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Abstract. An argumentation system consists of a set of interacting arguments
and a semantics for evaluating them. This paper proposes a new family of seman-
tics which rank-orders arguments from the most acceptable to the weakest one(s).
The new semantics enjoy two other main features: i) an attackweakens its target
but does not kill it, ii) the number of attackers has a great impact on the accept-
ability of an argument. We start by proposing a set of rational postulates that such
semantics could satisfy, then construct various semanticsthat enjoy them.

1 Introduction

Argumentationis a reasoning model based on the construction and evaluation of inter-
acting arguments. The most popular semantics were proposedby Dung in his seminal
paper [6]. Those semantics as well as their refinements (e.g.in [3, 5]) partition the pow-
erset of the set of arguments into two classes:extensionsandnon-extensions. Every
extension represents a coherent point of view. Anabsolutestatus is assigned to each
argument:accepted(if it belongs to every extension),rejected(if it does not belong
to any extension), andundecidedif it is in some extensions and not in others. Those
semantics are based in particular on the following considerations:

Killing: The impact of an attack from an argumentb to an argumenta is drastic, that
is, if b belongs to an extension, thena is automatically excluded from that extension
(i.e.,a is killed).
Existence:One successful attack against an argumenta has the same effect ona as
any number of successful attacks. Indeed, one such attack issufficient to killa, several
attacks cannot killa to a greater extent.
Absoluteness:The three possible status of the arguments are absolute, that is, they
make sense even without comparing them with each other.
Flatness:All the accepted arguments have the same level of acceptability.

These four considerations seem rational in applications like paraconsistent reason-
ing. For example, the killing consideration makes sense in this application, because
arguments are formulas and attacks correspond to contradictions, and it is natural to
consider that one contradiction is lethal.

However, in other applications, e.g. decision-making, some of these considerations
are debatable. First, the killing principle is problematicin decision-making, because an
attack does not necessarily kill its target, but just weakens it. Suppose for instance that
the two following argumentsa andb are exchanged by two doctors:
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a: The patient should have a surgery since he has cancer.
b: The statistics show that the probability that a surgery willimprove the state of the

patient is low.

In this case, the attack fromb only weakensa, it does not killa. The doctor may
still choose to do the surgery since it gives (a small) chancefor the patient to survive.

Next, the existence consideration is also debatable. Suppose a seller provides the
following argumenta in favor of a given car:

a: This car is certainly powerful since it is made by Peugeot.
b1: The engines of Peugeot cars break down before 300000km.
b2: The airbags of Peugeot cars are not reliable.
b3: The spare part is very expensive.

If the buyer receives the argumentb1 against Peugeot (thus againsta), then he ac-
cepts lessa. The situation becomes worse if he receivesb2 andb3. Indeed, the more
arguments he receives againsta, the less his confidence ina.

The flatness consideration is also debatable in decision-making. Suppose for exam-
ple thata is not attacked,b is attacked only bya, andc is attacked only byb. Then,a
andc are both accepted and have the same level of acceptability. But, in applications
like decision-making, it is reasonable to consider that an attack from a non-attacked
node (or any number of non-attacked nodes) does not kill the destination node. So,b is
only weakened, which means that its attack againstc should have some effect, that is,
the level of acceptability ofc should be lower than that ofa.

To sum up, existing semantics may be well-suited for reasoning but not for applica-
tions like decision-making. In the present paper, we propose a new family of semantics
that are based on the followinggradedconsiderations:

Weakening:Arguments cannot be killed (however, they can be weakened toan extreme
extent). As a consequence, an attack from an argumentb to an argumenta always
decreases the degree of acceptability ofa (possibly only by an infinitesimal amount).
The greater the acceptability ofb, the greater the decrease in the acceptability ofa.
Counting:The more numerous the attacks againsta, the greater the decrease in the
acceptability ofa.
Relativity:The degrees of acceptability of the arguments are relative,that is, they do
not make sense when they are not compared with each other.
Graduality:There is an arbitrarily large number of degrees of acceptability.

In our approach, a semantics is a function that transforms any argumentation graph
into a rankingon its set of arguments: from the most accepted to the weakestone(s).
Our first step consists in proposing formal postulates, eachof which is an intuitive and
desirable property that a semantics may enjoy. Our postulates are based on the four
informal graded considerations described earlier: weakening, counting, relativity, and
graduality. Such an axiomatic approach allows a better understanding of semantics and
a more precise comparison between different proposals. We investigate dependencies
and compatibilities between postulates. In a second step, we construct two ranking-
based semantics satisfying certain postulates.



