defined by:

K ◦RSR A =def

∨

R∈s(R(K∪A))

Cn((K\R) ∪ A).

Example 2 Let K = {¬c, a ∨ c, b ∨ c,¬d,¬e}, and A =
{¬a,¬b, d ∨ e,¬d ∨¬e}. K ∪A is inconsistent and R(K ∪
A) = {{¬c,¬d}, {¬c,¬e}}. Therefore, depending on how
the selection function s is defined, the result of the revision
operation is

K ◦RSR A

= Cn({a ∨ c, b ∨ c,¬d,¬a,¬b, d ∨ e,¬d ∨ ¬e})

or

K ◦RSR A

= Cn({a ∨ c, b ∨ c,¬e,¬a,¬b, d ∨ e,¬d ∨ ¬e})

or

K ◦RSR A

= Cn({a ∨ c, b ∨ c,¬d,¬a,¬b, d ∨ e,¬d ∨ ¬e})
∨ Cn({a ∨ c, b ∨ c,¬e,¬a,¬b, d ∨ e,¬d ∨ ¬e}).

The Removed Sets Revision strategy first requires the
computation of the removed sets, then amounts to select one
or several of them according to the selection function s.

Proposition 2 Let K and A be two consistent sets of
clauses. When s(R(K ∪A)) = R(K ∪A) the revision oper-
ator ◦RSR satisfies the postulates (G � 1)–(G � 8).

The main scope of the paper focuses on the computation
of the removed sets, not on the revision operation defined
in terms of selection among the removed sets. So, in order
to simplify the reading, and without loss of generality, we
will consider from now on s to be such that s(R(K ∪ A)) =
R(K ∪ A).
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Since most of the approaches dedicated to belief bases
revision concentrated on the construction of maximal (in
terms of cardinality) consistent subbases, we show that RSR
can be defined in terms of maximal consistent subbases. The
idea of selecting a subset of maximal consistent subsets us-
ing a cardinality criterion was used independently in diag-
nosis problems. In model-based diagnosis, the number of
diagnosis (sets of faulty components, called also a hitting
set in [30]) is very high in general. To select a subset of all
possible diagnosis, De Kleer [18] proposes a probabilistic
criterion where he assumes that each component has a very
small probability to fail and that all components fail inde-
pendently. De Kleer [18] shows that the selected diagnosis
are those which contain a small number of failing compo-
nents.

Let K be a consistent set of clauses, and A be a set of
clauses. We write MAXCONSA(K) to denote the set of max-
imal consistent subsets of clauses of K consistent with A,
called maximal consistent subsets of clauses of K relatively
to A. We define MAXCONSA(K) defined as follows:

Definition 8 Let K and A be two consistent sets of clauses.
K ′ is a maximal consistent subset of clauses of K relatively
to A iff

– K ′ ⊆ K ;
– K ′ ∪ A is consistent;
– ∀K ′′ ⊆ K , if K ′′ ∪ A is consistent then |K ′′| ≤ |K ′|.

The notion of removed set can be expressed in terms of
maximal consistent subbases.

Proposition 3 Let K and A be two consistent sets of
clauses. Let R be a set of clauses,

– R is a removed set iff (K\R)∪A ∈ MAXCONSA(K)∪A;
– K ◦RSR A = ∨

K ′∈s(MAXCONSA(K)) Cn(K ′ ∪ A).

3.2 RSR semantic characterization

Let ω be an interpretation, NSK(ω) denotes the set of
clauses of K falsified by ω. A total pre-order on interpre-
tations associated with K can be defined according to the
number of falsified clauses of K as follows.

Definition 9 Let K be a finite set of clauses. ∀ωi , ωj ∈ W ,

ωi ≤K ωj iff |NSK(ωi)| ≤ |NSK(ωj )|.

Proposition 4 The function that assigns K the total pre-
order ≤K is a faithful assignment.

According to a semantic point of view, the Removed Sets
Revision has to minimize the number of clauses falsified by
the models of A.

Definition 10 Let K and A be two consistent sets of
clauses.

Mod(K ◦RSRsem A) = min(Mod(A),≤K).

The equivalence between the semantic and the syntactic
Removed Set Revision is given by the following proposition.

Proposition 5 Let K and A be two consistent sets of
clauses.

Mod(K ◦RSR A) = Mod(K ◦RSRsem A).

3.3 Prioritized Removed Sets Revision

We now present the Prioritized Removed Set Revision
(PRSR) which generalizes the Removed Set Revision pre-
sented in Sect. 3.1 to the case of prioritized belief bases.
Let K be a prioritized finite set of clauses, where K is parti-
tioned into n strata, i.e. K = K1 ∪· · ·∪Kn, such that clauses
in Ki have the same level of priority and have higher prior-
ity than the ones in Kj where j > i. K1 contains the clauses
which have the highest priority in K , and Kn contains the
ones which have the lowest priority in K [3], see also [18].

When K is prioritized in order to restore consistency the
principle of minimal change stems from removing the min-
imum number of clauses from K1, then the minimum num-
ber of clauses in K2, and so on. We generalize the notion
of removed set in order to perform Removed Sets Revision
with prioritized sets of clauses. This generalization first re-
quires the introduction of a preference relation between sub-
sets of K .

Definition 11 Let K be a consistent and prioritized finite set
of clauses. Let X and X′ be two subsets of K . X is strictly
preferred to X′ iff (i) ∃i, 1 ≤ i ≤ n, |X ∩ Ki | < |X′ ∩ Ki |;
(ii) ∀j, 1 ≤ j < i, |X ∩ Kj | = |X′ ∩ Kj |.

Prioritized removed sets are now defined as follows:

Definition 12 Let K be a consistent and prioritized finite
set of clauses and let A be a consistent finite set of clauses.
R, a subset of clauses of K , is a prioritized removed set iff
(i) R ⊆ K ; (ii) (K\R) ∪ A is consistent; (iii) ∀R′ ⊆ K , if
(K\R′) ∪ A is consistent then R′ is not strictly preferred
to R.

Let denote by PR(K ∪ A) the set of prioritized removed
sets of K ∪ A, the prioritized removed sets revision (PRSR)
is defined by a selection function denoted by s that selects a
non empty subset of PR(K ∪ A) provided PR(K ∪ A) is
not empty, ∅ otherwise.
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Definition 13 Prioritized Removed Sets Revision (PRSR)
Let K and A be two consistent sets of clauses. The priori-
tized removed set revision is defined by:

K ◦PRSR A =def

∨

R∈s(PR(K∪A))

Cn((K\R) ∪ A).

The theoretical computational complexity of the decision
problem: “is a clause C a consequence of K ◦PRSR A?” has
been studied in the literature. It is in �

p

2 (see [6, 23] for
more details). The proof is based on the following decision
problem that we denote D: “given K possibly inconsistent,
is there a consistent subset A of K and an integer i, such
that |A| = i?” The decision problem D is NP-hard. Hence,
the proof is based on providing an algorithm that needs n

calls to the decision problem D, where n is the number of
clauses in K .

Example 3 Let K = {¬c, a ∨ c, b ∨ c,¬d,¬e} such that
K1 = {¬c}, K2 = {a ∨ c, b ∨ c}, K3 = {¬d,¬e}, and A =
{¬a,¬b, d ∨ e,¬d ∨ ¬e}. K ∪ A is inconsistent, and the
possible subsets of K to remove in order to restore consis-
tency are: R1 = {¬c,¬d}, R2 = {¬c,¬e}, R3 = {a ∨ c, b ∨
c,¬d}, R4 = {a ∨ c, b ∨ c,¬e}, R5 = {¬c, a ∨ c,¬d}, R6 =
{¬c, a∨c,¬e}, R7 = {¬c, b∨c,¬d}, R8 = {¬c, b∨c,¬e},
R9 = {¬c, a ∨ c, b ∨ c,¬d}, R10 = {¬c, a ∨ c, b ∨ c,¬e}.
Among those sets, R3 and R4 are the only removed sets sat-
isfying Definitions 11 and 12, so PR(K ∪A) = {{a ∨ c, b ∨
c,¬d}, {a ∨ c, b ∨ c,¬e}}. The result of K ◦PRSR A will de-
pend on the selection function s. Namely:

K ◦PRSR A = Cn({¬a,¬b,¬c,¬d, d ∨ e,¬d ∨ ¬e})
or

K ◦PRSR A = Cn({¬a,¬b,¬c,¬e, d ∨ e,¬d ∨ ¬e})
or

K ◦PRSR A = Cn({¬a,¬b,¬c,¬d, d ∨ e,¬d ∨ ¬e})
∨ Cn({¬a,¬b,¬c,¬e, d ∨ e,¬d ∨ ¬e}).

Like RSR, the generalization PRSR can be defined in
terms of maximal consistent subbases, and can be equiva-
lently defined from a semantic point of view. Moreover, it
satisfies all AGM postulates.

Relying on the same arguments as in Sect. 3.1, from now
on we will omit the selection function s, and assume that
s(PR(K ∪ A)) = PR(K ∪ A).

4 Encoding PRSR in answer set programming

We now show how we construct a logic program, denoted
by PK∪A, such that the preferred answer sets of PK∪A corre-

spond to the prioritized removed sets of K ∪A. We first con-
struct a logic program in the same spirit of Niemelä in [24],
and then define the notion of preferred answer set in order
to perform PRSR.

4.1 Translation into a logic program

Our aim in this subsection is to construct a logic program
PK∪A such that the answer sets of PK∪A correspond to sub-
sets R of K such that (K ∪ A)\R is consistent. For each
clause c of K , we introduce two new atoms denoted by rc

and r ′
c, and for each atom a ∈ Atom(K ∪ A) we introduce a

new atom a′. By V we denote the set of atoms such that
V = V + ∪ V −, with V + = Atom(K ∪ A) ∪ {rc | c ∈ K}
and V − = {a′ | a ∈ Atom(K ∪ A) ∪ {r ′

c | c ∈ K} where
Atom(K ∪ A) denotes the set of atoms occurring in K ∪ A.
The construction of PK∪A stems from the enumeration of
interpretations of V and the progressive elimination of in-
terpretations which are not models of (K ∪ A)\R with
R = {c ∈ K | rc is satisfied}. This construction requires 3
steps: the first step introduces rules such that the answer sets
of PK∪A correspond to the interpretations of the proposi-
tional variables occurring in V +, the second step introduces
rules that constraint the answer sets of PK∪A to correspond
to models of A, the third step introduces rules such that an-
swer sets of PK∪A correspond to models of (K ∪ A)\R.
More precisely:

(i) The first step introduces rules in order to build a one
to one correspondence between answer sets of PK∪A

and interpretations of V +. For each atom a ∈ V + we
introduce two rules: a ← not a′ and a′ ← not a where
a′ ∈ V − is the negative atom corresponding to a.

(ii) The second step rules out answer sets of PK∪A which
correspond to interpretations which are not models
of A. For each clause c ∈ A such that c = ¬a0 ∨ · · · ∨
¬an ∨an+1 ∨· · ·∨am, the following rule is introduced:
false ← a0, · · · , an, a

′
n+1, · · · , a′

m and in order to rule
out false from the models of A: contradiction ← false,
not contradiction.

(iii) The third step excludes answer sets S which correspond
to interpretations which are not models of (K ∪ A)\Ci

with Ci = {c | rc ∈ S}. For each clause c of K such that
c = ¬b0 ∨ · · · ∨ ¬bn ∨ bn+1 ∨ · · · ∨ bm, we introduce
the following rule: rc ← b0, . . . , bn, b

′
n+1, . . . , b

′
m.

The steps (i) and (ii) are very similar to the ones proposed by
Niemelä, but the third one (iii) is new and is introduced for
revision. Note that (ii) is similar to (iii), and more precisely
(ii) deals with clauses of A, while (iii) deals with clauses
of K . Intuitively, (ii) states that clauses of A should be ac-
cepted, while (iii) means that clauses of K can be removed.
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Example 4 Let K = {¬c, a∨c, b∨c} and A = {¬a,¬b, d∨
e,¬d ∨ ¬e}. We have

V = {a, b, c, d, e, a′, b′, c′, d ′, e′,

ra∨c, rb∨c, r¬c, r
′
a∨c, r

′
b∨c, r

′¬c},
with V + = {a, b, c, d , e, ra∨c , rb∨c , r¬c} and V − = {a′, b′,
c′, d ′, e′, r ′

a∨c , r ′
b∨c , r ′¬c}. The logic program PK∪A is the

following:

(i)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ← not a′ a′ ← not a

b ← not b′ b′ ← not b

c ← not c′ c′ ← not c

d ← not d ′ d ′ ← not d

e ← not e′ e′ ← not e

r¬c ← not r ′¬c r ′¬c ← not r¬c

ra∨c ← not r ′
a∨c r ′

a∨c ← not ra∨c

rb∨c ← not r ′
b∨c r ′

b∨c ← not rb∨c

(ii)

⎧
⎨

⎩

false ← a false ← d ′, e′
false ← b false ← d, e

contradiction ← false,not contradiction
(iii)

{
ra∨c ← a′, c′ rb∨c ← b′, c′ r¬c ← c.

We denote by RK the set RK = {rc | c ∈ K} ∪ {r ′
c | c ∈

K} and R+
K = {rc | c ∈ K} (resp. R−

K = {r ′
c | c ∈ K}) de-

notes the positive (resp. negative) atoms of RK . We denote
by CL the mapping from R+

K to K which associates to each
atom of R+

K the corresponding clause in K . More formally,
∀rc ∈ R+

K, CL(rc) = c. Let S be a set of atoms, we define IS

such that IS = {a | a ∈ S} ∪ {¬a | a′ ∈ S} and the following
result holds.

