
A.Avron
J.Ben-Naim

B. Konikowska

Processing Information
from a Set of Sources

Abstract. We introduce a general framework for solving the problem of a computer

collecting and combining information from various sources. Unlike previous approaches

to this problem, in our framework the sources are allowed to provide information about

complex formulae too. This is enabled by the use of a new tool — non-deterministic

logical matrices. We also consider several alternative plausible assumptions concerning

the framework. These assumptions lead to various logics. We provide strongly sound and

complete proof systems for all the basic logics induced in this way.

Keywords: Information processing, multiple sources, non-deterministic matrices, non-

classical logics, paraconsistency

1. Introduction

The idea considered in this paper has originated from Belnap, whose fa-
mous four-valued logic [7, 6] 1 stemmed from considering the problem of a
computer collecting and combining information from various sources. Later
Belnap’s approach was extended by Carnielli and Lima-Marques in their so-
ciety semantics [8] to consider various information collecting and processing
strategies applied by the computer (or some other agent). However, both
works considered just the simple case of sources providing information only
about atomic formulas of some logical language (which corresponds to the
case of simple relational databases). Unfortunately, this does not capture
all the situations encountered in practice, for e.g. knowledge bases and dis-
junctive databases can also provide information about complex formulas.
Accordingly, in this paper we extend the previous approaches in an essential
way by allowing the sources to provide information about complex formulae
too. This is enabled by the use of a new tool — non-deterministic logical
matrices (Nmatrices — see [3, 4, 2]), which is necessary in view of the fact
that ordinary logical matrices are unable to capture the above general case.

The structure of the paper is as follows. In Section 2 we describe our
general framework for processing information coming from different sources,
as well as several various plausible assumptions concerning it, leading to
important special cases. In Section 3 we investigate the four basic logics

1Actually, this logic should be called Dunn-Belnap logic, since it was originally intro-
duced by Dunn [15].

Studia Logica 0: 1–??, 2007.
c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

2 A. Avron, J. Ben-Naim, and B. Konikowska

obtained by adopting the simplest such assumption, according to which a
processor accepts any proposition declared true by one of its sources (even if
this leads to contradictions). Two of these logics (Dunn-Belnap logic and the
basic paraconsistent 3-valued logic) are well-known. The two others are new.
Section 4 shortly investigates an alternative strategy, in which a processor
initially accepts a proposition only if all its sources declare it to be true. This
strategy also leads to a famous logic: Kleene’s 3-valued logic. In Section 5
we introduce calculi of sequents for all these logics, and prove their strong
soundness and completeness, as well as a strong version of the admissibility
of the cut rule in them. Finally, in Section 6 we outline directions for future
research. 2

2. The framework

2.1. Informal description

Assume we have a framework for information collecting and processing,
which consists of a set of information sources S and a processor P . The
sources provide information about formulas of the classical propositional
logic LC (which we take here to be based on the connectives {¬,∨,∧}). We
assume that for each such formula ϕ, a source s ∈ S can say that ϕ is true,
that ϕ is false, or that it has no knowledge about ϕ. Thus, every source de-
fines some (possibly partial) valuation (using the two classical truth-values).
In turn, the processor collects information from the sources, combines it ac-
cording to some strategy, processes the result and finally defines its resulting
combined valuation (denoted in the sequel by d) of formulas in LC .

Clearly, for any formula ϕ ∈ LC , the processor can encounter at the
collecting stage four possible situations concerning the information it gets
from the sources:

• It has information that ϕ is true but no information that ϕ is false

• It has information that ϕ is false but no information that ϕ is true

• It has both information that ϕ is true and information that ϕ is false

• It has no information on ϕ at all

2The first short description of our framework was given in [5]. In that paper, the basic
proof system used here was derived using some general method, yielding a roundabout
proof of a rather weak form of the soundness and completeness theorem for that system.

Processing Information from a Set of Sources 3

In view of the above, a natural logical domain for the considered framework
features four logical values corresponding to the four cases above, which are
usually denoted3 by

t = {1}, f = {0}, > = {0, 1}, ⊥ = ∅,

Here 1 and 0 represent the classical logical values of true and false (re-
spectively), and so > represents inconsistent information, while ⊥ denotes
absence of information. Among these four truth values, we take as desig-
nated t and > — the truth values whose assignment to a formula ϕ means
that the processor has information that ϕ is true (even though it might also
have information that ϕ is false). This represents the so-called weak seman-
tics. Another possible option could have been to consider strong semantics,
whereby the only designated value is t, which means ϕ is deemed satisfied if
the processor has information that ϕ is true, but has no information that ϕ
is false. However, the consequence relation induced by the strong semantics
can be simulated by the weaker one employed here (see Subsection 2.4).

2.2. Variants of the model

The general model introduced above has many variants, corresponding to
various assumptions on the kind of information provided by the sources
and the strategy used by the processor to combine it. Within this general
framework, we can classify the resulting system under four kinds of criteria:

1. Behavior of each source.

2. Behavior of the whole set of information sources.

3. Procedure for collecting information from the sources.

4. Procedure for processing the collected information.

Exemplary basic assumptions concerning them are listed below.

2.2.1. Behavior of each source

i) Scope of information provided by a source:

(a) It provides information about all propositions (complete knowl-
edge), i.e., assigns either 0 or 1 to each formula.

3Especially in the literature on bilattices. See e.g. [11, 10].

4 A. Avron, J. Ben-Naim, and B. Konikowska

(b) It provides information about some propositions only (partial
knowledge), i.e., assigns either 0 or 1 to some formulas only (with
no particular logical restrictions).

(c) It provides information only about (some/all) atomic propositions
(partial/complete atomic knowledge).

ii) Logical characteristics of a source:
The assignment of values by a source can be restricted by certain logical
constraints. For example, we could demand that:

(a) For any formulas A,B such that A ∼ B (where ∼ denotes clas-
sical equivalence), each source should assign the same value to
A and B. Instead of classical equivalence, other types of logical
equivalence, more plausible from the implementation viewpoint,
can also be considered here.

(b) The sources should be classically coherent: i.e., the partial valu-
ation provided by each of the sources should be extendable to a
full classical valuation.