2 Ranking-based semantics

An argumentation framework consists of a set of arguments and a set of attacks between
them. Arguments represent reasons to believe in statements, doing actions, etc. Attacks
express conflicts between pairs of arguments. In what follows, both components are
assumed to be abstract entities.

Definition 1 (Argumentation framework) Anargumentation frameworkis an ordered
pair A = 〈A,R〉, whereA is a finite set ofargumentsandR a binary relation onA
(i.e.,R ⊆ A×A). We callR anattack relationandaRb means thata attacksb.

We turn to the notion of attacker:

Notation LetA = 〈A,R〉 be an argumentation framework anda ∈ A. We define that
Arg(A) = A and AttA(a) = {b ∈ A | bRa}. When the context is clear, we write
Att(a) for short. The same goes for all notations.

As in classical approaches to argumentation [6], since arguments may be conflict-
ing, it is important to evaluate them and to identify the onesto rely on for inferring
conclusions (in case of handling inconsistency in knowledge bases) or making deci-
sions, etc. For that purpose, we propose ranking-based semantics which rank-order the
set of arguments from the most acceptable to the weakest one(s). Thus, unlike exist-
ing semantics which assign anabsolutestatus (accepted, rejected, undecided) to each
argument, the new approach compares pairs of arguments.

Definition 2 (Ranking) A rankingon a setA is a binary relation� onA such that:�
is total (i.e.,∀ a, b ∈ A, a � b or b � a) and transitive (i.e.,∀ a, b, c ∈ A, if a � b
andb � c, thena � c). Intuitively,a � b means thata is at least as acceptableasb. So,
b 6� a means thata is strictly more acceptablethanb.

We emphasize that, unlike in certain other works, the equal-or-more acceptable ar-
gument in an expression of the forma � b is on theleft-hand side(i.e.,a takes prece-
dence overb; the rank ofa is above that ofb; etc.).

Definition 3 (Ranking-based semantics)A ranking-based semanticsis a functionS
that transforms any argumentation frameworkA = 〈A,R〉 into a ranking onA.

A ranking should not be arbitrary, but should obey some postulates. By postulate,
we mean any reasonable principle, be it very general or very specific.

3 Postulates for semantics

First of all, a ranking on a set of arguments should be defined only on the basis of the
attacks between arguments, it should not depend on the identity of the arguments (at
least when the data only consist of nodes and arrows). So, ourfirst postulate says that
two equivalent argumentation frameworks should give rise to two equivalent rankings.
Let us first define the notion of equivalence between two argumentation frameworks.



Definition 4 (Isomorphism) LetA = 〈A,R〉 andA′ = 〈A′,R′〉 be two argumenta-
tion frameworks. AnisomorphismfromA to A

′ is a bijective functionf fromA to A′

such that∀ a, b ∈ A, aRb iff f(a)R′f(b).

We define formally our first postulate and then exemplify it.

Postulate 1 (Abstraction) A ranking-based semanticsS satisfiesabstraction(Ab) iff
for any two frameworksA = 〈A,R〉 andA′ = 〈A′,R′〉, for any isomorphismf from
A toA

′, we have that∀ a, b ∈ A, 〈a, b〉 ∈ S(A) iff 〈f(a), f(b)〉 ∈ S(A′).

Example 1 Consider the two argumentation frameworks depicted in the figure below.

a b c d

The postulate(Ab) ensures that the ranking relation betweena andb is the same as the
one betweenc andd.

It is worth pointing out that extension-based semantics (i.e., Dung’s semantics) obey
in some sense this postulate. For instance, both argumentation frameworks of Example 1
have one preferred extension containing the non-attacked argument (a, resp.c).

The second postulate states the following: the question whether an argumenta is at
least as acceptable as an argumentb should be independent of any argumentc that is
neither connected toa nor to b, that is, there is no path fromc to a or b (ignoring the
direction of the edges). Let us first define the independent parts of an argumentation
framework.

Definition 5 (Weak connected component)A weak connected componentof an ar-
gumentation frameworkA is a maximal subgraph ofA in which any two vertices are
connected to each other by a path (ignoring the direction of the edges). We denote by
Com(A) the set of every argumentation frameworkB such thatB is a weak connected
component ofA or the graph union of several weak connected components ofA.

We turn to our second postulate and to an example.

Postulate 2 (Independence)A ranking-based semanticsS satisfiesindependence(In)
iff for every argumentation frameworkA, ∀ B ∈ Com(A), ∀ a, b ∈ Arg(B), 〈a, b〉 ∈
S(A) iff 〈a, b〉 ∈ S(B).