Proposition 6 Let K be a consistent finite set of clauses
and let A be a finite consistent set of clauses. Let S ⊆ V

be a set of atoms. S is an answer set of PK∪A iff IS is an
interpretation of V + which satisfies (K\CL(S ∩ R+

K)) ∪ A.

Example 5 Coming back to the previous example, K =
{¬c, a ∨ c, b ∨ c} and A = {¬a,¬b, d ∨ e,¬d ∨ ¬e}. Let
S = {d, e′, a′, b′, c, r ′

a∨c, r
′
b∨c, r¬c}, it can be checked that

S is an answer sets of PK∪A. Since PK∪A is a normal
logic program, IS is constructed by replacing the negative
atoms of V − by negated atoms of V +. Therefore IS =
{d,¬e,¬a,¬b, c} which is a model of (K\CL(S∩R+

K))∪A.

Moreover, as a consequence of Proposition 6, the follow-
ing result holds.

Proposition 7 Let R ⊆ K . (K \R)∪A is consistent iff there
exists an answer set S of PK∪A such that CL(S ∩ R+

K) = R.

Example 6 Coming back to the previous example, the 12
answer sets of PK∪A are the following:

S1 = {d, e′, a′, b′, c, r ′
a∨c, r

′
b∨c, r¬c},

S2 = {d, e′, a′, b′, c, ra∨c, rb∨c, r
′¬c},

S3 = {d, e′, a′, b′, c, ra∨c, r
′
b∨c, r¬c},

S4 = {d, e′, a′, b′, c, r ′
a∨c, rb∨c, r¬c},

S5 = {d, e′, a′, b′, c, ra∨c, rb∨c, r¬c},
S6 = {d, e′, a′, b′, c′, ra∨c, rb∨c, r¬c},
S7 = {d ′, e, a′, b′, c, r ′

a∨c, r
′
b∨c, r¬c},

S8 = {d ′, e, a′, b′, c′, ra∨c, rb∨c, r
′¬c},

S9 = {d ′, e, a′, b′, c, ra∨c, r
′
b∨c, r¬c},

S10 = {d ′, e, a′, b′, c, r ′
a∨c, rb∨c, r¬c},

S11 = {d ′, e, a′, b′, c, ra∨c, rb∨c, r¬c},
S12 = {d ′, e, a′, b′, c′, ra∨c, rb∨c, r¬c},
since R+

K = {ra∨c, rb∨c, r¬c} we have

CL(S1 ∩ R+
K) = CL(S7 ∩ R+

K) = R1 = {¬c},
CL(S2 ∩ R+

K) = CL(S8 ∩ R+
K) = R2 = {a ∨ c, b ∨ c},

CL(S3 ∩ R+
K) = CL(S9 ∩ R+

K) = R3 = {¬c, a ∨ c},
CL(S4 ∩ R+

K) = CL(S10 ∩ R+
K) = R4 = {¬c, b ∨ c},

CL(S5 ∩ R+
K) = CL(S6 ∩ R+

K) = CL(S11 ∩ R+
K)

= CL(S12 ∩ R+
K) = R5 = {¬c, a ∨ c, b ∨ c}.

We find the 5 subsets of clauses to remove from K to
restore consistency.

In order to compute the answer sets corresponding to pri-
oritized removed sets we introduce the notion of preferred
answer set.

4.2 Preferred answer sets

Let K = K1 ∪ · · · ∪ Kn. For 1 ≤ i ≤ n, the set RKi
denotes

RKi
= {rc | rc ∈ RK, and c ∈ Ki} ∪ {r ′

c | r ′
c ∈ RK, and c ∈

Ki}. The positive and the negative part of RKi
are respec-

tively denoted by R+
Ki

= {rc | rc ∈ RK and c ∈ Ki} and

R−
Ki

= {r ′
c | r ′

c ∈ RK and c ∈ Ki}.

Definition 14 Let K be a consistent and prioritized finite set
of clauses. Let S and S′ be two sets of atoms. S is preferred
to S′ iff

(i) ∃i, 1 ≤ i ≤ n, |S ∩ R+
Ki

| < |S′ ∩ R+
Ki

|;
(ii) ∀j, 1 ≤ j < i, |S ∩ R+

Kj
| = |S′ ∩ R+

Kj
|.

We are now able to define the notion of preferred answer
set.

Definition 15 Let S be a set of atoms. S is a preferred an-
swer set of PK∪A iff
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(i) S is an answer set of PK∪A;
(ii) for every answer set S′ of PK∪A, S′ is not preferred to S.

The following result generalizes Proposition 7.

Proposition 8 Let K be a consistent and prioritized finite
set of clauses and let A be a finite consistent set of clauses.
R is a prioritized removed set of K ∪ A iff there exists a
preferred answer set S of PK∪A such that CL(S ∩R+

K) = R.

The proof of Proposition 8 (provided in the Appendix) is
based on exhibiting for each prioritized answer set its associ-
ated prioritized removed set, and conversely. More precisely,
if S is a preferred answer set of PK∪A then its associated pri-
oritized removed set is simply defined by:

R = CL(S ∩ R+
K).

Now if R be a prioritized removed set of K ∪ A, then select
a model m of (K \ R) ∪ A, and define S as:

S = {a ∈ V : a ∈ m} ∪ {a′ ∈ V : ¬a ∈ m}
∪ {rc : c ∈ R} ∪ {r ′

c : c ∈ K \ R}.
Then we show in appendix that S is indeed a prioritized pre-
ferred asnwer set.

Example 7 Let us continue again our previous examples
(Examples 5 and 6). Recall that: K = {¬c, a ∨ c, b ∨ c,
¬d,¬e}, and A = {¬a,¬b, d ∨ e,¬d ∨ ¬e}.
Assume that we have the knowledge base is prioritized as
follows:

K1 = {¬c}, K2 = {a ∨ c, b ∨ c}.
It is easy to check that there exists exactly one prioritized
removed set:

R = {a ∨ c, a ∨ b}.
Moreover, from the previous example (Example 6), one

can easily check that the only preferred answer sets are:

S2 = {d, e′, a′, b′, c, ra∨c, rb∨c, r
′¬c},

S8 = {d ′, e, a′, b′, c′, ra∨c, rb∨c, r
′¬c}.

First, we can check that: R = CL(S ∩R+
K). Indeed, recall

that:

R+
K = {ra∨c, rb∨c, r¬c}.

Then we have: S2 ∩ R+
K = S8 ∩ R+

K = {ra∨c, rb∨c}, from
which CL(S2 ∩ R+

K) = CL(S8 ∩ R+
K) = {a ∨ c, a ∨ b} gives

the prioritized set R.

Now let us show the converse. Namely, we have:

(K \ R) ∪ A = {¬c,¬a,¬b, d ∨ e,¬d ∨ ¬e}.

A model of (K \R)∪A is m = {¬c,¬a,¬b,¬d, e}. Defin-
ing:

S = {a ∈ V : a ∈ m} ∪ {a′ ∈ V : ¬a ∈ m}
∪ {rc : c ∈ R} ∪ {r ′

c : c ∈ K \ R}
= {e} ∪ {c′, a′, b′, d ′} ∪ {ra∨c, rb∨c} ∪ {r ′¬c}
= {e, c′, a′, b′, d ′, ra∨c, rb∨c, r

′¬c}.

Clearly, S = S2 which is a prioritized answer set.

In this paper, we consider a cardinality-based criterion
to select preferred answer sets (respectively prioritized re-
moved set). Our method can also be adapted to consider
inclusion-based criterion instead of cardinality-based crite-
rion. It is well-known (see [6, 23]) that the computational
complexity of inclusion-based revision (which is in 	2

p) is

higher that the cardinality-based revision (which is in �2
p).

This has its importance in our application context which
deals with a large amount of data. In fact, the number of
inclusion-based preferred removed sets is generally larger
than the number of cardinality-based preferred removed
sets. Moreover, the cardinality-based revision satisfies the
whole set of AGM rational postulates (which is not the case
with inclusion-based revision).

5 Adaptation of smodels for PRSR

We now present the computation of Prioritized Removed
Sets Revision based on the adaptation of the smodels sys-
tem; for more details see [15, 25, 33]. This is achieved using
two algorithms. The first algorithm, Prio, is an adaptation
of the smodels system algorithm which computes the set of
sets of literals of RK which lead to preferred answer sets and
which minimize the number of clauses to remove from each
stratum. The second algorithm, Rens, computes the priori-
tized removed sets of K ∪ A, applying the principle of min-
imal change defined in Sect. 3.3 for PRSR, that is, stratum
by stratum.

Propositions 7 and 8 give us a basis for providing an algo-
rithm for the computation of Prioritized removed sets revi-
sion. However, we need to adapt smodels algorithms, so that
rather than computing all answer sets we compute preferred
answer sets. The idea in our adaptation is that rather than
producing all answer sets, we only provide preferred ones.
This is done iteratively, stratum by stratum. Our algorithm
is described in the two following sections.
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function PRIO(PK∪A,L, k,X ) � L and L′ are sets of literals, a is an atom
L′ ← Expand(PK∪A,L)

if L′ is inconsistent then
return X

else if (1) ∃X ∈ X , |L′ ∩ R+
Kk

| > |X ∩ R+
Kk

| then
return X

else if (2) L′ ∩ Lit(RK1∪···∪Kk
) ∈X then

return X
else if L′ covers Atom(PK∪A) then

if (3) ∃X ∈X , |L′ ∩ R+
Kk

| < |X ∩ R+
Kk

| then
return {L′ ∩ Lit(RK1∪···∪Kk

)}
else

return X ∪ {L′ ∩ Lit(RK1∪...∪Kk
)}

end if
else

a ← Heuristic(PK∪A,L′)
X ′ ← Prio(PK∪A,L′ ∪ {a}, k,X )

return Prio(PK∪A,L′ ∪ {¬a}, k,X ′)
end if

end function

Fig. 2 The Prio algorithm

5.1 Prio: an adaptation of smodels system

Let K = K1 ∪ · · · ∪ Kn. Consider the stratum k. Let L be
a set of literals which is an interpretation of RK1∪···∪Kk−1

leading to an answer set and let X be the set of sets of lit-
erals which are interpretations of RK1∪···∪Kk

leading to an
answer set and such that they remove the same number of
clauses from Kk . More formally: ∀X,Y ∈ X , |X ∩ R+

Kk
| =

|Y ∩ R+
Kk

|. The algorithm Prio(PK∪A,L, k,X ) returns the
sets of literals which are interpretations of RK1∪···∪Kk

that
either contain L or belong to X and that minimize the num-
ber of clauses to remove from Kk , that is the number of rc
such that c ∈ Kk .

The function Prio, presented in Fig. 2, constructs a set of
literals L′ from L where, as in the construction of smodels,
several cases hold:

(i) if L′ is inconsistent then L′ does not lead to an answer
set therefore X is returned.

(ii) if L′ is consistent then again several cases hold:
(1) if L′ removes more clauses from Kk than an ele-

ment of X then X is returned.
(2) if L′ leads to the same answer set as an element of

X then X is returned.
(iii) if L′ is consistent and covers Atom(PK∪A) then

(3) if L′ removes less clauses from Kk than any
element of X then X is cancelled and L′ ∩
Lit(RK1∪···∪Kk

) is returned else L′ ∩Lit(RK1∪···∪Kk
)

is added to X
(iv) if L′ is consistent and does not cover Atom(PK∪A) then

using some heuristics a new atom a ∈ Atom(PK∪A) is

selected such that a �∈ L′. The algorithm starts again
with L′ ∪ {a} and keeps in X ′ the sets of literals of
RK1∪···∪Kk

that minimize the number of clauses to re-
move from Kk and starts again with L′ ∪ {¬a}.

The main adaptations of the original smodels algorithm
consist in: (1) avoiding all the sets of literals of RK1∪···∪Kk

leading to an answer set which removes more clauses from
Kk than those in X ; (2) not computing several times the
same sets of literals of RK1∪···∪Kk

leading to an answer set;
(3) comparing each new set of literals of RK1∪···∪Kk

lead-
ing to an answer set with the elements of X , if the new set
removes less clauses from Kk than those in X then X is
replaced by it.

5.2 Rens: an algorithm computing the prioritized removed
sets

We finally present the function Rens which computes the
prioritized removed sets of K ∪ A. The idea is to proceed
stratum by stratum using the function Prio algorithm defined
in the previous subsection. We start with the empty set and
we first compute, the subsets of literals of RK1 leading to
an answer set which minimize the number of clauses to re-
move from K1, then among these subsets we compute the
subsets of literals of RK1∪K2 leading to an answer set which
minimize the number of clauses to remove from K2, and so
on. From a stratum to another, the algorithm Prio described
in the previous subsection provides the subsets of literals
of RK1∪···∪Kk

leading to an answer set which minimize the



An answer set programming encoding of Prioritized Removed Sets Revision: application to GIS

function RENS(PK∪A) � X and Y are two sets of sets of literals, k is an integer
k ← 1
X ← {∅}
while k ≤ n do
Y ← {∅} (B1)
while X �= ∅ do

(I1) choose an element X ∈X (B2)
Y ← Prio(PK∪A,X,k,Y)

X ←X \{X}
end while
X ← Y
k ← k + 1

end while
return {CL(X ∩ R+

K1∪···∪Kk
) | X ∈ X }

end function

Fig. 3 The function Rens

number of clauses to remove from Kk . The function Rens is
detailed in Fig. 3 and the following proposition holds.

Proposition 9 Let K be a consistent and prioritized finite
set of clauses and let A be a finite consistent set of clauses.
R is a prioritized removed set of K ∪A iff R ∈ Rens(PK∪A).

In order to illustrate the mechanism of the functions Rens
and Prio, we present an example.

Example 8 Consider the following sets of clauses:

K = K1 ∪ K2,

K1 = {¬a ∨ b,¬b ∨ a} ,

K2 = {¬c ∨ d,¬d ∨ c}
A = {a ∨ b,¬a ∨ ¬b, c ∨ d,¬c ∨ ¬d} .