(c) The sources should be classically closed, meaning that if ϕ clas-
sically follows from Γ, then any source which assigns 1 to all
formulas in Γ should assign 1 to ϕ too, and that 1 (0) is assigned
to ¬ϕ iff 0 (1) is assigned to ϕ.

2.2.2. Behavior of the whole set of information sources

We may assume that, e.g.:

1. For each atomic proposition F , there is at least one source which pro-
vides information about F .

2. For an arbitrary proposition F , there is at least one source which
provides information about F .

2.2.3. Procedure for collecting information from the sources

The processor can use various strategies in combining information from the
sources. Thus it can accept a formula ψ as true (false) whenever:

Existential strategy: At least one source assigns ψ the value 1 (0). Note
that in this case there is a possibility of assigning both 1 and 0 to the
same formula. In such a case, the processor uses the truth value >,
which has no counterpart among those used by the sources.

Processing Information from a Set of Sources 5

Universal strategy: All the sources assign ψ the value 1 (0). Note that
in this case the processor might assign no value to a formula even if
its sources are of the “know all” type; then the processor might use ⊥
even if the sources do not (implicitly) use that value.

Unanimous voting strategy: Some sources assign ψ the value 1 (0), and
no source assigns 0 (1). This amounts to the universal policy, but with
“all sources” applies only to the sources which give a definite answer.

Preferred sources strategies: Each of the three preceding strategies can
be applied using a preferred set of sources (determined by ψ) rather
than the whole set of sources.

2.2.4. Procedure for information processing

After collecting the direct information from the sources, the processor pro-
cesses that information to define its own valuation d of formulas in LC . We
assume that during that stage the processor derives from the above direct in-
formation at least the most basic implicit information dictated by the truth
tables of classical logic applied (wherever possible) in both directions. By
this we mean that if a truth-value a assigned by the processor to some for-
mula ϕ is possible according to some truth table of classical logic only if
another (single) formula ψ is assigned the value b, then the processor as-
signs b to ψ. For example: if ϕ is assigned 1 then ϕ ∨ ψ is also assigned 1,
while if ϕ ∨ ψ is assigned 0 then both ϕ and ψ are assigned 0. This might
again lead to 0 and 1 being both assigned to the same formula. A stronger
possible assumption (not investigated here) on the processor’s procedure for
information processing is that it fully respects everything dictated by the
truth tables of classical logic. For example: If ψ is assigned 0, and ϕ ∨ ψ is
assigned 1, then ϕ is assigned 1.

2.3. Formal definitions

The source-processor framework is formalized as follows: 4

Definition 2.1. Let A and F be the set of all atomic formulas and the set of
all formulas of the language LC of propositional classical logic, respectively.

• By a source valuation we mean a partial function s : F → {0, 1}.

• By a processor valuation we mean a function v : F → P({0, 1}).

4This section has benefited from discussions with David Makinson.

6 A. Avron, J. Ben-Naim, and B. Konikowska

• By a source-processor structure we mean a tuple S = 〈S, g, d〉, where
S is a non-empty set of source valuations, g is an arbitrary proces-
sor valuation, and d is a processor valuation satisfying the following
conditions:

(d0) g(ϕ) ⊆ d(ϕ) for every formula ϕ;

(d1) 0 ∈ d(¬ϕ) iff 1 ∈ d(ϕ);

(d2) 1 ∈ d(¬ϕ) iff 0 ∈ d(ϕ);

(d3) 1 ∈ d(ϕ ∨ ψ) if 1 ∈ d(ϕ) or 1 ∈ d(ψ);

(d4) 0 ∈ d(ϕ ∨ ψ) iff 0 ∈ d(ϕ) and 0 ∈ d(ψ);

(d5) 1 ∈ d(ϕ ∧ ψ) iff 1 ∈ d(ϕ) and 1 ∈ d(ψ);

(d6) 0 ∈ d(ϕ ∧ ψ) if 0 ∈ d(ϕ) or 0 ∈ d(ψ).

(d1)–(d6) are called the standard integrity conditions for LC .

Note 2.1. (d1)–(d6) are the rules which correspond to our above minimal
assumption concerning the processor’s procedure for information processing.
Note that the converses of (d3) and (d6) do not hold, because if the sources
might provide information about complex formulas, the processor might e.g.
be informed that ϕ∨ψ is true without being told that either ϕ or ψ is true.

Definition 2.2. A source-processor structure 〈S, g, d〉 for LC is called stan-
dard, if d is the minimal processor valuation satisfying conditions (d0)–(d6).

Each source-processor structure S = 〈S, g, d〉 can be seen as a represen-
tation of an instance I of the source-processor framework defined informally
in Subsection 2.1, with the two being related as follows:

• S is the set of source valuations defined by the sources present in the
instance I, where, for each s ∈ S, s(ϕ) = 1 iff ϕ is true according to
source s, and s(ϕ) = 0 iff ϕ is false according to source s;

• g represents the global information collected by the processor directly
from the sources, i.e., 1 ∈ g(ϕ) (resp. 0 ∈ g(ϕ)) iff, after information
collecting, ϕ is accepted by the processor as true (resp. false);

• d represents the information derived by the processor from g during
the information processing stage, i.e., 1 ∈ d(ϕ) (resp. 0 ∈ d(ϕ)) iff,
after processing the global information in g, the processor concludes
that ϕ is true (resp. false).

Processing Information from a Set of Sources 7

From the viewpoint of the information collecting strategy, in this paper
we consider the following two basic types of source-processor structures:

Definition 2.3. A source-processor structure S = 〈S, g, d〉 is called:

• existential, iff for any ϕ ∈ F ,

1 ∈ g(ϕ) iff ∃ s ∈ S.s(ϕ) = 1 and 0 ∈ g(ϕ) iff ∃ s ∈ S.s(ϕ) = 0

• universal iff for any ϕ ∈ F ,

1 ∈ g(ϕ) iff ∀ s ∈ S.s(ϕ) = 1 and 0 ∈ g(ϕ) iff ∀ s ∈ S.s(ϕ) = 0

Next we turn to the logics induced by source-processor structures. Each
such structure S = 〈S, g, d〉 naturally generates a satisfaction relation on the
formulas in F (determined by the final processor valuation d):

Definition 2.4. Let S = 〈S, g, d〉 be a source-processor structure. S satis-
fies (is a model of) a formula ϕ ∈ F , in symbols |=S ϕ, iff 1 ∈ d(ϕ).