Example 1 (Cont) Assume that the two graphs of Example 1 constitute a single ar-
gumentation framework. Then,(In) ensures that the ranking relation betweena andb
(and the one betweenc andd) remains the same after the fusion of the two frameworks.

Given our weakening principle (detailed in the introduction), it is natural to con-
sider that a non-attacked argument is more acceptable (and thus ranked higher) than
an attacked argument. In other words, there is no full reinstatement for arguments. The
third postulate reflects this idea.



Postulate 3 (Void Precedence)A ranking-based semanticsS satisfiesvoid precedence
(VP) iff for every argumentation frameworkA = 〈A,R〉, ∀ a, b ∈ A, if Att(a) = ∅
andAtt(b) 6= ∅, then〈b, a〉 /∈ S(A).

Example 1 (Cont)(VP) ensures thata is ranked higher thanb, andc higher thand.

Non-attacked arguments are also favored by extension-based semantics. They be-
long to any extension under grounded, complete, stable, andpreferred semantics. Thus,
they are accepted. However, they may have the same status (accepted) as attacked argu-
ments (which are defended). Let us consider the following example.

Example 2 Assume the argumentation framework depicted in the figure below.

a b c

The grounded extension of this framework is{a, c}. The argumentsa and c are both
accepted whereasb is rejected. Our approach ranksa higher thanc sincec is attacked,
thus weakened. Thus, it ensures a more refined treatment of arguments.

Since an attack always weakens its target, the next postulate states that having at-
tacked attackers is better than having non-attacked attackers (assuming the number of
attackers is the same). In other words, beingdefendedis better than not being defended.
First, we formally introduce the notion of defender:

Notation Let A = 〈A,R〉 be an argumentation framework anda ∈ A. We denote
by DefA(a) the set of all defenders ofa in A, that is,DefA(a) = {b ∈ A | ∃c ∈
A, cRa andbRc}.

Next, we turn to the postulate and to an example.

Postulate 4 (Defense Precedence)A ranking-based semanticsS satisfiesdefense prece-
dence(DP) iff for every argumentation frameworkA = 〈A,R〉, ∀a, b ∈ A, if |Att(a)| =
|Att(b)|, Def(a) 6= ∅, andDef(b) = ∅, then〈b, a〉 /∈ S(A).

Example 3 Consider the argumentation framework depicted in the figurebelow.

h c e

a b

d g

Both argumentsa and b have two attackers. The two attackers ofb are not attacked,
thus they are strong. However,a is defended byh, thus the attackerc is weakened. To
sum up,a has one strong and one weak attacker, whileb has two strong attackers. So,
(DP) ensures thata is ranked higher thanb.

The two next postulates are based on both the weakening and the counting prin-
ciples: the more the attackers of an argumenta are numerous and acceptable, the less
a is acceptable. The first postulate, calledcounter-transitivity, corresponds to a large



version of this combined principle, the second one, calledstrict counter-transitivity,
corresponds to a strict version.

More precisely, counter-transitivity says that an argumenta should be ranked at least
as high as an argumentb, if the attackers ofb are at least as numerous and acceptable as
those ofa. Let us first introduce a relation that compares sets of arguments on the basis
of a ranking on the arguments.

Definition 6 (Group comparison) Let � be a ranking on a setA of arguments. For
all A,B ⊆ A, 〈A,B〉 ∈ Gr(�) iff there exists an injective functionf fromB toA such
that∀ a ∈ B, f(a) � a. Intuitively,〈A,B〉 ∈ Gr(�) iff the elements of the groupA are
at least as numerous and acceptable as those ofB.

To put the emphasize on the meaning ofGr(�), we derive the following fact:

Proposition 1 Let� be a ranking on a setA of arguments andA,B ⊆ A. If 〈A,B〉 ∈
Gr(�), then:

– |A| ≥ |B|;
– for all b ∈ B, ∃a ∈ A such thata � b.

We are ready to formally state the postulate based on argument-group comparisons:

Postulate 5 (Counter-Transitivity) A ranking-based semanticsS satisfies the postu-
late counter-transitivity(CT) iff for every argumentation frameworkA = 〈A,R〉,
∀ a, b ∈ A, if 〈Att(b), Att(a)〉 ∈ Gr[S(A)], then〈a, b〉 ∈ S(A).

Example 3 (Cont)(CT) ensures thata is ranked at least as high asb.