PK∪A contains the following rules:

(i)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ← not a′ a′ ← not a

b ← not b′ b′ ← not b

c ← not c′ c′ ← not c

d ← not d ′ d ′ ← not d

r¬a∨b ← not r ′¬a∨b r ′¬a∨b ← not r¬a∨b

r¬b∨a ← not r ′¬b∨a r ′¬b∨a ← not r¬b∨a

r¬c∨d ← not r ′¬c∨d r ′¬c∨d ← not r¬c∨d

r¬d∨c ← not r ′¬d∨c r ′¬d∨c ← not r¬d∨c

(ii)

⎧
⎨

⎩

false ← a′, b′ false ← c′, d ′
false ← a, b false ← c, d

contradiction ← false,notcontradiction.

(iii)

{
r¬a∨b ← a, b′ r¬b∨a ← b, a′
r¬c∨d ← c, d ′ r¬d∨c ← d, c′

Figure 4 shows a possible Prio call tree, beginning with
its first call from Rens.

The nodes of the tree correspond to the recursive calls to
Prio. The following highlights the execution of Prio in each
node:

– 1! Prio(PK∪A,∅,1,∅)

– L′ ← ∅ (Expand produces nothing);
– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ does not cover Atom(PK∪A);
– The heuristic choice is not a′;

– 2! Prio(PK∪A, {not a′},1,∅)

– L′ ← {b′, a, r¬a∨b,not a′,not b,not r ′¬a∨b}
– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ does not cover Atoms(PK∪A)

– The heuristic choice is not r ′¬b∨a ;
– 3! Prio(PK∪A, {b′, a, r¬a∨b , not a′, not b,

not r ′¬a∨b , not r ′¬b∨a}, 1, ∅)

– L′ ← {b′, a, r¬a∨b , r¬b∨a , not a′, not b,
not r ′¬a∨b , not r ′¬b∨a}

– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ does not cover Atoms(PK∪A);
– The heuristic choice is not c′;

– 4! Prio(PK∪A, {b′, a, r¬a∨b, r¬b∨a,not a′,not b,

not r ′¬a∨b,not r ′¬b∨a,not c′},1,∅)

– L′ ← {b′, a, r¬a∨b, r¬b∨a, d
′, c, r¬c∨d ,not a′,not b,

not r ′¬a∨b,not r ′¬b∨a,not c′,not d,not r ′¬c∨d}
– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ does not cover Atoms (PK∪A);
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Fig. 4 Prio call tree on
stratum 1. Each node has a n

label, n being a node number
corresponding to the tree
walking order. The bold number
in parentheses corresponds to
the conditions of rejection of a
partial model in Prio. See
details about each node in
example. The grey arrows show
how X is propagated in the
search tree

– The heuristic choice is not r ′¬d∨c;
– 5! Prio(PK∪A, {b′, a, r¬a∨b, r¬b∨a, d

′, c, r¬c∨d ,not a′,
not b,not r ′¬a∨b,not r ′¬b∨a,not c′,
not d,not r ′¬c∨d ,not r ′¬d∨c},2,∅)

– L′ ← {b′, a, r¬a∨b, r¬b∨a, d
′, c, r¬c∨d , r¬d∨c,

not a′,not b,not r ′¬a∨b,not r ′¬b∨a,

not c′not d,not r ′¬c∨d ,not r ′¬d∨c}
– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ covers Atoms(PK∪A);
– (3) is not verified;
– we return a new X = {{r¬a∨b, r¬b∨a}}.
The remaining of the branch not r ′¬b∨a does not add any

partial removed set. At nodes 6! and 7!, the potential re-
moved sets are rejected, because of condition (2), i.e. the set
{r¬a∨b, r¬b∨a} is already in X (we skip the details of the
construction, but Fig. 4 sketches it). At this point, the only
set in X is not optimal with respect to stratum 1. Then the al-
gorithm explores the branch r ′¬b∨a . This branch produces in
node 10! the potential removed set {r¬a∨b, r

′¬b∨a}. This dis-
cards the previous element of X , because of condition (3).

Finally, The branch a′ is explored, producing minimal
sets according to stratum 1 and containing r¬b∨a . Note that
at node 15!, the tree is pruned because L′ contains both r¬b∨a

and r¬a∨b , to it violates the cardinality condition (1), avoid-
ing the unnecessary computation of useless models. At the
end of execution of Prio, we have two partial removed sets
in X , minimizing the literals in R+

K1
.

X =
{ {r¬a∨b, r

′¬b∨a},{r ′¬a∨b, r¬b∨a},
}

.

The next iteration of loop B2 in Rens will complete and
optimize X , keeping only the sets which are minimal ac-
cording to stratum 2. In our case, the first call to Prio will
be Prio(PK∪A, {r¬a∨b, r

′¬b∨a},2,∅). The search tree is de-
picted in Fig. 5.

– 1! Prio(PK∪A, {r¬a∨b, r
′¬b∨a},2,∅)

– L′ ← {b′, a, r ′¬b∨a, r¬a∨b,not a′,not b,

not r¬b∨a,not r ′¬a∨b};
– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ does not cover Atoms(PK∪A);
– The heuristic choice is not d ;

– 2! Prio(PK∪A, {b′, a, r ′¬b∨a, r¬a∨b,not a′,not b,

not r¬b∨a,not r ′¬a∨b,not d},2,∅)

– L′ ← {b′, a, d ′, c, r¬c∨d , r ′¬b∨a, r¬a∨b,not a′,not b,

not c′,not d,not r ′¬c∨d ,not r¬b∨a,not r ′¬a∨b}
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Fig. 5 Search tree of the
second call to Prio

– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ does not cover Atoms(PK∪A);
– The heuristic choice is not r¬d∨c;

– 3! Prio(PK∪A, {b′, a, d ′, c, r¬c∨d , r ′¬b∨a, r¬a∨b,not a′,
not b,not c′,not d,not r ′¬c∨d ,

not r¬b∨a,not r ′¬a∨b, r¬d∨c},2,∅)

– L′ ← {b′, a, d ′, c, r¬c∨d , r ′¬d∨cr
′¬b∨a, r¬a∨b,not a′,

not b,not c′,not d,not r ′¬c∨d ,not r¬b∨a,

not r ′¬a∨b, r¬d∨c}
– L′ is not inconsistent;
– (1) is not verified;
– (2) is not verified;
– L′ covers Atoms(PK∪A);
– (3) is not verified;
– we return a new X = {{r¬a∨b, r

′¬b∨a, r¬c∨d , r ′¬d∨c}}.
For the remaining of the search tree, in node 4! L′ is rejected
because it contains both r¬d∨c and r¬c∨d , so condition (1)
rejects L′. Node 6! adds a new set to X , and in node 7! L′
is rejected, similarly to 4!.

The remaining call to Prio, starting with L = {r ′¬a∨b ,
r¬b∨a} will produce the two remaining removed sets. Fi-
nally, the four removed sets are

X =
{ {r¬a∨b, r

′¬b∨a, r¬c∨d , r ′¬d∨c}, {r¬a∨b, r
′¬b∨a, r¬d∨c, r

′¬c∨d }
{r ′¬a∨b, r¬b∨a, r¬c∨d , r ′¬d∨c}, {r ′¬a∨b, r¬b∨a, r¬d∨c, r

′¬c∨d }

}
.

5.3 Comparing Rens with the minimize approach

Note that the computation of the prioritized removed sets
could be done with the use of the minimize statement of
smodels and a minor modification of smodels. We begin this
section by briefly describing this approach. Next we discuss
why our approach is more efficient than the use of the min-
imize statement.

Starting with the encoding of the knowledge described
in the previous section, we can use the minimize state-
ment of smodels to compute the prioritized removed sets. As
explained in [34], multiple minimize statements in a single
answer set program “orders the stable models lexicographi-
cally according to the weights of the statements with the first
statement being the most significant” (practically, smodels
works in reverse order, so the last statement is the most sig-
nificant). In our case, we want to order models lexicograph-
ically according to the different strata, stratum 1 being the
most significant. For us, the weight is just the cardinality of
R+

Kk
, for each stratum k. In order to use minimize state-

ments to compute the prioritized removed sets using this or-
dering of models, we can add the following statements to the
previously defined encoding:

∀Ri = {rc1, . . . , rcm}, i ∈ {1, . . . , k}
minimize {rc1 , . . . , rcm}.

However, as noted in the same paper, smodels only finds
one minimal model. This is because the test for the mini-
mality of a model is done during the conflict detection in the
current potential answer set being under construction, using
the following algorithm:

� L is the current partial answer set, weight(L) is the
weight of the model

for each mimimize statement s do
if weight(L) > actual optimum for s then

return conflict; � L rejected
else if weight(L) < actual optimum for s then

return no conflict � L accepted
else if there are no more minimize statements then

return conflict
end if

end for
return no conflict



S. Benferhat et al.

In order to compute all minimal models, all we have to do
is to remove the last condition, because it rejects the models
which have a weight equal to the currently optimal weight
of the considered statement s. With this small modification,
smodels is able to compute the prioritized removed sets.

The two previously described implementations of the
computation of the prioritized removed sets are rather dif-
ferent. The one using the minimize statement tries to stick
with the good practice now established in the ASP commu-
nity, consisting of the translation of an extension of ASP into
a standard ASP program. Even with this point in mind, we
saw that we have to do some modifications in the code of the
solver. It remains that this modification is minor.

The other approach, using the functions Prio and Rens,
modifies more heavily the initial solver.4

Concerning the efficiency, our direct approach is more
efficient than the use of the minimize statement, mainly
because we only deal with one strata at a time, while the
computations involved by the minimize statements exam-
ine all strata during each conflict detection phase, as shown
by the above algorithm.

6 Application in the framework of GIS

6.1 Description of the application

We conducted tests based on the data of an application. The
aim of that application is to assess water height at different
locations in a flooded valley without building a complete hy-
drological model of the valley. The valley is segmented into
120 compartments, which are geographical entities in which
the water height can be considered as constant. The goal is
to assess a minimum/maximum interval of water height for
each compartment in the valley. For this, we use two sources
of information about these compartments (aside from the
knowledge of their geographical layout), see Fig. 6.

The first source of information, denoted by S2, is a set
of hydraulic relations between neighbouring compartments.
This source is incomplete (not all neighbouring compart-
ments are connected) and considered quite certain by the
experts. The second source of information, denoted by S1,
consists of a set of initial assessments of minimal and/or
maximal submersion heights for some compartments (i.e.
this source in incomplete). This information also is uncer-
tain, and considered by the experts as being less reliable than
the first source. For more details see [28] and [38].

A solution for this problem has been initially proposed by
the CEMAGREF.5 Their initial vision of the problem was to

4Even if this can be coded very cleanly, thanks to the well documented
smodels API.
5French research institute for agriculture and environment engineering.

Fig. 6 Visual description of the sources of information in the flooding
application

find a simple schema for the resolution of the constraints de-
scribing the problem. Using the oriented nature of the con-
straints, induced by the upstream to downstream flowing of
water, they designed an algorithm of quadratic complexity
allowing to stretch the minimal/maximal intervals of water
heights, after the removal of the conflicts present in the ini-
tial data.

Our objective on this application concentrates on the de-
tection of conflicts, as it has been done in e.g. [38]. As it
has been said in the introduction, the huge amount of data
led to insatisfactory results, which prevents the processing
of the whole valley. Using stratification, we essentially want
to reuse the upstream/downstream orientation of the initial
data, and rethink about the initial assertion of the CEMA-
GREF people, which states that we can be more confident
about the upstream initial assertions than on the downstream
ones.

6.2 Representation with a logic program

The available knowledge is translated into a set of propo-
sitional formulas. The description of the variables (water
heights) and their domains leads to n-ary positive clauses
(enumeration of possible values) and binary negative clauses
(mutual exclusion of the values). The initial assessments of
water heights for some compartments are translated into a
set of monoliteral clauses representing the assessed height
values. In the sequel, by abuse of notation, we denote by S1

the set of clauses describing the initial assessments.
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Concerning hydraulic relations, they are expressed in
terms of inequalities on the bounds of the water height.
They are translated into binary negative clauses represent-
ing the excluded tuples of values. By abuse of notation, in
the sequel, we will denote by S2 the set of clauses con-
taining the clauses representing the hydraulic relations and
the variable descriptions. We know that S1 is consistent and
S2 is consistent, but S1 ∪ S2 can be inconsistent. The goal
is to drop out some of the initial assessments of S1 in or-
der to restore consistency. This leads to the revision of S1

by S2.

Example 9 Let A and B be two compartments, defining the
following variables: A+ and A− for maximal and minimal
submersion height for compartment A, and B+ and B− for
the same counterparts for B . These variables are defined on
a domain D = {1,2,3}. There is a flow pouring from A to
B and there are assessments telling us that the maximum
submersion height is 2 for A and 3 for B . The translation
leads to a set S2 containing:

1. Clauses describing the variables:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A+
1 ∨ A+

2 ∨ A+
3 ,¬A+

1 ∨ ¬A+
2 ,¬A+

1 ∨ ¬A+
3 ,¬A+

2 ∨ ¬A+
3 ,

A−
1 ∨ A−

2 ∨ A−
3 ,¬A−

1 ∨ ¬A−
2 ,¬A−

1 ∨ ¬A−
3 ,¬A−

2 ∨ ¬A−
3 ,

B+
1 ∨ B+

2 ∨ B+
3 ,¬B+

1 ∨ ¬B+
2 ,¬B+

1 ∨ ¬B+
3 ,¬B+

2 ∨ ¬B+
3 ,

B−
1 ∨ B−

2 ∨ B−
3 ,¬B−

1 ∨ ¬B−
2 ,¬B−

1 ∨ ¬B−
3 ,¬B−

2 ∨ ¬B−
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

2. The clauses describing the inequalities representing the
flow relation (i.e. A+ ≥ B+, A− ≥ B−, A+ > B−):
⎧
⎪⎨

⎪⎩

¬A+
1 ∨ ¬B+

2 ,¬A+
1 ∨ ¬B+

3 ,¬A+
2 ∨ ¬B+

3 ,

¬A−
1 ∨ ¬B−

2 ,¬A−
1 ∨ ¬B−

3 ,¬A−
2 ∨ ¬B−

3 ,

¬A+
1 ∨ ¬B−

1 ,¬A+
1 ∨ ¬B−

2 ,¬A+
1 ∨ ¬B−

3 , . . . ,¬A+
3 ∨ ¬B−

3

⎫
⎪⎬

⎪⎭
.