Accordingly, each source-processor structure or, more generally, a class of
source-processor structures, induces the corresponding consequence relation:

Definition 2.5. Let J be a class of source-processor structures. The con-
sequence relation induced by J is the relation `J on P(F) × F such that
T `J ϕ if every S ∈ J which is a model of T is also a model of ϕ.

2.4. The need for using sequents

In the context of source-processor structures, the expressive power of for-
mulas of LC is too weak. Thus there is no way to express that a certain
formula ϕ is not true (meaning that 1 6∈ d(ϕ)). In the classical framework
this is expressed by ¬ϕ, but in the present context the truth of ¬ϕ means
only that 0 ∈ d(ϕ), and this neither implies nor is implied by 1 6∈ d(ϕ).
Similarly, there is no way to express disjunctive knowledge of the form “one
of the sentences ϕ and ψ is known to be true” (meaning that either 1 ∈ d(ϕ)
or 1 ∈ d(ψ)), because it is possible that 1 ∈ d(ϕ ∨ ψ) but neither 1 ∈ d(ϕ)
nor 1 ∈ d(ψ).

These problems can be overcome by using Gentzen-type sequents both
for expressing knowledge and for reasoning about it. The idea is that given
a source-processor structure 〈S, g, d〉, a sequent ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk

expresses the information that either 1 6∈ d(ϕ1), or 1 6∈ d(ϕ2), or . . . or
1 6∈ d(ϕn), or 1 ∈ d(ψ1), or . . . or 1 ∈ d(ψk). The notions of model and
satisfaction, and the corresponding consequence relations are then extended
to the language of sequents in a straightforward way:

8 A. Avron, J. Ben-Naim, and B. Konikowska

Definition 2.6.

• A sequent is a structure of the form Γ ⇒ ∆, where Γ and ∆ are finite
sets of formulas. We denote by Seq the set of all sequents in the
language LC .

• Let S = 〈S, g, d〉 be a source-processor structure. S satisfies (is a model
of) a sequent Σ = Γ ⇒ ∆, in symbols |=S Σ, iff either S is a model of
some formula in ∆, or it is not a model of some formula in Γ.

• Let J be a class of source-processor structures. The sequent conse-
quence relation induced by J is the relation `J on P(Seq)× Seq s.t.
Q `J Σ if every S ∈ J which is a model of Q is also a model of Σ.

Note 2.2. It can easily be seen that if Γ is a finite subset of F , and ϕ is
a formula in F , then Γ `J ϕ iff `J Γ ⇒ ϕ iff {⇒ ψ | ψ ∈ Γ} `J⇒ ϕ.
Hence the sequent consequence relation `J can be seen as an extension of
the formula consequence relation `J defined above (Definition 2.5). This
justifies the use of the same symbol to denote both.

Note 2.3. Given a source-processor structure 〈S, g, d〉 and a formula ϕ,
every known basic fact about d(ϕ) can be expressed by sequents as follows:

• 1 ∈ d(ϕ) iff |=S⇒ ϕ

• 1 6∈ d(ϕ) iff |=S ϕ⇒

• 0 ∈ d(ϕ) iff |=S⇒ ¬ϕ

• 0 6∈ d(ϕ) iff |=S ¬ϕ⇒

One corrolary of this fact is that, given a class of source-processor structures
J , a formula ϕ follows from a set T of formulas according to the strong
semantics (see Subsection 2.1) iff both G(T) `J⇒ ϕ and G(T) `J ¬ϕ ⇒,
where G(T) = {⇒ ψ | ψ ∈ T} ∪ {¬ψ ⇒| ψ ∈ T}. Hence the consequence
relation induced by the strong semantics can be simulated by the weak one
investigated in this paper.

3. Existential strategy for standard structures

In this section we assume that the existential strategy is adopted, and in-
vestigate under this assumption certain basic variants of standard source-
processor structures for LC (shortly referred to as “standard structures”).
We shall consider the following four basic scenarios — the first two corre-
sponding to well-known logics, and the other two new.

Processing Information from a Set of Sources 9

I Dunn-Belnap’s logic: the sources provide information about atomic
formulas only, but not necessarily about all of them;

II D’Ottaviano and da Costa’s basic paraconsistent logic: Like
the preceding case, but the sources taken together are required to
provide some information about all atomic formulas.

III The most general source-processor logic: The sources provide
information about arbitrary formulas, both atomic and composed ones,
but not necessarily about all of them.

IV General source-processor logic with complete information: As
the preceding case, but the sources taken together are required to
provide some information about all atomic formulas.

To handle the new logics arising out of the last two cases we need the notion
of non-deterministic matrices (shortly: Nmatrices) introduced in [3, 4]:

Definition 3.1.

1. A non-deterministic matrix (Nmatrix for short) for a propositional
language L is a tuple M = 〈V,D,O〉, where:

(a) V is a non-empty set of truth values.

(b) D is a non-empty proper subset of V.

(c) For every n-ary connective � of L, O includes a corresponding
n-ary function �̃ from Vn to 2V − {∅}.

2. Let W be the set of formulas of L. A (legal) valuation in an Nmatrix
M is a function v : W → V that satisfies the following condition for
every n-ary connective � of L and ψ1, . . . , ψn ∈ L:

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))

3. A valuation v in an Nmatrix M is:

• a model of (satisfies) a formula ψ in M (v |=M ψ) if v(ψ) ∈ D.

• a model of a set T ⊆ F in M (v |=M T) if v |=M ψ for all ψ ∈ T .

• a model of a sequent Σ = Γ ⇒ ∆ (v |=M Σ) iff either v |=M ψ
for some ψ ∈ ∆, or v 6|=M ψ for some ψ ∈ Γ.

10 A. Avron, J. Ben-Naim, and B. Konikowska

4. The formula consequence relation induced by the Nmatrix M (denoted
by `M) is defined by: T `M ϕ if every model of T in M is also a model
of ϕ. The corresponding sequent consequence relation induced by M
(also denoted by `M) is defined similarly (compare Definition 2.6).