The set S1 contains the initial assessments, that is, S1 =
{A+

2 ,B+
3 }. In practice, of course, the problem is compactly

encoded by means of cardinality constraints.

For each clause c ∈ S1 we introduce a new atom rc and
we construct a logic program PS1∪S2 according to the trans-
lation proposed in Sect. 4.1.

Example 10 Considering the previous example, the encod-
ing is as follows:

– The generation rules for each propositional variables
and each new atom rc: A+

1 ← not A
′+
1 , A

′+
1 ← not A+

1 ,
etc.

– One rule for each clause of S2. The translation of the set
S2 begins as follows: false ← not A+

1 ,not A+
2 ,not A+

3 ,
false ← A+

1 ,A+
2 , etc. and the contradiction detection rule:

contradiction ← not contradiction, false.
– One rule for each clause of S1. The translation of the set

S1 gives the following rules: rA+
2

← A
′+
2 , rB+

3
← B

′+
3 .

6.3 Experimental study and comparison

This subsection presents a summary of experimental results
provided by our answer set programming (ASP) encoding
of RSR and PRSR. The tests are conducted on a Pentium III
cadenced at 1 GHz and equipped with 1 GB of RAM.

6.3.1 Comparing three implementations of RSR

First, we compare the results of RSR using three ap-
proaches:

– the ASP encoding of the problem presented in this ar-
ticle, with the modification of smodels also presented
here.

– a direct encoding into a SAT problem, using a modified
version of an efficient SAT-solver, MiniSat [2]. This en-
coding is presented in annex.

– the REM algorithm, presented by Würbel et al. in [38]
which computes the removed sets by using a modifica-
tion of Reiter’s algorithm for the computation of minimal
hitting sets.The encoding and the REM algorithm is pre-
sented in annex.

This comparative test deals with an increasing number of
compartments from ten to sixty four compartments. The aim
of this test is to compare the performance of the three ap-
proaches on the application and to identify their limits. The
64 compartments have been picked out of an area of 120
(randomly, but choosen compartments are neighbours). Ten
tests have been performed for a same number of compart-
ments and an average running time on the ten tests is given.

We observe that, after 30 compartments, the REM al-
gorithm quickly arrives to its maximum capacity. Over 35
compartments, tests where aborted, reaching a time limit (10
hours) or a memory limit (500 Mb of memory).

Concerning the ASP encoding and the SAT encoding, we
observe that until 35 compartments, the two approaches be-
have similarly. From 40 compartments, the ASP encoding
begins to give better results, and from 45 compartments the
ASP encoding is significantly better than the SAT encoding.
From 50 compartments the SAT encoding reaches a limit in
CPU time (10 hours). The ASP encoding can deal with 60
compartments with a reasonable running time (few minutes)
and reaches a limit in CPU time around 64 compartments.
The results of the test, described in Table 1, are illustrated
graphically in Fig. 7.

6.3.2 Benefit of adding priorities

We use an implementation of Prioritized Removed Set Re-
vision which relies on the ASP encoding and the associated
algorithms presented in this article.
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Table 1 Comparison between
ASP encoding, SAT encoding,
and REM algorithm. The last
line (>64) states that we cannot
handle these cases (computation
time greater than one hour)

# of # of # of Time Time Time

compartments variables clauses ASP (s) MiniSat (s) REM (s)

10 210 2387 0.06 0.003

15 316 3650 0.06 0.017 0.424

20 432 5602 0.06 0.041 1.403

25 530 6796 0.137 1.437 0.988

30 661 9233 0.403 2.294 168.63

35 764 10446 0.890 20.907 403.424

40 869 11998 14.296 150.275 –

45 983 13833 15.584 255.116 –

50 1092 15373 48.530 – –

55 1177 15665 156.895 – –

60 1302 18118 210.318 – –

61 1337 18887 240.449 – –

62 1329 17960 264.100 – –

63 1368 18847 278.418 – –

64 1381 18782 331.436 – –

> 64 – – – – –

Fig. 7 Comparison between
ASP encoding and SAT
encoding in the flooding
application

To estimate the gain induced by stratification, we per-
formed a series of tests on the whole dataset, representing
the 120 compartments of the valley.

Prioritized Removed Set Revision is performed with
a stratification of S1 induced from the geographic posi-
tion of compartments. Compartments located in the north
part of the valley are preferred to the compartments lo-
cated in the south of the valley. We used an increasing
number of strata from 2 to 5. For each number of strata,
five tests were performed, using slightly different stratum

content. Table 2 summarizes the results of the test. We

can observe that Rens significantly reduces the running

time.

In the flooding application we have to deal with an

area consisting of 120 compartments and the stratification

is useful to deal with the whole area. Using the stratifi-

cation, Table 3 shows that Rens can deal with the whole

area with a reasonable running time, even with only two

strata.
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Table 2 Gains induced by Rens
# of compartments # strata Time Rens (s) Time ASP (s) # of variables # of clauses

64 2 55 331.436 1381 18782

64 3 21 331.436 1381 18782

64 4 24 331.436 1381 18782

64 5 19 331.436 1381 18782

Table 3 Gains induced by Rens
on an area containing 120
compartments (direct ASP
encoding cannot process this
area)

# of compartments # strata time Rens (s) # of variables # of clauses

120 2 24132.49 2343 33751

120 3 3047.55 2343 33751

120 4 1698.67 2343 33751

120 5 424.62 2343 33751

7 Related works

Several approaches have been proposed to extend ASP to
take into account preferences like Prioritized Logic Pro-
gramming (PLP) [31], Answer Set Optimization approach
(ASO) [4], and others that considers the preference is among
rules like in [8] (see [32] for a comparative study).

Our approach departs from existing proposals regarding
the following points:

1. In most existing approaches priorities are either attached
to rules (e.g. [5, 40]) or to literals (atoms or negated
atoms) (e.g. [31]). Moreover, priorities are encoded by
means of rules of logic programs. In the Answer Set Op-
timization approach (ASO) [4], the ASO programs con-
sist of two parts: a generating program, denoted by Pgen

which produces answer sets and a preference program,
denoted by Ppref which expresses user preferences. The
answer sets generation and the answer set comparison is
decoupled. All answer sets are first computed and they
are compared according to the preference program Ppref .
Similarly, the Prioritized Logic programming (PLP) [31]
framework explicitly represents priorities in a logic pro-
gram. PLP consists of a pair (P , �) where P is a general
extended disjunctive program and � is a set of priorities
over literals. The semantics is given in terms of preferred
answer sets where the preference relation on answer sets
comes from the preference relation over literals. Clearly,
in our paper, priorities are attached to rules and more pre-
cisely to clauses of knowledge bases. However, there is
no explicit encoding of priorities, namely in our approach
we only consider a unique logic program and priorities
are not encoded as additional rules in a logic program.
In fact, they are integrated and taken into account in our
adaptation of smodels algorithms.

2. Existing approaches do not modify algorithms to com-
pute preferred answer sets (since priorities are encoded

by means of additional rules). Many of existing algo-
rithms first computes all answer sets, then proceeds to
a selection of preferred ones on the basis of priority re-
lations. For instance, within Prioritized Logic program-
ming (PLP) the selection algorithm introduced in ([31],
Sect. 4.1) requires the computation of every answer set
in advance, which is not always reasonable. More pre-
cisely, in order to compute the preferred answer sets, the
program P is first extended to a program P� by the in-
troduction of new atoms and new rules that represent the
preferences over literals. The computation of preferred
answer sets of P� is achieved in two steps, all answer
sets are first computed, then the answer sets that are not
preferred according to the preference relation over liter-
als are discarded. Our approach does not compute all an-
swer sets, but directly computes the preferred answer sets
by an adaptation of the s-model algorithm. Moreover, the
computation of answer sets is done incrementally level
by level.

3. The aim of existing approaches is to enrich the expressive
power of ASP for instance by dealing with prioritized
disjunctive logic programs or even dealing with general
formulas. Some approaches deal with the update of logic
programs [26] which stems from the extension of abduc-
tive logic programs. This work addresses update which is
an operation that modifies logic programs. The aim of our
approach is not to enrich the expressive power of ASP,
but more to encode PRSR in order to be applied in the
framework of GIS.

4. Most of existing approaches use inclusion-based crite-
rion to define preferred answer sets. In the Answer Set
Optimization approach (ASO) [4], a weaker criterion
based on well-known Pareto-ordering has been used.
In our paper, we adapted the cardinality-based criterion
which extends the inclusion-set based criterion. Note
that our approach can be easily adapted to produce pre-
ferred answer set with respect to inclusion-based crite-
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rion. However, from computational point of view it is bet-
ter to use a cardinality-based approach since the number
of cardinality-based preferred answer sets is smaller than
the number of inclusion-based preferred answer sets.
This is particularly important when dealing GIS prob-
lems that involve a high number of formulas.

8 Concluding discussion

This paper generalized Removed Sets Revision to priori-
tized belief bases (Prioritized Removed Sets Revision) and
showed that PRSR can be successfully encoded into answer
set programming. An implementation stemming from smod-
els system is proposed and an experimental study in the
framework of GIS shows that the answer set approach gives
better results than the REM algorithm based on the adapta-
tion of Reiter’s algorithm for diagnosis and than an imple-
mentation based on an efficient SAT-solver MiniSat. Indeed,
it first allows to deal with the whole area if priorities are pro-
vided, and even if there are no priorities, it can deal with 64
compartments, which is impossible with the REM algorithm
nor with the SAT approach. It is important to note that both
ASP encoding and SAT encoding introduce new variables
(basically associated to clauses of the knowledge base).

In [34], the language of smodels has been extended and
optimization statements for the smodels system have been
proposed. In PRSR we use cardinality constraints for more
compactly encoding the data. The computation of the prior-
itized removed sets could be done with the use of the min-
imize statement of smodels however we showed that our
approach is more efficient than the use of the minimize
statement.

Several approaches have been proposed to extend ASP
to take into account preferences, like Prioritized Logic Pro-
gramming (PLP) [31], Answer Set Optimization approach
(ASO) [4], and others that considers the preference is among
rules like in [8] (see [32] for a comparative study). Most of
these approaches first generate all answer sets for a program
then select the preferred ones. On contrast, we adapted the
smodels algorithm in order to directly compute the preferred
answer sets. Contrary to existing approaches, the first aim of
the extension of ASP is not to enrich the expressive power
of ASP, but more to encode PRSR in order to be applied in
the framework of GIS.

Acknowledgement This work was supported by European Commu-
nity project IST-1999-14189 REVIGIS.

Appendix A: Proofs

A.1 Proofs of Sect. 3

Proposition 1 Let K and A be two consistent sets of
clauses. If K ∪ A is inconsistent then R(K ∪ A) �= ∅.

Proof K∪A is inconsistent then, by the theorem of compac-
ity of propositional calculus, there exists at least one mini-
mal inconsistent subset of K ∪ A. Since K and A are con-
sistent, there exists at least one subset of clauses from K ,
denoted by R, which intersects each minimal inconsistent
subset of K ∪ A such that (K\R) ∪ A is consistent. In case
of several sets Ri such that (K\Ri) ∪ A is consistent, some
are minimal in number of clauses and, according to the def-
inition, they are removed sets therefore R(K ∪ A) �= ∅. �

Proposition 2 When s(R(K ∪ A)) = R(K ∪ A), the revi-
sion operator ◦RSR satisfies the postulates (G � 1)–(G � 8).

Proof

(G � 1): This postulate is verified since K ◦RSR A is a belief
base.

(G � 2): By the definition of ◦RSR, A ∈ K ◦RSR A.
(G � 3): follows from the fact that either

K ◦RSR A =
∨

R∈R(K∪A)

Cn((K\R) ∪ A)

or

K ◦RSR A = Cn(K ∪ A)

(G � 4): if K �|= ¬A then, by definition, K ◦RSR A = Cn(K ∪
A).

(G � 5): By (G�2), A ∈ K ◦RSR A. If ¬A is a tautology then
K ◦RSR A is inconsistent. Conversely, since K is consistent
and A ∈ K ◦RSR A, if K ◦RSR A is inconsistent then ¬A is
a tautology.

(G � 6): if A ≡ B they share the same CNF, by the defini-
tion of ◦RSR, K ◦RSR A = K ◦RSR B .

(G � 7): By definition,

K ◦RSR (A ∧ B) =
∨

R∈R(K∪(A∧B))

Cn((K\R) ∪ (A ∧ B))

and

K ◦RSR A =
∨

R′∈R(K∪A)

Cn((K\R′) ∪ A).

If K ◦RSR A + B ⊂ K ◦RSR (A ∧ B) then K ◦RSR A + B re-
moves more clauses from K than K ◦RSR (A∧B), therefore
|R| < |R′|. By definition R and R′ are subsets of clauses of
K , and (K\R) ∪ (A ∧ B) ≡ (K\R) ∪ {A,B} is consistent
therefore R′ is not a removed set of R(K ∪ A) because
(K\R) ∪ A is consistent and |R| < |R′|. This leads to a
contradiction.

(G � 8): By definition,

K ◦RSR (A ∧ B) =
∨

R∈R(K∪(A∧B))

Cn((K\R) ∪ {A,B}
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and

A ∈ K ◦RSR A =
∨

R′∈R(K∪A)

Cn((K\R′) ∪ A)

If ¬B �∈ K ◦RSR A then (K\R′) ∪ (A ∧ B) ≡ (K\R′) ∪
{A,B} is consistent, and by (G � 7), |R′| ≤ |R| holds. If
|R′| < |R| then R is not a removed set of R(K ∪ (A ∧ B))

since (K\R′) ∪ {A,B} is consistent. Therefore |R′| = |R|
and K ◦RSR A + B = K ◦RSR (A ∧ B). �

Proposition 3 Let R be a set of clauses,

– R is a removed set iff (K\R)∪A ∈ MAXCONSA(K)∪A;
– K ◦RSR A = ∨

K ′∈s(MAXCONSA(K)) Cn(K ′ ∪ A).

Proof We recall that the selection function s is such that
s(R(K ∪ A)) = R(K ∪ A).

– We first show that if R is a removed set then (K\R)∪A ∈
MAXCONSA(K) ∪ A.

If R is a removed set, by definition, (K\R)∪A is con-
sistent.

If (K\R)∪A �∈ MAXCONSA(K)∪A then there exists
a set M , such that M ⊂ (K ∪A) and |(K\R)∪A| < |M|.
Since K ∪ A is inconsistent there exists R′ ⊂ K such that
M = (K\R′) ∪ A is consistent and |R′| ≤ |R| which con-
tradicts the fact that R is a removed set.

– We now show that if (K\R) ∪ A ∈ MAXCONSA(K) ∪ A

then R is a removed set.
If (K\R)∪A ∈ MAXCONSA(K)∪A, then (K\R)∪A

is consistent.
If (K\R)∪A ∈ MAXCONSA(K)∪A, since R∩A=∅,

then K\R ∈ MAXCONSA(K), therefore, K\R ⊆ K and
(K\R) ∪ A is consistent. Since K\R ∈ MAXCONSA(K),
if there exists R′, R′ ⊆ K and (K\R′) ∪ A is consistent
such that |R′| < |R| then |K\R| < |K\R′| then K\R �∈
MAXCONSA(K).

– K ◦RSR A = ∨
K ′∈s(MAXCONSA(K)) Cn(K ′ ∪ A). The proof

follows from the characterization of removed sets in terms
of maximal consistent subsets and from the definition of
RSR revision. �

Proposition 4 The function that assigns K the total pre-
order ≤K is a faithful assignment.

Proof Let K be a finite set of clauses. A total pre-order be-
tween interpretations can be defined as follows: ∀ωi , ωj ∈
W4, ωi ≤K ωj iff |NSK(ωi)| ≤ |NSK(ωj )|. We show that
the function that assigns K the total pre-order ≤K is a faith-
ful assignment.

(1) If ω,ω′ ∈ Mod(K) then NSK(ω) = NSK(ω′) = ∅
thus |NSK(ω)| = |NSK(ω′)| = 0 therefore ω =K ω′.

(2) If ω ∈ Mod(K) then NSK(ω) = ∅ therefore |NSK(ω)|
= 0. If ω′ �∈ Mod(K) then NSK(ω) �= ∅ therefore
|NSK(ω)| > 0. By definition of ≤K we have ω <K ω′.

(3) We first show that if K ≡ L then ≤K=≤L.
Let K and L be two finite sets of clauses, ∀ω ∈ W ,

if K ≡ L then NSK(ω) = NSL(ω) and |NSK(ω)| =
|NSL(ω)|.

We now show If ≤K=≤L then K ≡ L.
By contraposition we show that if K �≡ L then

≤K �=≤L.
If K �≡ L then there exists ω ∈ W such that ω |= K

and ω �|= L or such that ω �|= K and ω |= L.
– if ω |= K and ω �|= L, then |NSK(ω)| = 0 and

|NSL(ω)| > 0. Since L is an initial set of clauses,
L is consistent and there exists ω′ such that ω′ |= L

and NSL(ω′) = ∅ and |NSL(ω)| = 0 thus ω <L

ω′. By consequence ω′ = min(W,≤L) and ω =
min(W,≤K) therefore ≤K �=≤L.

– if ω �|= K and ω |= L, then |NSK(ω)| > 0 and
|NSL(ω)| = 0. The proof is similar than the one
above. �

Proposition 5 Let R(K ∪ A) be the set of removed sets of
(K ∪ A).

Mod(K ◦RSR A) = Mod(K ◦RSRsem A).

Proof

– We first show that Mod(K ◦RSR A) ⊆ min(Mod(A),≤K).

∀ω ∈ Mod(K ◦RSR A) there exists at least one subset
R ∈ R(K ∪ A) such that ω ∈ Mod(((K\R) ∪ A). Let
NS(ω) be the set of clauses of K falsified by ω. Since
R is a removed set, NS(ω) = R. Since NS(ω) < R, R

is not a removed set holds. Therefore ω �|= R, ω |= A and
ω |= K\R. We show that ω ∈ min(Mod(A),≤K).

If ω �∈ min(Mod(A),≤K) then there exists ω′ ∈ Mod(A)

such that NS(ω′) < NS(ω), since NS(ω) = R, then
NS(ω′) < R this contradicts the fact that R is not
a removed set. By consequence, Mod(K ◦RSR A) ⊆
min(Mod(A),≤K).

– We now show that min(Mod(A),≤K) ⊆ Mod(K ◦RSR A)

∀ω ∈ min(Mod(A)),≤K), let NS(ω) �= ∅ because
K ∪ A is inconsistent. Anyway NS(ω) ⊆ K and ω |= A

and ω |= K\NS(ω), since A ∩ NS(ω) = ∅, thus ω |=
(K\NS(ω))∪A therefore (K\NS(ω))∪A is consistent.
We have to show that NS(ω) is a removed set. We already
shown that NS(ω) ⊆ K , then that (K\NS(ω)) ∪ A is
consistent.

We show that ∀ω′ ∈ Mod(A) we have |NSK(ω)| <

|NSK(ω′)|. If this is not the case then ω′ �∈ min(Mod(A),
≤K) which contradicts the hypothesis. By consequence
NS(ω) is a removed set and min(Mod(A),≤K) ⊆
Mod(K ◦RSR A). �
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A.2 Proofs of Sect. 4

In the following the interpretations are sets of atoms and
for the sake of simplicity in the proofs, since we deal with
normal logic programs, we identify the negative atoms a′ ∈
V − with the negated atoms ¬a.

Proposition 6 Let K be a consistent finite set of clauses
and let A be a finite consistent set of clauses. Let S ⊆ V

be a set of atoms. S is an answer set of PK∪A iff IS is an
interpretation of V + which satisfies (K\CL(S ∩ R+

K)) ∪ A.

Proof We prove that if S is an answer set of PK∪A then IS is
an interpretation of V + which satisfies (K\CL(S ∩ R+

K)) ∪
A.
We first prove that IS = {a | a ∈ S} ∪ {¬a | a′ ∈ S} is an
interpretation of V +.

∀a ∈ V +, we show that either a ∈ S or a′ ∈ S. If it does not
hold then there are two cases.

– Case 1: a �∈ S and a′ �∈ S. By the rule a′ ← not a, we
get a′ ∈ CN(P S

K∪A). By the definition of answer sets S =
CN(P S

K∪A), thus a′ ∈ S, which is impossible.
– Case 2: a ∈ S and a′ ∈ S. Since the only rule with

head a′ is a′ ← not a, we get a′ �∈ CN(P S
K∪A), but S =

CN(P S
K∪A), thus a′ �∈ S, which is impossible.

We now show that false �∈ S and contradiction �∈ S. If false ∈
S then two cases hold.

– Case 1: contradiction ∈ S. As the only rule with head
contradiction is contradiction ← false, not contradiction,
we get contradiction �∈ CN(P S

K∪A) = S, which is impos-
sible.

– Case 2: contradiction �∈ S. By the rule contradiction ←
false,notcontradiction, we get contradiction ∈ CN(P S

K∪A)

= S, which is impossible. Now contradiction �∈ S follows
from false �∈ S and from the fact that the only rule with
head contradiction includes false in its body. Therefore
IS is an interpretation of V +.

We now show that IS satisfies (K\CL(S ∩ R+
K)) ∪ A.

We first show that IS is a model of A. Suppose that
IS is not a model of A then ∃ c ∈ A such that IS �|= c.
Clearly, by the rule introduced in (ii) that concerns c, false ∈
CN(P S

K∪A) = S, which is impossible since we have previ-
ously shown that false �∈ S.

We now suppose that IS is not a model of (K\CL(S ∩
R+

K)) ∪ A, then ∃ c ∈ (K\CL(S ∩ R+
K)) ∪ A, such that IS �|=

c. Since IS is a model of A, thus c �∈ A therefore c ∈ K .
However, by the rule introduced in (iii) that concerns c, rc ∈
CN(P S

K∪A) = S, thus c ∈ CL(S ∩ R+
K), which is impossible.

We now show that if IS is an interpretation of V + which
satisfies (K\CL(S ∩ R+

K)) ∪ A then S is an answer set of
PK∪A.

From IS we construct a set S such that S = {a | a ∈ IS} ∪
{a′ | ¬a ∈ IS}.
We first show that S ⊆ CN(P S

K∪A).
Let a ∈ S. Two cases hold.

– Case 1: a ∈ V +, since IS is an interpretation of V +
then a′ �∈ S. Thus, by the rule a ← not a′, we get a ∈
CN(P S

K∪A).
– Case 2: a ∈ V − is similar to the Case 1.

We now show that CN(P S
K∪A) ⊆ S.

Clearly CN(P S
K∪A) ⊆ V ∪ {false, contradiction}.

We first show that CN(P S
K∪A) ∩ (V \ RK) ⊆ S.

Suppose that ∃a ∈ CN(P S
K∪A)∩ (V \RK), a �∈ S. Two cases

hold.

– Case 1: a ∈ V +. Then, a′ ∈ S, since IS is a an inter-
pretation of V +. Thus, since we have shown that S ⊆
CN(P S

K∪A), therefore a′ ∈ CN(P S
K∪A). Thus, as the only

rule with head a is a ← not a′, we get a �∈ CN(P S
K∪A),

which is impossible.
– Case 2: a ∈ V −. Similar to the Case 1.

We show that CN(P S
K∪A) ∩ RK ⊆ S.

Suppose that ∃a ∈ CN(P S
K∪A) ∩ RK , a �∈ S. Two cases

hold.

– Case 1: a ∈ R−
K . Then, a = r ′

c and rc ∈ S, since IS is
an interpretation of V +. Thus, since we have shown that
S ⊆ CN(P S

K∪A), rc ∈ CN(P S
K∪A). Therefore, as the only

rule with head r ′
c is r ′

c ← not rc , we get r ′
c �∈ CN(P S

K∪A),
which is impossible.

– Case 2: a ∈ R+
K . Then, a = rc , thus r ′

c ∈ S, IS is an in-
terpretation of V +. Thus, the rule that concerns c intro-
duced in (i) is not in P S . Thus, the rule that concerns c

introduced in (iii) is the only one with head rc . Thus, its
body is in CN(P S

K∪A) and thus, since we have shown that
CN(P S

K∪A) ∩ (V \ RK) ⊆ S, its body is also in S, which
implies that IS �|= c. But, IS is a model of K \CL(S ∩R+

K)

and rc �∈ S, which is impossible.

We finally show that false �∈ CN(P S
K∪A). Suppose that

false ∈ CN(P S
K∪A), then, there is a rule introduced in (ii)

such that its body is in CN(P S
K∪A), thus, by (8), its body

is also in S. But, this means that some clause in A is not
satisfied by IS , which is impossible as IS is a model of A.
The roof of contradiction �∈ CN(P S

K∪A) follows from the
fact that false �∈ CN(P S

K∪A).
Since CN(P S

K∪A) ⊆ V ∪ {false, contradiction} and we
have proved that CN(P S

K∪A) ∩ (V \ RK) ⊆ S and
CN(P S

K∪A)∩RK ⊆ S and false �∈ CN(P S
K∪A), contradiction

�∈ CN(P S
K∪A) it follows that CN(P S

K∪A) ⊆ S. �

Proposition 7 Let R ⊆ K . Then, (K \ R) ∪ A is consistent
iff there exists an answer set S of PK∪A such that CL(S ∩
R+

K) = R.
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Proof We first show that if (K \ R) ∪ A is consistent then
there exists an answer set S of PK∪A such that CL(S ∩
R+

K) = R.
Suppose (K \ R) ∪ A is consistent and let m be an inter-

pretation of Atom(K ∪A) which satisfies (K \R)∪A. Then,
let S = {a | a ∈ m} ∪ {a′ | ¬a ∈ m} ∪ {rc | c ∈ R} ∪ {r ′

c | c ∈
K \ R}. Let IS be such that IS = {a | a ∈ S} ∪ {¬a | a′ ∈ S}.
Clearly, IS is an interpretation of V + which is a model of
(K \ R) ∪ A, therefore by Proposition 6, S is an answer set
of PK∪A.

Ne now show that if there exists an answer set S of PK∪A

such that CL(S ∩ R+
K) = R then (K \ R) ∪ A is consistent.

The proof is obvious and follows from Proposition 6. �

In order to prove the Proposition 8, for the sake of read-
ability, we introduce the preferred T -generators of PK∪A

which are the sets of literals which are interpretations of T

that lead to a preferred answer set of PK∪A.