Note 3.4. Again, we have (see Note 2.2) that for every Nmatrix M, every
finite subset Γ ⊆ W, and every formula ϕ ∈ W, Γ `M ϕ iff `M Γ ⇒ ϕ iff
{⇒ ψ | ψ ∈ Γ} `M⇒ ϕ.

Note 3.5. An ordinary (deterministic) multiple-valued matrix can be seen as
a special case of an Nmatrix, in which the interpretations of the connectives
always return singletons.

3.1. Dunn-Belnap’s logic

The first case we examine is when the sources provide (possibly incomplete)
information about atomic formulas only, and the processor uses the existen-
tial strategy to combine the direct information from the sources and obtain
the global information g. We shall show that the logic induced by this class of
structures coincides with Dunn-Belnap’s four-valued logic ([15, 7, 6]). This
logic is induced by the following four-valued matrix M4

B = 〈V,D,O〉, where
V = {f,⊥,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}, and the interpretations of the
connectives are given by the following tables:

∨̃ f ⊥ > t
f f ⊥ > t
⊥ ⊥ ⊥ t t
> > t > t
t t t t t

∧̃ f ⊥ > t
f f f f f
⊥ f ⊥ f ⊥
> f f > >
t f ⊥ > t

¬̃ f ⊥ > t
t ⊥ > f

Recalling what f,⊥,>, t stand for, these tables are best understood using
the following well-known equivalent representation of M4

B:

Definition 3.2. Let v0 : A → P({0, 1}).

• The Belnap extension of v0 is the function v : F → P({0, 1}) defined
inductively as follows:

(b0) v(p) = v0(p) for p ∈ A;

(b1) If 1 ∈ v(ϕ), then 0 ∈ v(¬ϕ);

Processing Information from a Set of Sources 11

(b2) If 0 ∈ v(ϕ), then 1 ∈ v(¬ϕ);

(b3) If 1 ∈ v(ϕ) or 1 ∈ v(ψ), then 1 ∈ v(ϕ ∨ ψ);

(b4) If 0 ∈ v(ϕ) and 0 ∈ v(ψ), then 0 ∈ v(ϕ ∨ ψ);

(b5) If 1 ∈ v(ϕ) and 1 ∈ v(ψ), then 1 ∈ v(ϕ ∧ ψ);

(b6) If 0 ∈ v(ϕ) or 0 ∈ v(ψ), then 0 ∈ v(ϕ ∧ ψ).

• A Belnap valuation is a function v : F → P({0, 1}) being a Belnap
extension of some valuation v0 : A → P({0, 1}). The set of all Belnap
valuations will be denoted by V(M4

B).

• A Belnap model of Γ ⊆ F is any v ∈ V(M4
B) such that ∀ϕ ∈ Γ.1 ∈ v(ϕ)

(note this is equivalent to taking t and > as the designated values).

• The Belnap formula consequence relation and the Belnap sequent con-
sequence relation (both denoted in the sequel by `M4

B
) are defined

from the notion of a Belnap model in the usual way (see definitions
2.5, 2.6, and the end of Definition 3.1. Since ordinary matrices are a
special type of Nmatrices, `M4

B
is actually an instance of the latter).

Lemma 3.6. Each Belnap valuation satisfies the converses of (b1)–(b6).

Proof. In the inductive process of extending v0 : A → P({0, 1}) to a
Belnap valuation v, the inclusion of 0 or 1 in the value of a composed formula
can be due to exactly one of the rules (b1)–(b6). Hence the result.

Definition 3.3. Let EA denote the class of standard source-processor struc-
tures S = 〈S, g, d〉, where each s ∈ S is undefined outside A (i.e., the sources
provide information about atomic formulas only), and the processor uses the
existential strategy to obtain g out of the valuations in S.

Lemma 3.7. We have the following correspondence between M4
B and EA:

(1) ∀v ∈ V(M4
B) ∃S ∈ EA ∃S ∃g.S = 〈S, g, v〉

(2) ∀S ∈ EA ∀S ∀g ∀d.S = 〈S, g, d〉 → d ∈ V(M4
B)

Proof. Ad (1): Define S = 〈Sv, gv, v〉, where Sv = {s0v, s1v}, and for ϕ ∈ F :

(i) si
v(ϕ) = i if ϕ ∈ A and i ∈ v(ϕ), undefined otherwise

(ii) gv(ϕ) = v(ϕ) if ϕ ∈ A, ∅ otherwise.

12 A. Avron, J. Ben-Naim, and B. Konikowska

Since v ∈ V(M4
B), by (ii), v is the minimal extension of gv which satisfies

(b1)-(b6). Lemma 3.6 implies that it is also the minimal extension of gv

which satisfies (d1)-(d6). Hence S is a standard structure. It is easy to see
that i ∈ gv(ϕ) ⇔ ∃s ∈ S.i = s(ϕ) (for ϕ ∈ A and i ∈ {0, 1}). Since gv(ϕ) is
nonempty only for ϕ ∈ A, this implies that S is existential. Hence S ∈ EA.

Ad (2): Assume S = 〈S, g, d〉 ∈ EA. Since s(ϕ) is undefined for ϕ 6∈ A,
also g(ϕ) = ∅ for ϕ 6∈ A. Accordingly, g can be viewed as a function from
A to P({0, 1}). As S is a standard structure, d is the minimal processor
valuation which satisfies conditions (d0)–(d6). Let v be the Belnap extension
of g. Then v(p) = g(p) for p ∈ A, which in view of g(ϕ) = ∅ for ϕ 6∈ A
implies that g(ϕ) ⊆ v(ϕ) for every ϕ ∈ F . This and Lemma 3.6 imply that
v satisfies conditions (d0)–(d6). Hence by the minimality of d we must have
d ⊆ v. However, since d(p) = v(p) for atomic p, and d satisfies conditions
(b1)–(b6), the converse implication must also hold by definition 3.2. Thus
d = v, and d is a Belnap valuation.

Proposition 3.8. `EA=`M4
B
.

Proof. This is immediate from Lemma 3.7.