– Let A ⊆ V and L ⊆ lit(V ). We say that A agrees with L

iff pos(L) ⊆ A and ∀ ¬a ∈ neg(L), a �∈ A.
– Let I ⊆ lit(RK) and T ⊆ RK , we say that I is a preferred

T -generator of PK∪A iff
– I is an interpretation of T and
– there exists a preferred answer set S of PK∪A such that

S agrees with I .

We first prove the following lemma.

Lemma 1 Let I be the set of all preferred RK -generators
of PK∪A and R be the set of all prioritized removed sets of
K ∪ A. Then,

(i) {CL(I ∩ R+
K) : I ∈ I} = R;

(ii) |R| = |I|.

Proof (i) We first prove that {CL(I ∩ R+
K) : I ∈ I} ⊆ R.

Let I be a preferred RK -generator. By definition, there
exists a preferred answer set S which agrees with I . By
Proposition 7, (K\CL(S∩R+

K))∪A is consistent and clearly
S ∩ RK = I ∩ RK , thus S ∩ R+

K = I ∩ R+
K . Therefore

(K\CL(I ∩R+
K))∪A is consistent. Moreover, if there is an-

other I ′ such that (K\CL(I ′ ∩ R+
K)) ∪ A is consistent then

I ∩ R+
K is preferred to I ′ ∩ R+

K , because if not, S is not any-
more a preferred answer set. Therefore is a prioritized re-
moved set.

We now prove that R⊆ {CL(I ∩ R+
K) : I ∈ I}.

Let R ⊆ K such that R is a prioritized removed set, then
(K \ R) ∪ A is consistent. By Proposition 7, there is an an-
swer set S such that CL(S ∩ R+

K) = R. Moreover S is a pre-
ferred answer, because if not, R is not a prioritized removed
set. Let I = {a : a ∈ S ∩ RK } ∪ {¬a : a ∈ RK \ S}. Clearly I

is a preferred RK -generator and S ∩ R+
K = I ∩ R+

K . There-
fore CL(I ∩ R+

K) = R.

(ii) In order to prove that |R| = |I| we show that there is
a one to one correspondence between I and R.

By definition the function f such that f (I) = CL(I ∩
R+

K) is surjective. We have now to show that it is injective,
that is ∀I, I ′ ∈ I , if I �= I ′ then CL(I ∩R+

K) �= CL(I ′ ∩R+
K).

If CL(I ∩ R+
K) = CL(I ′ ∩ R+

K) then by the definition of CL
we have I ∩R+

K = I ′ ∩R+
K . Since I and I ′ are preferred RK -

generators of PK∪A then there exists two preferred answer
sets S and S′ such that S agrees with I and S′ agrees with
I ′ and it follows that S ∩ RK = I ∩ RK and S′ ∩ RK = I ′ ∩
RK , therefore S ∩ R+

K = S′ ∩ R+
K . We now show that S ∩

RK = S′ ∩ RK . Let IS (resp. I ′
S ) be the interpretation of V

corresponding to S (resp. S′). If S ∩ R−
K �= S′ ∩ R−

K then
there exists a′ ∈ S ∩ R−

K and a′ �∈ S′ ∩ R−
K thus ¬a ∈ IS but

¬a �∈ I ′
S which is impossible. Therefore I ∩ RK = I ′ ∩ RK

and by definition of RK -generator, I = I ′ which contradicts
the hypothesis. �

We now prove the Proposition 8.

Proposition 8 Let K be a consistent and prioritized finite
set of clauses and let A be a finite consistent set of clauses.
R is a prioritized removed set of K ∪ A iff there exists a
preferred answer set S of PK∪A such that CL(S ∩R+

K) = R.

Proof Let S be the set of all preferred answer sets of PK∪A

and R be the set of all prioritized removed sets of K ∪ A.
We show that {CL(S ∩ R+

K) : S ∈ S} = R.
We first show that {CL(S ∩ R+

K) : S ∈ S} ⊆ R.
Let S be a preferred answer set of PK∪A. Let R =

CL(S ∩ R+
K), since S is an answer set, by Proposition 6,

(K \ R) ∪ A is consistent. Suppose that R is not a priori-
tized removed set, since R ⊆ K and (K \ R) ∪ A is consis-
tent there exists R′ ⊆ K such that (K \ R′) ∪ A is consis-
tent and R′ is preferred to R. As (K \ R′) ∪ A is consistent,
there exists an interpretation m of Atom(K ∪ A) such that
m satisfies (K \ R′) ∪ A. Let S′ = {a ∈ V : a ∈ m} ∪ {a′ ∈
V : ¬a ∈ m} ∪ {rc : c ∈ R′} ∪ {r ′

c : c ∈ K \ R′}. Let I ′
S be

such that I ′
S = {a | a ∈ S′} ∪ {¬a | a′ ∈ S′}. Clearly, I ′

S is
an interpretation of V + which satisfies (K \ R′) ∪ A, be-
sides R′ = CL(S′ ∩ R+

K). Thus, by proposition 7, S′ is an
answer set. Moreover, R′ = CL(S′ ∩ R+

K) is preferred to
R = CL(S ∩ R+

K). And, ∀ i, 1 ≤ i ≤ n, |CL(S′ ∩ R+
K) ∩

Ki | = |CL(S′ ∩R+
Ki

)| = |S′ ∩R+
Ki

|. Similarly, ∀i, 1 ≤ i ≤ n,

|CL(S ∩ R+
K) ∩ Ki | = |S ∩ R+

Ki
|. Thus, S′ is preferred to S

and thus S is not a preferred answer set,which contradicts
the hypothesis. Therefore, R is a prioritized removed set.

We now show that R⊆ {CL(S ∩ R+
K) : S ∈ S}.

Let R be a prioritized removed set of K ∪ A. Then,
(K \R)∪A is consistent. thus, there is an interpretation m of
Atom(K ∪ A) which satisfies (K \ R) ∪ A. Let S = {a ∈ V :
a ∈ m} ∪ {a′ ∈ V : ¬a ∈ m} ∪ {rc : c ∈ R} ∪ {r ′

c : c ∈ K \ R}.
Let IS be such that IS = {a | a ∈ S} ∪ {¬a | a′ ∈ S}. Clearly,
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IS is an interpretation of V + which satisfies (K \ R) ∪ A.
Besides R = CL(S ∩ R+

K). Therefore, by Proposition 7, S

is an answer set. Suppose that S is not a preferred answer
set. Then, there exists an answer set S′ such that S′ is pre-
ferred to S. And, as seen above, ∀i, 1 ≤ i ≤ n, |CL(S ∩
R+

K)∩Ki | = |S ∩R+
Ki

| and |CL(S′ ∩R+
K)∩Ki | = |S′ ∩R+

Ki
|.

Thus, CL(S′ ∩ R+
K) is preferred to CL(S ∩ R+

K) = R. But,
CL(S′ ∩R+

K) ⊆ K and (K \ CL(S′ ∩R+
K))∪A is consistent.

Thus, R is not a prioritized removed set, which contradicts
the hypothesis. Therefore S is a preferred answer set. �

Proofs of Sect. 5

In order to prove the Proposition 9 we first prove 3 lemmas.
The first lemma characterizes the set of subsets of literals

of RK which lead to preferred answer sets and which mini-
mize the number of clauses to remove from each stratum.

Lemma 2 Let k ∈ N, 1 ≤ k ≤ n, let L be a RK1∪···∪Kk−1 -
generator, and let X be a finite set of RK1∪···∪Kk

-generators
such that ∀X,Y ∈ X , |X ∩ R+

Kk
| = |Y ∩ R+

Kk
|. Then, X ∈

Prio(PK∪A,L, k,X ) iff

(i) X is a RK1∪···∪Kk
-generator,

(ii) L ⊂ X or X ∈ X ,
(iii) for all RK1∪···∪Kk

-generator X′ such that L ⊂ X′, we
have |X ∩ R+

Kk
| ≤ |X′ ∩ R+

Kk
|,

(iv) ∀X′ ∈X , |X ∩ R+
Kk

| ≤ |X′ ∩ R+
Kk

|.

Proof Let ASml denote the tree run by Smodels(PK∪A,L)

and APrio run by Prio(PK∪A,L, k,X ).
Let X ∈ Prio(PK∪A,L, k,X ), we first show that X satis-

fies (i), (ii), (iii), and (iv).
If X is initially a member of X , then X satisfies (i)

and (ii), otherwise, there is a leaf F of APrio such that
X = F ′ ∩ lit (RK1∪···∪Kk

) and Pos(F ′) is an answer set.
Thus, X is consistent and covers RK1∪···∪Kk

and Pos(F ′)
agrees with X. Thus, X is a RK1∪···∪Kk

-generator, and as L

is the root of APrio, we get L ⊂ F ′, thus L ⊂ X, thus X

satisfies (i) and (ii).
Suppose that X does not satisfy (iv). Then, there is X′ ∈

X such that |X′ ∩ R+
Kk

| < |X ∩ R+
Kk

|. Thus, initially X �∈X ,
thus there is a leaf F such that X = F ′ ∩ lit(RK1∪···∪Kk

)

and F ′ satisfies Condition (1). Consider the time when F ′
is testing (1). Clearly, it is impossible that X′ ∈ X at this
time, thus X′ has been rejected before, thus Condition (2)
has been satisfied at least once, thus there is X′′ ∈ X such
that |X′′ ∩ R+

Kk
| < |X′ ∩ R+

Kk
| < |X ∩ R+

Kk
| = |F ′ ∩ R+

Kk
|,

thus F ′ does not satisfy (1), which is impossible, thus X

satisfies (iv).
Suppose that X does not satisfy (iii). Then, there is a

RK1∪···∪Kk
-generator X′ such that L ⊂ X′ and |X′ ∩R+

Kk
| <

|X ∩ R+
Kk

|.

Case 1: X′ has been added to X . By Condition (3), X

and X′ are added only once. Thus two cases arise:
Case 1.1: X has been added before X′. Consider the time
when X′ is added to X . As X ∈ X and |X′ ∩ R+

Kk
| < |X ∩

R+
Kk

|, we have that (3) is satisfied and thus X is rejected,
which is impossible.
Case 1.2: X′ has been added before X. Then, initially X �∈
X , thus there is a leaf F such that X = F ′ ∩ lit(RK1∪···∪Kk

)

and F ′ satisfies (1). But, when F ′ is testing (1), we have
X′ �∈ X , thus X′ has been rejected before, thus (2) has been
satisfied, thus ∃X′′ ∈X such that |X′′ ∩R+

Kk
| < |X′ ∩R+

Kk
| <

|X ∩R+
Kk

| = |F ′ ∩R+
Kk

|, thus F ′ does nor satisfy (1), which
is impossible.

Case 2: X′ has not been added to X . Let S be an answer
set that agrees with X′. As L ⊂ X, we have that S agrees
with L, thus there is a leaf F of ASml such that S = Pos(F ),
thus such that X′ = F ′ ∩ lit(RK1∪···∪Kk

). As X′ has not
been added to X , there is an ancestor N of F which does
not satisfy (1). Thus, ∃X′′ ∈ X , |X′′ ∩ R+

Kk
| < |N ∩ R+

Kk
|

But, |N ∩ R+
Kk

| ≤ |F ′ ∩ R+
Kk

| = |X′ ∩ R+
Kk

| < |X ∩ R+
Kk

|. If
L ⊂ X′′, then we fall down on Case 1, which is impossible.
Otherwise, we have that initially X′′ ∈ X and thus X does
not satisfy (iv), which is impossible. Thus, X satisfies (iii).

Suppose that X satisfies (i), (ii), (iii), and (iv), we now
show that X ∈ Prio(PK∪A,L, k,X ).

Case 1: L ⊂ X. As X is a RK1∪···∪Kk
-generator, there is

an answer set S that agrees with X and thus that agrees with
L. Thus, there is a leaf F of ASml such that Pos(F ′) = S,
thus such that X = F ′ ∩ lit(RK1∪···∪Kk

).
Case 1.1: F has not been pruned. Then, X has been added
to X . Suppose that X has been rejected. Then, Condition
(2) has been satisfied despite the presence of X, which is
impossible by (iii), thus X has not been rejected and thus
X ∈ Prio(PK∪A,L, k,X ).
Case 1.2: an ancestor N of F has been pruned. Suppose
that this is due to (1). Then, there is a RK1∪···∪Kk

-generator
X′ ∈ X such that |X′ ∩ R+

Kk
| < |N ∩ R+

Kk
| ≤ |F ′ ∩ R+

Kk
| =

|X∩R+
Kk

|. On the one hand, if L ⊂ X′, then we get a contra-
diction by (iii). On the other hand, if initially X′ ∈ X , then
we get a contradiction by (iv). Thus, the pruning of F is not
due to (1). Thus, it is due to (3). But, then X has been added
before X and we have seen in Case 1.1 that X cannot then
be rejected, thus X ∈ Prio(PK∪A,L, k,X ).

Case 2: initially X ∈ X . If X has been rejected, then
clearly we get a contradiction by (iii), thus X ∈
Prio(PK∪A,L, k,X ). �

We following lemma characterizes what is the content
of X after the k-th execution of the first loop in the algo-
rithm Rens and we denote by Xk the value of the variable X
just after the k-th execution of the first loop in the algorithm
Rens.
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Lemma 3 Let k ∈ N, 1 ≤ k ≤ n. Then X ∈Xk iff

– X is a RK1∪···∪Kk
-generator and

– ∃Y ∈ Xk−1, Y ⊂ X and
– for all RK1∪···∪Kk

-generator X′ such that ∃Y ∈ Xk−1,
Y ⊂ X′, we have |X ∩ R+

Kk
| ≤ |X′ ∩ R+

Kk
|.