3.2. D’Ottaviano and da Costa’s basic paraconsistent logic

Case II refers to the situation when the sources provide complete information
about atomic formulas, and no information about complex ones. Since we
assume here the existential strategy, this implies that g(p) 6= ⊥ for every
atomic formula p. By induction on the complexity of formulas (using (d1)–
(d6)), one can show that d(ϕ) 6= ⊥ for every formula. Accordingly, the
difference between this case and the previous one is that this time we have to
do with just the three logical values f,>, t. Therefore, this case is represented
by the ordinary three-valued submatrix M3

B = 〈V,D,O〉 of M4
B, with V =

{f,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}, and the deterministic interpretations of
the connectives given by:

∨̃ f > t
f f > t
> > > t
t t t t

∧̃ f > t
f f f f
> f > >
t f > t

¬̃ f > t
t > f

This matrix corresponds to the {¬,∨,∧}-fragment of D’Ottaviano and da
Costa’s logic J3 ([12, 13, 1, 14]).

Processing Information from a Set of Sources 13

Proposition 3.9. Let ECA denote the class of standard source-processor
structures S = 〈S, g, d〉, where each s ∈ S is undefined outside A, the
processor uses the existential strategy to obtain g out of the valuations in
S, and g(ϕ) 6= ⊥ for every ϕ ∈ A (i.e., the sources taken together provide
information about all atomic formulae). Then `ECA=`M3

B
.

The proof is similar to that of Proposition 3.8, so we omit it.

3.3. The most general source-processor logic

Now we shall discuss the most general case (III), when the sources can
provide information about arbitrary formulas, including the complex ones,
but that information may not cover all formulas, i.e. it may be incomplete.
It is easy to see that in this case the conditions (d1)–(d6) from Subsection
2.3, obeyed by the processor in assigning values to formulas, imply that
the presented setup can be described by the four-valued Nmatrix M4

I =
〈V,D,O〉, where V = {f,⊥,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}, and the non-
deterministic interpretations of the connectives are given by the following
tables:

∨̃ f ⊥ > t
f {f,>} {t,⊥} {>} {t}
⊥ {t,⊥} {t,⊥} {t} {t}
> {>} {t} {>} {t}
t {t} {t} {t} {t}

∧̃ f ⊥ > t
f {f} {f} {f} {f}
⊥ {f} {f,⊥} {f} {f,⊥}
> {f} {f} {>} {>}
t {f} {f,⊥} {>} {t,>}

¬̃ f ⊥ > t
t ⊥ > f

Intuitively, any legal valuation of M4
I represents possible information about

values of formulas in a standard source-processor structure. To better un-
derstand this, let examine the rather surprising entry in the table for ∨̃
saying that ⊥∨̃⊥ = {t,⊥}. Suppose that in a source-processor structure
S = 〈S, g, d〉 we have d(ϕ) = d(ψ) = ⊥. Then 0 6∈ d(ϕ) and 0 6∈ d(ψ), so by
(d4) 0 6∈ d(ϕ∨ψ). Hence two cases are possible. If also 1 6∈ d(ϕ∨ψ) (which
is what one might expect in case 1 6∈ d(ϕ) and 1 6∈ d(ψ)), then d(ϕ∨ψ) = ⊥.
If 1 ∈ d(ϕ ∨ ψ) (e.g. because there is a source s such that s(ϕ ∨ ψ) = 1, in
which case 1 ∈ g(ϕ∨ψ) in view of the existential globalisation strategy used
by the processor), then d(ϕ∨ψ) = t. This justifies the two options included
in this table entry; some other entries are explained in [5].

14 A. Avron, J. Ben-Naim, and B. Konikowska

Proposition 3.10. Let E denote the class of standard source-processor
structures where the processor uses the existential strategy. Then `E=`M4

I
.

Proof. Let V(M4
I) be the set of legal valuations of M4

I . Obviously, v is in
V(M4

I) iff it satisfies conditions (d1)-(d6). It follows that

(1) ∀S ∈ E ∀S ∀g ∀d. S = 〈S, g, d〉 → d ∈ V(M4
I)

Now assume that v ∈ V(M4
I). For i = 0, 1 and for every ϕ ∈ F , let si

v(ϕ) = i
if i ∈ v(ϕ), and undefined otherwise. It is easy to see that S = 〈{s0v, s1v}, v, v〉
is an element of E . Hence:

(2) ∀v ∈ V(M4
I) ∃S ∈ E ∃S ∃g.S = 〈S, g, v〉

The theorem is now immediate from (1) and (2).

3.4. General source-processor logic with complete information

The last case is when the sources provide complete information about all
atomic formulas (but they may provide information, not necessarily complete
one, about other formulas too). Thus for any atomic formula p of LC ,
some source in S must say either that p is true or that p is false. Like in
Subsection 3.2, one can easily prove by induction that under this condition
no formula is given the value ⊥. Thus in this case too only three truth-
values are employed. However, this time the scenario gives rise to a logic
based on a three-valued Nmatrix. This is the Nmatrix M3

I = 〈V,D,O〉,
where V = {f,>, t},D = {>, t},O = {¬̃, ∨̃, ∧̃}, and the non-deterministic
interpretations of the connectives are given by:

¬̃ f > t
t > f

∨̃ f > t
f {f,>} {>} {t}
> {>} {>} {t}
t {t} {t} {t}

∧̃ f > t
f {f} {f} {f}
> {f} {>} {>}
t {f} {>} {t,>}

We leave the proof of the following easy proposition to the reader:

Proposition 3.11. Let EC denote the class of standard source-processor
structures where the sources taken together provide some information about
every atomic formula, and the processor uses the existential strategy. Then
`EC=`M3

I
.

Processing Information from a Set of Sources 15

4. The universal strategy

In this section we discuss in brief the case in which the processor applies the
universal strategy in collecting information from the sources. Note first that
if there are at least two sources then g(ϕ) may be ⊥ in this case, even if all the
sources are of the “know all” type (because the processor will assign neither
0 nor 1 to a formula ϕ which is assigned different values by two sources). On
the other hand, it is obvious that with the universal strategy g(ϕ) 6= > for
every formula ϕ. Without further integrity constraints, this is not necessarily
true for the standard extension d of g. One such plausible constraint is that
the sources should all be classically coherent (see Subsection 2.2.1). Another
is again that the sources provide information about atomic formulae only.
It is easy to see that the resulting logic in the latter case is that induced by
the famous 3-valued matrix M3

K of Kleene:

∨̃ f ⊥ t
f f ⊥ t
⊥ ⊥ ⊥ t
t t t t

∧̃ f ⊥ t
f f f f
⊥ f ⊥ ⊥
t f ⊥ t

¬̃ f ⊥ t
t ⊥ f

Proposition 4.12. Let AA be the class of standard source-processor struc-
tures S = 〈S, g, d〉, where each s ∈ S is undefined outside A and the proces-
sor uses the universal strategy to obtain g out of the valuations in S. Then
`AA=`M3

K
.

Proof. Similar to the proof of Proposition 3.8.

5. Proof systems for the existential strategy

Now we will proceed to develop proof systems for the four logics discussed in
the preceding section. As we explained in Subsection 2.4, to compensate for
the weakness of the language, the systems we will provide will be strongly
sound and complete sequent calculi.

5.1. The most general source-processor logic

We begin with the proof system for the most general case, from which we
will later derive the proof systems for the remaining cases.

Definition 5.1. Let C4
I be the sequent calculus defined as follows:

16 A. Avron, J. Ben-Naim, and B. Konikowska

Axioms: ϕ⇒ ϕ

Structural inference rules : Weakening, Cut.

Logical inference rules:

(¬¬ ⇒)
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆
(⇒ ¬¬)

Γ ⇒ ∆, ϕ
Γ ⇒ ∆,¬¬ϕ

(⇒ ∨)
Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ

(¬∨ ⇒)
Γ,¬ϕ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆
(⇒ ¬∨)

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(ϕ ∨ ψ)

(∧ ⇒)
Γ, ϕ, ψ ⇒ ∆,
Γ, ϕ ∧ ψ ⇒ ∆

(⇒ ∧)
Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

(⇒ ¬∧)
Γ ⇒ ∆,¬ϕ,¬ψ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

Definition 5.2. Let C4
I be the calculus obtained from C4

I by limiting the
applications of the cut rule to formulas occurring in the premises of sequent
derivations. In other words: If S = {Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n} then S `C4

I
Σ

if there is a proof of Σ from S in C4
I in which all cuts are on formulas from⋃n

i=1(Γi ∪∆i) (in particular: `C4
I

Σ iff Σ has a cut-free proof in C4
I).

Theorem 5.13. The calculus C4
I is finitely strongly sound and complete for

`M4
I
, i.e., for any finite set of sequents S ⊆ Seq and any sequent Σ ∈ Seq,

S `M4
I

Σ iff S `C4
I

Σ.

Proof. For simplicity, in what follows we drop the decorations on |=.
It is easy to see that C4

I is strongly sound for `M4
I

(i.e. if S `C4
I

Σ then
S `M4

I
Σ). Hence it suffices to prove the strong completeness of C4

I for finite
premise sets.

We argue by contradiction. Suppose that for a finite set of sequents S
and a sequent Σ0 = Γ ⇒ ∆ we have S `M4

I
Σ0, but Σ0 is not derivable

from S in C4
I . We shall construct a counter-valuation v such that v |= S but

v 6|= Σ0.
Denote by F (S) the set of all formulae belonging to at least one of the

sides in some sequent in S. Then F (S) is finite; assume it has l elements. Let

Processing Information from a Set of Sources 17

ϕ1, ϕ2, . . . , ϕl be an enumeration of formulae in F (S). We shall now define a
sequence of sequents Γn ⇒ ∆n, n = 0, 1, . . . , l, such that, for n = 0, 1, . . . , l:

(i) Γ ⊆ Γn, ∆ ⊆ ∆n

(ii) If n 6= 0 then ϕn ∈ (Γn ∪∆n).

(iii) Γn ⇒ ∆n is not derivable from S in C4
I .

The above sequences are defined inductively as follows:

• We put Γ0 = Γ,∆0 = ∆. As by our assumption Γ ⇒ ∆ is not derivable
from S in C4

I , (i)–(iii) above are satisfied for n = 0.

• Suppose n ≤ l−1 and we have defined the sequents Γi ⇒ ∆i satisfying
conditions (i)–(iii) for i ≤ n. Then the sequents Σ1 = Γn ⇒ ∆n, ϕn+1

and Σ2 = ϕn+1,Γn ⇒ ∆n cannot be both derivable from S in C4
I , since

then Γn ⇒ ∆n would be derivable from them by an allowed cut on
the formula ϕn+1 ∈ S. We take Γn+1 ⇒ ∆n+1 to be Σ1, if Σ1 is not
derivable, and Σ2 otherwise. Then, obviously, from the inductive as-
sumption it follows that the sequence Γn+1 ⇒ ∆n+1 satisfies conditions
(i)–(iii).

By induction, the whole sequence Γn ⇒ ∆n, n = 0, 1, . . . , l, satisfies the
desired conditions (i)–(iii). What is more, from the inductive construction
we can see that Γn ⊆ Γn+1,∆n ⊆ ∆n+1 for n = 1, 2, . . . , l − 1.

Let Γ∗ ⇒ ∆∗ be the extension of Γl ⇒ ∆l to a saturated sequent, i.e.,
a minimal sequent containing Γl ⇒ ∆l and closed under the logical rules in
C4

I applied backwards. Then we can easily see that:

(i) Γ ⊆ Γ∗,∆ ⊆ ∆∗;

(ii) F (S) ⊆ Γ∗ ∪∆∗;

(iii) Γ∗ ⇒ ∆∗ is saturated and it is not derivable from S in C4
I .