Proof Le I be an interpretation, we denote by S(I) the set
of all clauses of K satisfied by I and we denote by NS(I )

the set of all clauses of K not satisfied by I . We start by
induction on k and RK0 = ∅.
For k = 1, X1 = Prio(PK∪A,∅,1,∅). As A is consistent,
there is a interpretation M of Atom(K ∪ A) such that M

is a model of A. Then, let S = {a ∈ V : a ∈ M} ∪ {a′ ∈ V :
¬a ∈ M}∪{rc : c ∈ NS(M)}∪{r ′

c : c ∈ K \NS(M)}. Clearly,
IS the interpretation corresponding to S is an interpretation
of V + and a model of (K ∪ A) \ NS(M), and NS(M) =
CL(S ∪ R+

K), Thus, by Proposition 6, S is an answer set.
And obviously, S agrees with ∅. Thus, ∅ is a RK0 -generator.
Thus, by Lemma 2 and by the fact that X0 = ∅, we get that
X ∈ X1 iff

(i) X is a RK1 -generator;
(ii) ∃Y ∈X0, Y ⊂ X;

(iii) for all RK1 -generator X′ such that ∃Y ∈ X0, Y ⊂ X′,
we have that |R+

K1
∩ X| ≤ |R+

K1
∩ X′|.

Now, let k such that 1 ≤ k ≤ n−1 and we make the assump-
tion (H1): X ∈Xk iff

(i) X is a RK1∪···∪Kk
-generator,

(ii) ∃Y ∈Xk−1, Y ⊂ X and
(iii) for all RK1∪···∪Kk

-generator X′ such that ∃Y ∈ Xk−1,
Y ⊂ X′, we have |R+

Kk
∩ X| ≤ |R+

Kk
∩ X′|.

We need the following notations: Y0 = {∅} and ∀i, 1 ≤ i ≤
nk , Yi is the value of Y in the algorithm Rens just after the
i-th execution of (B2) during the k + 1-th execution (B1).
In addition, ∀i, 1 ≤ i ≤ nk , we denote by Xi is the chosen
element in the i-th execution of (I1) during the k + 1-th ex-
ecution of (B1).
We start a second induction within the first one. Clearly
Y1 = Prio(PK∪A,X1, k + 1,∅). But, by (H1), X1 is a RK1 -
generator. Thus, by Lemma 2 and by the fact that {X1} =
{Xi : 1 ≤ i ≤ 1}, we get that X ∈ Y1 iff

(i) X is a RK1∪···∪Kk+1 -generator;
(ii) ∃Y ∈ {Xi : 1 ≤ i ≤ 1} such that Y ⊂ X;

(iii) for all RK1∪···∪Kk+1 -generator X′ such that ∃Y ∈ {Xi :
1 ≤ i ≤ 1}, Y ⊂ X′, we have that |R+

Kk+1
∩ X| ≤

|R+
Kk+1

∩ X′|.
Let r ∈ N, 1 ≤ r ≤ nk − 1 where nk =|Xk | and we make

the assumption (H2): X ∈ Yr iff

(i) X is a RK1∪···∪Kk+1 -generator;
(ii) ∃Y ∈ {Xi : 1 ≤ i ≤ r} such that Y ⊂ X;

(iii) for all RK1∪···∪Kk+1 -generator X′ such that ∃Y ∈ {Xi :
1 ≤ i ≤ r}, Y ⊂ X′, we have that |R+

Kk+1
∩ X| ≤

|R+
Kk+1

∩ X′|.
Clearly, Yr+1 = Prio(PK∪A,Xr+1, k + 1,Yr ), and by (H2),
Yr is a finite set of RK1∪···∪Kk+1 -generators such that
∀X,Y ∈ Yr , |R+

Kk+1
∩ X| = |R+

Kk+1
∩ Y |, and by (H1), Xr+1

is a RK1∪···∪Kk
-generator. Thus, by Lemma 2, we get that

X ∈ Yr+1 iff

(i) X is a RK1∪···∪Kk+1 -generator;
(ii) Xr+1 ⊂ X ∨ X ∈ Yr ;

(iii) for all RK1∪···∪Kk+1 -generator X′ such that Xr+1 ⊂ X′,
we have |R+

Kk+1
∩ X| ≤ |R+

Kk+1
∩ X′|;

(iv) ∀X′ ∈ Yr , |R+
Kk+1

∩ X| ≤ |R+
Kk+1

∩ X′|.
We now show that this entails X ∈ Yr+1 iff

(i′) X is a RK1∪···∪Kk+1 -generator;
(ii′) ∃Y ∈ {Xi : 1 ≤ i ≤ r + 1} such that Y ⊂ X;

(iii′) for all RK1∪···∪Kk+1 -generator X′ such that ∃Y ∈ {Xi :
1 ≤ i ≤ r + 1}, Y ⊂ X′, we have |R+

Kk+1
∩ X| ≤

|R+
Kk+1

∩ X′|.
This will ends the second induction.
We first show that the top conditions entail the bottom con-
ditions. Suppose X satisfies (i), (ii), (iii) and (iv). Then, X

clearly satisfies (i′). If X ∈ Yr , then ∃Y ∈ {Xi : 1 ≤ i ≤ r}
such that Y ⊂ X. Thus, (ii) entails ∃Y ∈ {Xi : 1 ≤ i ≤ r},
Y ⊂ X or Xr+1 ⊂ X. Thus, X satisfies (ii′).
Suppose by contradiction that X does not satisfy (iii).
Case 1: Yk = ∅ and X does not satisfy (iii′). Then, ∃X′ a
RK1∪···∪Kk+1 -generator such that ∃Y ∈ {Xi : 1 ≤ i ≤ r + 1},
Y ⊂ X′ and |R+

Kk+1
∩ X′| < |R+

Kk+1
∩ X|.

Case 1.1: Xr+1 ⊂ X′. By (iii), we get |R+
Kk+1

∩ X| ≤
|R+

Kk+1
∩ X′|, which is impossible.

Case 1.2: ∃Y ∈ {Xi : 1 ≤ i ≤ r}, Y ⊂ X′. Let Z = {Z : Z is a
RK1∪···∪Kk+1 -generator and ∃Y ∈ {Xi : 1 ≤ i ≤ r}, Y ⊂ Z}.
Clearly, X′ ∈ Z , thus Z �= ∅. Thus, ∃Z such that Z is a
RK1∪···∪Kk+1 -generator and ∃Y ∈ {Xi : 1 ≤ i ≤ r}, Y ⊂ Z

and ∀Z′ ∈ Z , |R+
Kk+1

∩ Z| ≤ |R+
Kk+1

∩ Z′|. But, clearly
Z ∈ Yr , thus Yr �= ∅, which is impossible.
Case 2: Yk �= ∅ and X does not satisfy (iii′). As above, ∃X′ a
RK1∪···∪Kk+1 -generator such that ∃Y ∈ {Xi : 1 ≤ i ≤ r + 1},
Y ⊂ X′ and |R+

Kk+1
∩ X′| < |R+

Kk+1
∩ X|.

Case 2.1: Xr+1 ⊂ X′. As above, we get a contradiction.
Case 2.2: ∃Y ∈ {Xi : 1 ≤ i ≤ r}, Y ⊂ X′. As Yk �= ∅, ∃X′′,
X′′ ∈ Yr . Thus, by (H2), |R+

Kk+1
∩ X′′| ≤ |R+

Kk+1
∩ X′|. But,

by (iv), |R+
Kk+1

∩ X| ≤ |R+
Kk+1

∩ X′′|. Thus, |R+
Kk+1

∩ X| ≤
|R+

Kk+1
∩ X′|, which is impossible.

Now, we show that the bottom conditions entail the top con-
ditions. Suppose that X satisfies (i′), (ii′), and (iii′). Then, X

clearly satisfies (i). By (iii′), X satisfies (iii).
Suppose by contradiction that X does not satisfy (ii). By
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Xr+1 �⊂ X and (ii′), we get ∃Y ∈ {Xi : 1 ≤ i ≤ r} such that
Y ⊂ X. Suppose that X′ is a RK1∪···∪Kk+1 -generator such
that ∃Y ∈ {Xi : 1 ≤ i ≤ r}, Y ⊂ X′. As X satisfies (iii′), we
get |R+

Kk+1
∩ X| ≤ |R+

Kk+1
∩ X′|. Thus, by (H2), X ∈ Yr ,

which is impossible. Thus, X satisfies (ii).
Suppose by contradiction that X does not satisfy (iv). Then,
∃X′ ∈ Yr , |R+

Kk+1
∩ X′| < |R+

Kk+1
∩ X|. By (H2), X′ is a

RK1∪···∪Kk+1 -generator such that ∃Y ∈ {Xi : 1 ≤ i ≤ r + 1},
Y ⊂ X′. Thus, by (iii′) |R+

Kk+1
∩ X| ≤ |R+

Kk+1
∩ X′|, which

is impossible. Thus, X satisfies (iv).
Now that the second induction is shown, we finish the first
one.
Clearly, Xk+1 = Ynk

. Thus, X ∈Xk+1 iff

(i) X is a RK1∪···∪Kk+1 -generator;
(ii) ∃Y ∈Xk such that Y ⊂ X;

(iii) for all RK1∪···∪Kk+1 -generator X′ s.t. ∃Y ∈Xk , Y ⊂ X′,
we have |R+

Kk+1
∩ X| ≤ |R+

Kk+1
∩ X′|. �

Lemma 4 Let k ∈ N, 0 ≤ k ≤ n, let X, Y be two elements
of Xk , S be a preferred answer set, T be an answer set, and
Z be a RK1∪···∪Kk

-generator. Then,

(i) if T agrees with Z, then X ∩ RK1∪···∪Kk
= S ∩

RK1∪···∪Kk
;

(ii) ∀i, 0 ≤ i ≤ k, X ∩ lit (RK1∪···∪Ki
) ∈Xi ;

(iii) ∀i, 0 ≤ i ≤ k, |X ∩ R+
Ki

| = |Y ∩ R+
Ki

|;
(iv) ∀i, 0 ≤ i ≤ n, {a : a ∈ S ∩ RK1∪···∪Ki

} ∪ {¬a : a ∈
RK1∪···∪Ki

\ S} ∈Xi ;
(v) if ∀i, 0 ≤ i ≤ k, |X ∩ R+

Ki
| = |Z ∩ R+

Ki
|, then Z ∈Xk .

Proof Proof of (i). Direction: “⊆”. As X ⊂ lit(RK1∪···∪Kk
),

we have Pos(X) = X ∩ RK1∪···∪Kk
. As S agrees with X,

we have Pos(X) ⊆ S. Thus, X ∩ RK1∪···∪Kk
⊆ S, thus

X ∩ RK1∪···∪Kk
⊆ S ∩ RK1∪···∪Kk

.
Direction: “⊇”. Suppose that S ∩ RK1∪···∪Kk

�⊆ X∩
RK1∪···∪Kk

. Then, let x be an atom such that x ∈ S ∩
RK1∪···∪Kk

and x �∈ X ∩ RK1∪···∪Kk
. As x ∈ RK1∪···∪Kk

, we
have x �∈ X. But, X covers RK1∪···∪Kk

, thus ¬x ∈ X. But, as
S agrees with X, we have x �∈ S, which is impossible.
Proof of (ii) by induction. Clearly, X ∩ lit(RK1∪···∪Kk

) ∈ Xk .
Let r be an integer between 1 and k, and suppose that X ∩
lit(RK1∪···∪Kr ) ∈Xr . By lemma 3, we have ∃Y ∈Xr−1, Y ⊂
X ∩ lit(RK1∪···∪Kr ). We show Y = X ∩ lit(RK1∪···∪Kr−1).
Direction: “⊆”. As Y is a RK1∪···∪Kr−1 -generator, we have
Y ⊂ lit(RK1∪···∪Kr−1), and as Y ⊂ X, we have Y ⊆ X ∩
lit(RK1∪···∪Kr−1).
Direction: “⊇”. Suppose that X ∩ lit(RK1∪···∪Kr−1) �⊆ Y .
Then, let x be a literal such that x ∈ X ∩ lit(RK1∪···∪Kr−1)

and x �∈ Y . As x∈ lit(RK1∪···∪Kr−1) and Y covers RK1∪···∪Kr−1 ,
we have that ¬x ∈ Y , and as Y ⊂ X, we have that ¬x ∈ X.
But, x ∈ X, thus X is inconsistent and thus there is no an-
swer set that agrees with it. But, X is a RK1∪···∪Kk

-generator,
which is impossible. Thus, Y = X ∩ lit(RK1∪···∪Kr−1) and

thus X ∩ lit(RK1∪···∪Kr−1) ∈ Xk−1.
Proof of (iii). Clearly, |X ∩ R+

K0
| = |Y ∩ R+

K0
|. Let r be an

integer between 1 and k, and suppose that |X ∩R+
Kr

| �= |Y ∩
R+

Kr
|. As X ∈ Xk , we get, by (ii), that X ∩ lit (RK1∪···∪Kr ) ∈

Xr . Similarly, Y ∩ lit(RK1∪···∪Kr ) ∈ Xr . To increase read-
ability we will denote by Xr the set X ∩ lit (RK1∪···∪Kr ) and
by Y r the set Y ∩ lit(RK1∪···∪Kr ). Clearly, |X∩R+

Kr
| = |Xr ∩

R+
Kr

|. Similarly, |Y ∩ R+
Kr

| = |Y r ∩ R+
Kr

|. Now, suppose

|Xr ∩ R+
Kr

| < |Y r ∩ R+
Kr

|. As Xr is a RK1∪···∪Kr -generator
such that ∃X′ ∈ Xr−1,X

′ ⊂ X, we get, by Lemma 3, that
Y r �∈ Xr , which is impossible. Similarly, if |Y r ∩ R+

Kr
| <

|Xr ∩ R+
Kr

|, then Xr �∈Xr .
Proof of (iv) by induction. ∀i ∈ N, 0 ≤ i ≤ n, we denote by
Xi the following set: {a : a ∈ S ∩ RK1∪···∪Ki