Now we define the valuation v as follows:

• For any atomic p:

(v0) 1 ∈ v(p) iff p ∈ Γ∗, 0 ∈ v(p) iff ¬p ∈ Γ∗;

• For any formulas α, β:

(v1) 1 ∈ v(¬α) iff 0 ∈ v(α);

18 A. Avron, J. Ben-Naim, and B. Konikowska

(v2) 0 ∈ v(¬α) iff 1 ∈ v(α);

(v3) 1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β) or (α ∨ β) ∈ Γ∗;

(v4) 0 ∈ v(α ∨ β) iff 0 ∈ v(α) and 0 ∈ v(β);

(v5) 1 ∈ v(α ∧ β) iff 1 ∈ v(α) and 1 ∈ v(β);

(v6) 0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β) or ¬(α ∧ β) ∈ Γ∗;

It can be easily checked, by considering the truth tables of the Nmatrix M4
I ,

that v defined as above is legal valuation for that Nmatrix. It remains to
prove that v is indeed the desired counter-valuation, i.e., that:

(I) v |= Σ for each Σ ∈ S; (II) v 6|= (Γ ⇒ ∆);

We start with (II). As Γ ⊆ Γ∗,∆ ⊆ ∆∗, then in order to prove (II) it suffices
to prove that v 6|= (Γ∗ ⇒ ∆∗). To this end, we have to show that:

(A) v |= γ for each γ ∈ Γ∗; (B) v 6|= δ for each δ ∈ ∆∗

We argue by induction on the complexity of formulas.

Proof of (A):

• Assume γ is atomic. Then 1 ∈ v(γ) by (v0) in the definition of v,
whence v |= γ.

• Assume γ = ¬γ′. This case splits in the following four subcases:

γ′ = p (where p is atomic): Then ¬p = γ ∈ Γ∗, and by (v0) in
the definition of v we have 0 ∈ v(p), whence by (v1) of that
definition we get 1 ∈ v(γ);

γ′ = ¬α: Then ¬¬α = γ ∈ Γ∗. As Γ∗ ⇒ ∆∗ is saturated, then
by rule (¬¬ ⇒) we have α ∈ Γ∗, whence by the inductive
assumption 1 ∈ v(α), which in turn yields 1 ∈ v(¬¬α) = v(γ)
by applications of (v2) and (v1);

γ′ = α ∨ β: Then ¬(α ∨ β) = γ ∈ Γ∗. As the sequent Γ∗ ⇒ ∆∗

is saturated, then by rule (¬∨ ⇒) we have ¬α,¬β ∈ Γ∗,
whence by the inductive assumption 1 ∈ v(¬α), 1 ∈ v(¬β)
Thus 0 ∈ v(α), 0 ∈ v(β) by (v1), whence 0 ∈ v(α ∨ β) by
(v4), and finally 1 ∈ v(¬(α ∨ β)) = v(γ) by (v1);

γ′ = α ∧ β: Then ¬(α∧β) = γ ∈ Γ∗, whence by (v6) 0 ∈ v(α∧β),
which yields 1 ∈ v(¬(α ∧ β)) = v(γ).

Processing Information from a Set of Sources 19

• Assume γ = γ1 ∨ γ2. Then γ1 ∨ γ2 = γ ∈ Γ∗, so by (v3) we have
1 ∈ v(γ1 ∨ γ2) = v(γ).

• Assume γ = γ1 ∧ γ2. As γ ∈ Γ∗ and the sequent Γ∗ ⇒ ∆∗

is saturated, then by rule (∧ ⇒) we have γ1, γ2 ∈ Γ∗, whence
by the inductive assumption 1 ∈ v(γ1), 1 ∈ v(γ2), which yields
1 ∈ v(γ1 ∧ γ2) = v(γ) by (v5).

Proof of (B):

Assume first that δ = p where p is atomic. As δ ∈ ∆∗ and Γ∗ ⇒ ∆∗

is not derivable, then p 6∈ Γ∗, whence 1 6∈ v(δ) by (v0). In turn, if
δ = ¬p, then ¬p 6∈ Γ∗, for Γ∗ ⇒ ∆∗ is not derivable. Thus by (v0)
0 6∈ v(p), whence by (v1) we have 1 6∈ v(¬p) = v(δ).

The proof that (B) holds for δ’s which are not literals is carried out by
induction, following a single schema analogous to the proof of, e.g., the
last case in (A). Each time, from the fact that Γ∗ ⇒ ∆∗ is saturated
and from the right hand side rule of the sequent calculus correspond-
ing to the given complex formula α we conclude that the appropriate
component formulas of α must also be in ∆∗, whence by the inductive
assumption they are not assigned 1 by v. From the latter we deduce
that 1 6∈ v(α) using the appropriate clauses of the definition of v.

This ends the proof of (II) above. It remains to prove (I), i.e., to show that
v |= Σ for each Σ ∈ S. So let Σ ∈ S. Then Σ = ϕ1, . . . , ϕk ⇒ ψ1, . . . , ψl

for some integers k, l and formulas ϕi, ψj , i = 1, . . . , k, j = 1, . . . , l. Clearly,
we cannot have both {ϕ1, . . . , ϕk} ⊆ Γ∗ and {ψ1, . . . , ψl} ⊆ ∆∗, for then
Γ∗ ⇒ ∆∗ would be derivable from Σ, and hence from S, by weakening.
Since F (S) ⊆ Γ∗ ∪ ∆∗, this implies that either ϕi ∈ ∆∗ for some i, or
ψj ∈ Γ∗ for some j. Hence by (A) and (B), which we have already proved,
we have either v 6|= ϕi for some i, or v |= ψj for some j, which implies that
v |= Σ.

Corollary 5.3. The calculus C4
I is (weakly) sound and complete for `M4

I
,

and the cut rule is admissible in it. In particular: If Γ is a finite set of
formulas, and ϕ is a formula, then Γ `M4

I
ϕ if the sequent Γ ⇒ ϕ has a

cut-free proof in C4
I .

5

Proof. This follows from the last theorem and Note 3.4.

5This corollary was first proved (using a different method) in [5].

20 A. Avron, J. Ben-Naim, and B. Konikowska

Note 5.14. The finiteness assumption can in fact be dropped from the
formulation of Theorem 5.13, for the theorem holds for infinite premise sets
too. However, we skip the proof of this fact here, for such a generalization
seems to be of little practical usefulness for the purposes of this paper.

5.2. The other logics

Strongly finitely sound and complete calculi for the other main logics investi-
gated in this paper can be obtained by extending C4

I and C4
I with appropriate

rules and axiom:

General source-processor logic with complete information
Calculi corresponding to this case are obtained by augmenting C4

I and
C4

I with either the excluded middle axiom ⇒ ϕ,¬ϕ, or by the left-to-
right swap rule

Γ, ϕ⇒ ∆
Γ ⇒ ∆,¬ϕ

(However, the addition of the swap rule does not allow us to eliminate
any of the previous negation rules, for none of them is derivable from
it).

Dunn-Belnap’s logic
To obtain the calculi for Belnap’s logic, we augment C4

I and C4
I by the

two symmetric rules “missing” from them, i.e.

(∨ ⇒)
Γ, ϕ⇒ ∆ Γ, ψ,⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(¬∧ ⇒)

Γ,¬ϕ⇒ ∆ Γ,¬ψ ⇒ ∆
Γ,¬(ϕ ∧ ψ) ⇒ ∆

D’Ottaviano and da Costa’s logic
The calculi for the above paraconsistent logic are obtained by adding
either the excluded middle axiom ⇒ ϕ,¬ϕ, or the left-to-right swap
rule, to the calculi for Belnap’s logic.

Kleene’s logic As is well known, calculi for Kleene’s 3-valued logic are
obtained by adding to the calculi for Belnap’s logic either the axiom
ϕ,¬ϕ ⇒ (corresponding to the law of contradiction), or the right-to-

left swap rule
Γ ⇒ ∆, ϕ

Γ,¬ϕ⇒ ∆
.

Theorem 5.15. The obvious analogues of Theorem 5.13 (and its corrolary
5.3) hold for each of the calculi introduced above with respect to their asso-
ciate matrix/Nmatrix.

The proofs are similar to that of Theorem 5.13, and are left to the reader.

Processing Information from a Set of Sources 21

6. Future research

One direction of future research is to explore the general case of the universal
strategy, namely, one where the sources can also provide information about
complex formulas. As the introduction to Section 4 implies, it will split in
two subcases: one when the final processor valuation d can also take the
value >, and one where this is not possible due to an additional constraint,
like classical coherence (see Section 2.2.1).

Another directions is to investigate other variants of the framework, es-
pecially those signalled in Subsections 2.2.1 and 2.2.3. 6

Finally, a major goal will be to upgrade our framework and results to
first-order languages.

Acknowledgment

This research was supported by THE ISRAEL SCIENCE FOUNDATION
founded by The Israel Academy of Sciences and Humanities.

References

[1] A. Avron, Natural 3-valued logics : characterization and proof theory, The Journal of

Symbolic Logic, Vol.56, No. 1, pp. 276-294, 1991.

[2] A. Avron, Logical Non-determinism as a Tool for Logical Modularity: An Introduc-

tion, in We Will Show Them: Essays in Honor of Dov Gabbay, Vol 1 (S.

Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, and J. Woods, eds.),

105-124, College Publications, 2005.

[3] A. Avron and I. Lev, Canonical Propositional Gentzen-Type Systems, in Proceed-

ings of the 1st International Joint Conference on Automated Reasoning

(IJCAR 2001) (R. Goré, A Leitsch, T. Nipkow, Eds), LNAI 2083, 529-544, Springer

Verlag, 2001.

[4] A. Avron, and I. Lev, Non-deterministic Multiple-valued Structures, Journal of Logic

and Computation, Vol. 15 (2005), 241-261.

[5] A. Avron, J. Ben-Naim, and B. Konikowska, Cut-free Ordinary Sequent Calculi for

Logics Having Finite-Valued Semantics, Logica Universalis Vol. 1 (2006), 41-69.

6Some partial results in this direction have already been obtained concerning the im-
portant case in which all the sources are classically closed. The resulting logic is quite
interesting: it is paraconsistent, but every classical tautology is valid in it. It respects
many important classical equivalences, but not the distributive law. Especially important
is the fact that there is no N such that a processor valuation is “good” if it is obtained
in a framework of this type with at most N sources (while just two suffice for the cases
investigated in this paper).

22 A. Avron, J. Ben-Naim, and B. Konikowska

[6] N. D. Belnap, How computers should think, In G. Ryle, editor, Contemporary

Aspects of Philosophy, 30-56. Oriel Press, Stocksfield, England, 1977.

[7] N. D. Belnap, A useful four-valued logic, In G. Epstein and J. M. Dunn, editors,

Modern Uses of Multiple-Valued Logic, 7-37. Reidel, Dordrecht, 1977.

[8] W. A. Carnielli and M. Lima.-Marques, Society semantics for multiple-valued logics, in

Proceedings of the XII EBL- Advances in Contemporary Logic and Computer Science

(Walter A. Carnielli and Itala M. L. D’Ottaviano, eds.), American Mathematical

Society, Series Contemporary Mathematics, Volume 235, 33-52, 1999.

[9] W. A. Carnielli and J. Marcos and S. de Amo, Formal inconsistency and evolutionary

databases, Logic and Logical Philosophy, Vol. 8, 115-152, 2000.

[10] M. Fitting, Kleene’s three-valued logics and their children. Fundamenta Informaticae,

Vol.20, 113-131, 1994.

[11] M. L. Ginsberg, Multivalued logics: A uniform approach to reasoning in AI. Computer

Intelligence, Vol.4, 256-316, 1988.

[12] I.M.L. D’Ottaviano and N.C.A. da Costa, Sur un problème de Jaśkowski. In Comptes

Rendus de l’Académie des Sciences de Paris, Vol. 270, 1349-1353, 1970.

[13] I. L. M. D’Ottaviano, The completeness and compactness of a three-valued first-order

logic, Revista Colombiana de Matematicas, vol. XIX (1985), 31–42.

[14] R. L. Epstein, The semantic foundation of logic, 2nd ed., vol. I: Propositional

Logics, ch. IX, Kluwer Academic Publisher, 1995.

[15] J. M. Dunn, Intuitive Semantics for First Degree Entailments and “coupled trees”,

Philosophical Studies 29 (1976), 149-168.

Arnon Avron
School of Computer Science
Tel-Aviv University
Ramat Aviv 69978, Israel
aa@post.tau.ac.il

Jonathan Ben-Naim
Computer Science and Communications Research Unit
University of Luxembourg
L-1359 Luxembourg
jonathan.ben-naim@uni.lu

Beata Konikowska
Institute of Computer Science
Polish Academy of Sciences
Warsaw, Poland
beatak@ipipan.waw.pl