} ∪ {¬a : a ∈
RK1∪···∪Ki

\ S}. We have that X0 = ∅, thus X0 ∈X0.
Let i be an integer between 0 and n − 1 and suppose that
Xi ∈ Xi . As Xi+1 is a interpretation of RK1∪···∪Ki+1 and
S agrees with Xi+1, we have that Xi+1 is a RK1∪···∪Ki+1 -
generator. In addition, clearly Xi ⊂ Xi+1. Now, suppose that
X′ is a RK1∪···∪Ki+1 -generator such that ∃Y ′ ∈ X i , Y ′ ⊂ X.
We show |Xi+1 ∩ R+

Ki+1
| ≤ |X′ ∩ R+

Ki+1
|, which entails, by

Lemma 3, that Xi+1 ∈ Xi+1.
As X′ is a RK1∪···∪Ki+1 -generator, there is an answer set
S′ such that S′ agrees with X′. Thus, by (i), we have
X′ ∩ RK1∪...∪Ki+1 = S′ ∩ RK1∪···∪Ki+1 . In addition, X′ is a
RK1∪···∪Ki+1 -generator, Y ′ is a RK1∪···∪Ki+1 -generator and
Y ′ ⊂ X, thus, clearly Y ′ = X′ ∩ lit (RK1∪···∪Ki

). Thus,
Y ′ = X′ ∩ lit (RK1∪···∪Ki+1) ∩ lit(RK1∪···∪Ki

), thus Y ′ =
S′ ∩ lit(RK1∪···∪Ki+1) ∩ lit(RK1∪···∪Ki

), thus Y ′ = S′ ∩
lit (RK1∪···∪Ki

). Thus, we have ∀j , 0 ≤ j ≤ i, |Y ′ ∩ R+
Kj

| =
|S′ ∩ R+

Kj
| and clearly Xi ∩ RK1∪···∪Ki

= S ∩ RK1∪···∪Ki
,

thus ∀j , 0 ≤ j ≤ i, |Xi ∩R+
Kj

| = |S ∩R+
Kj

|. But, Xi ∈ X i et

Y ′ ∈ X i , thus, by (iii), we have ∀j , 0 ≤ j ≤ i, |Xi ∩ R+
Kj

| =
|Y ′ ∩ R+

Kj
|. Thus, ∀j , 0 ≤ j ≤ i, |S ∩ R+

Kj
| = |S′ ∩ R+

Kj
|.

In addition, we have that |X′ ∩ R+
Ki+1

| = |S′ ∩ R+
Ki+1

|.
And, clearly |Xi+1 ∩ R+

Ki+1
| = |S ∩ R+

Ki+1
|. Now, suppose

|X′ ∩R+
Ki+1

| < |Xi+1 ∩R+
Ki+1

|. Then, we get |S′ ∩R+
Ki+1

| <
|S ∩ R+

Ki+1
|, thus S′ is preferred to S and thus S is not a

preferred answer set, which is impossible. Thus, |Xi+1 ∩
R+

K1∪···∪Ki+1
| ≤ |X′ ∩ R+

K1∪···∪Ki+1
|, thus Xi+1 ∈ Xi+1.

Proof of (v) by induction. ∀r ∈ N, 0 ≤ r ≤ k, we denote by
Xr the following set: X ∩ lit (RK1∪···∪Kr ) and by Zr the fol-
lowing set: Z ∩ lit (RK1∪···∪Kr ).
Clearly, Z0 ∈ X0.
Let r be an integer between 0 and k − 1. Suppose Zr ∈ Xr .
As Z is a RK1∪···∪Kk

-generator, we have that Zr+1 is a
RKr+1 -generator. In addition, Zr ⊆ Zr+1. Now, suppose
that X′ is a RKr+1 -generator such that ∃Y ′ ∈ Xr , Y

′ ⊂ Z.
We show |Zr+1 ∩ R+

Kr+1
| ≤ |X′ ∩ R+

Kr+1
| which entails, by

Lemma 3, that Zr+1 ∈Xr+1.
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As X ∈ Xk , we get, by (ii), that Xr+1 ∈ Xr+1. Thus,
|Xr+1 ∩ R+

Kr+1
| ≤ |X′ ∩ R+

Kr+1
|. But, |Xr+1 ∩ R+

Kr+1
| =

|X∩R+
Kr+1

| = |Z∩R+
Kr+1

| = |Zr+1 ∩R+
Kr+1

|. Thus, |Zr+1 ∩
R+

Kr+1
| ≤ |X′ ∩ R+

Kr+1
|, which ends the induction. Thus,

Zk = Z ∈Xk . �

Proposition 9 Let R ⊆ K . Then, R is prioritized removed
set of K ∪ A iff R ∈ Rens(PK∪A).

Proof Let R be the set of all (prioritized) removed sets of
K ∪ A. It suffices to show Rens(PK∪A) = R.
Direction: “⊆”. Suppose that I is a preferred RK -generator.
Then, there is a preferred answer set S that agrees with I . We
denote by X the following set: {a : a ∈ S ∩ RK } ∪ {¬a : a ∈
RK \ S}. By Lemme 4 (iv), X ∈ Xn. We show that I = X.
Suppose that L �⊆ X. Then, let x ∈ I such that x �∈ X. As
I ⊂ lit(RK), we have x ∈ lit(RK). But, X covers RK , thus
¬x ∈ X. But, S agrees with I and with X, and one con-
tains x, while the other contains ¬x, which is impossible.
Similarly, if x �∈ I , then we will get a contradiction. Thus,
I ∈ Xn.
Direction: “⊇”. Suppose that X ∈ Xn. Then, X is a RK -
generator, thus there is an answer set S such that S agrees
with X. Suppose that S is not a preferred answer set. Then,
there is an answer set S′ that is preferred to S, thus ∃i,
1 ≤ i ≤ n, |S′ ∩ R+

Ki
| < |S ∩ R+

Ki
| and ∀j , 1 ≤ j < i,

|S ∩ R+
Kj

| = |S′ ∩ R+
Kj

|. Let Y be the following set: {a :
a ∈ S′ ∩ RK } ∪ {¬a : a ∈ RK \ S′}.
∀k, 0 ≤ k ≤ n, we denote by Xk the following set: X∩
lit(RK1∪···∪Kk

) and by Y k the following set: Y∩
lit(RK1∪···∪Kk

). By Lemma 4 (i), we have X∩RK = S∩RK .
Thus,

(i) ∀i, 0 ≤ j ≤ i − 1, |Xi−1 ∩ R+
Kj

| = |S ∩ R+
Kj

|
(ii) |Xi ∩ R+

Ki
| = |S ∩ R+

Ki
|.

In addition, clearly Y ∩ RK = S′ ∩ RK . Thus,

(i′) ∀i, 0 ≤ j ≤ i − 1, |Y i−1 ∩ R+
Kj

| = |S ∩ R+
Kj

|
(ii′) |Y i ∩ R+

Ki
| = |S′ ∩ R+

Ki
|.

Thus, by (i) and (i′), we have ∀j , 0 ≤ j ≤ i − 1, |Xi−1 ∩
R+

Kj
| = |Y i−1 ∩ R+

Kj
|. But, X ∈ Xn thus, by Lemma 4 (ii),

Xi−1 ∈ Xi−1, thus, by Lemma 4 (v), Y i−1 ∈ Xi−1. But, Y i

is a RK1∪···∪Ki
-generator and Y i−1 ⊂ Y i and by (ii) and

(ii′), we have |Y i ∩ R+
Ki

| < |Xi ∩ R+
Ki

|. Thus, by Lemma 3,

we have Xi �∈ Xi . But, Xi = X ∩ lit(RK1∪···∪Ki
), thus, by

Lemma 4 (ii), we have Xi ∈ Xi , which is impossible. Thus,
S is a preferred answer set and thus I is a preferred RK -
generator. Thus, Xn is the set of all preferred RK -generator.
Consequently, by Proposition 8, Rens(PK∪A) = R. �

Appendix B

B.1 Representing RSR as a SAT problem

This section is a summary of the section concerning the SAT
encoding of RSR described in [2].

In order to represent the problem of revising the set of
clauses K by the set of clauses A using RSR as a SAT prob-
lem, we transform the set K as follows.We use the transfor-
mation proposed by De Kleer for ATMS [17]. Each clause c

of K is replaced by the formula φc → c, where φc is a new
variable, called an hypothesis variable. If φc is assigned true
then φc → c is true iff c is true, this enforces c. On contrast
if φc is assigned false then φc → c is true whatever the truth
value of c, the clause c is ignored. Let us denote H(K) the
transformed set. The revision of K by A using RSR corre-
sponds to the satisfiability of the set of clauses H(K) ∪ A.
The models which minimize the number of falsified hypoth-
esis variables φc then corresponds to the removed sets. The
implementation can be performed using a state of the art
SAT solver, like, for example, MINISAT [10].

B.2 The REM algorithm and the associated problem
representation

The following sections are summaries of the corresponding
sections in [38].

Encoding Concerning the REM algorithm, there is no spe-
cial encoding. The algorithm takes as input the two sets of
clauses K and A.

The REM algorithm The computation of removed sets
consists in removing a clause from each element of the col-
lection of minimal inconsistent subsets of K ∪ A without
listing all elements of this collection. This strategy stems
from the notion of hitting sets.

Definition 16 Let F be a collection of sets.

– A hitting set of F is a set H ⊆ ⋃
S∈F S such that ∀S ∈ F ,

H ∩ S �= ∅.
– H is a minimal hitting set of F if and only if H is a hitting

set of F and ∀H ′ ⊂ H with H ′ �= ∅, H ′ is not a hitting
set of F .

N (F ) denotes the collection of minimal hitting sets of F .
In order to compute the removed sets of K ∪A, we compute
the hitting sets of the collection of the inconsistent subsets
of K ∪ A denoted by I(K ∪ A).6 More precisely, since re-
moved sets are subsets of K , we limit the computation to

6For a justification of the choice of I(K ∪A) in place of the collec-
tion of minimal inconsistent subsets, see [38]. Juste note that it doesn’t
change the results.
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those hitting sets containing only clauses of K .We then es-
tablish the correspondence between removed sets and hitting
sets as follows:

Theorem 1 Let R ⊆ K . R is a removed set of K ∪ A if and
only if R is a minimal hitting set of minimal cardinality of the
collection I (K ∪ A) of the inconsistent subsets of K ∪ A.

The algorithm proposed by Reiter [30] and modified by
Grenier, Smith and Wilkerson [36] allows us to compute the
minimal hitting sets of a collection of sets F without the ex-
tensive knowledge of F . This algorithm is based on the con-
struction of a n-ary tree in a width first order (more exactly,
this is a directed acyclic graph). Each node is labeled by an
element of F or by

√
, which means that we have exhausted

the collection F . The tree is built as follows:

Level 0 The root is labeled with an element of F0 ∈ F . If F
is empty, the root is labeled by

√
(in this case the algorithm

stops, there are no minimal hitting sets).
Level 1 Starting from the root, we build as many branches
as there are elements in F0. For each branch labeled by a
f i

0 ∈ F0, we produce a new node. This node is labelled by
an element F i

1 ∈ F such that f i
0 /∈ F i

1 . If there is no such
F i

1 , the new node is labeled by
√

.
Level 2 For each node i in level one, labeled by F i

1 , we
build as many branches as there are elements in F i

1 . Each
branch is labeled by an element of F i

1 . For each branch f i
1 ,

we build a new node labeled by an element F
j

2 ∈ F such

that {f i
0 , f

j

1 } �⊆ F
j

2 . If there is no such F
j

2 , the new node is
labeled by

√
.

We repeat the same process for subsequent levels, until all
branches end up with a node labeled by

√
. More formally:

Definition 17 Let F be a collection of sets, T is an HS-tree
if and only if it is the smallest tree verifying the following
properties:

1. its root is labeled by an element of F . If F is empty, its
root is labeled by

√
;

2. if n is an element of T , let H(n) be the set of the labels
of the branches of the path going from the root of T to n.
If n is labeled by

√
, then it has no successor in T . If n

is labeled by a set F ∈ F , then for each f ∈ F , n has
a successor nf in T , linked with n by a branch labeled
by f . The label of nf is a set F ′ ∈ F such that F ′ ∩
H(nf ) = ∅, if such a set exists, otherwise nf is labeled
by

√
.

Such trees have two fundamental properties:

– if a node n is labeled by
√

, then H(n) is a hitting set
of F ;

– for each minimal hitting set S of F , there exists a node
n ∈ T labeled by

√
such that H(n) = S.

From this properties, Reiter, and after him Grenier, Smith
and Wilkerson added several techniques which allows us to
re-use already computed node labels and to limit the com-
putation to the minimal hitting sets:

1. The tree is generated in a breadth first order. This avoids
the generation of nodes n such that there exists a node n′
at the same level with H(n) = H(n′).

2. Node re-used: if a node n is labeled by a set F ∈ F , and
if n′ is a node such that H(n′)∩F = ∅, then n′ is labeled
by F . With this property, we avoid unnecessary accesses
to F .

3. Tree pruning:
(a) If a node n is labeled by

√
and there exists a node

n′such that H(n) ⊆ H(n′), we then close the node n′
without computing its successors.

(b) If we are ready to generate a node n and there exists
a node n′ such that H(n) = H(n′), then we just link
the branch to the node n′.

(c) if n and n′ are two nodes respectively labeled by F

and F ′ and such that F ′ ⊂ F , then, for each f ∈ F \
F ′, delete the branches starting from F and labeled
by f , until a node having more than one ancestor is
reached.

In our case, we want to generate minimal hitting sets of
I(K ∪ A). The HS-tree algorithm presented above needs a
procedure which can generate on demand an element of this
collection. For this purpose, we use a modified version of
the Davis and Putnam procedure.
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