Strict counter-transitivityis another mandatory postulate in our approach. Loosely
speaking, it says that an argumenta should be ranked strictly higher than an argument
b, if the attackers ofb are more numerous or more acceptable than those ofa.

Definition 7 (Strict group comparison) Let� be a ranking on a setA of arguments.
For all A,B ⊆ A, 〈A,B〉 ∈ Sgr(�) iff there exists an injective functionf fromB toA
such that the two following conditions hold:

∀ a ∈ B, f(a) � a;
|B| < |A| or ∃ a ∈ B, a 6� f(a).

Intuitively, 〈A,B〉 ∈ Sgr(�) iff the elements ofA are strictly better than those ofB
from a global point of view based on both cardinality and acceptability.

Postulate 6 (Strict Counter-Transitivity) A ranking-based semanticsS satisfiesstrict
counter-transitivity(SCT) iff for every argumentation frameworkA = 〈A,R〉, ∀ a, b ∈
A, if 〈Att(b), Att(a)〉 ∈ Sgr[S(A)], then〈b, a〉 /∈ S(A).

Example 3 (Cont)(SCT) ensures thata is strictly more acceptable thanb.

We turn to situations where the cardinality of the attackersand their quality (i.e.,
acceptability) are opposed. Here is an example.



Example 4 Consider the argumentation framework depicted in the figurebelow.

h c

a e b

g d

If one non-attacked attacker is sufficient to kill an argument (which is the case in
most approaches to argumentation), then the argumenta should naturally be ranked
higher thanb. But, in our approach, as explained in the introduction, no number of
attacked or non-attacked attackers can kill an argument. They can just weaken it. Con-
sequently, in this example,a is attacked by two weakened arguments, whileb is attacked
by one strong argument. As usual, we have to make a choice: give precedence to cardi-
nality over quality (i.e. two weakened attackers are worse for the target than one strong
attacker), or on the contrary give precedence to quality over cardinality.

In certain applications such as decision-making, both options are reasonable. For
example, suppose we have to buy a car and we are considering a red one and a blue one.
In addition, the arguments of Example 4 correspond to the following statements:

b = The red car has got 5 stars out of 5 in our favorite car magazine;
e = The magazine does not take into account the fact that the redcar is 1000 euros

more expensive than the blue one;
a = The blue car has got 5 stars out of 5 in our favorite car magazine;
c = The magazine does not take into account the fact that there is a probability of 0.5

that the blue car engine breaks down before 300000km. The reparations would cost
2000 euros;

h = A friend of ours is a mechanic. He would offer us a 10% discount on engine repa-
ration;

d = The magazine does not take into account the fact that there is a probability of 0.5
that the blue car will be stolen from us before 10 years. The insurance will pay for
another blue car, but there is a deductibility provision of 2000 euros;

g = In our neighborhood, the rate of motor vehicle theft is 10% lower than the average.

In this example, it is intuitive to consider thatb is more acceptable thana. Indeed,
it is obvious that the group{c, d} is stronger than the singleton{e}, despite the fact
that the former is slightly weakened byh andg. Now, suppose that the argumente is
replaced by the following one:

e = The magazine does not take into account the fact that the redcar is 4000 euros
more expensive than the blue one.

This time it is intuitive to consider thata is more acceptable thanb.
To summarize, with abstract nodes and arrows as arguments and attacks, the out-

come of Example 4 is debatable. We can give precedence to cardinality over quality
(i.e. b is more acceptable thana) or on the contrary give precedence to quality over
cardinality (i.e.a is more acceptable thanb). Both options are rational. We turn to two
axioms representing these two choices.

First,cardinality precedencesays that an argumenta should be ranked higher than
an argumentb, if the attackers ofa are less numerous than those ofb.



Postulate 7 (Cardinality Precedence)A ranking-based semanticsS satisfiescardi-
nality preference(CP) iff for every argumentation frameworkA = 〈A,R〉, ∀ a, b ∈ A,
if |Att(a)| < |Att(b)|, then〈b, a〉 /∈ S(A).

Next,quality precedencesays that an argumenta should be ranked higher than an
argumentb, if at least one attacker ofb is ranked higher than any attacker ofa.

Postulate 8 (Quality Precedence)A ranking-based semanticsS satisfiesquality prece-
dence(QP) iff for every argumentation frameworkA = 〈A,R〉, ∀ a, b ∈ A, if there
existsc ∈ Att(b) such that∀ d ∈ Att(a), 〈d, c〉 /∈ S(A), then〈b, a〉 /∈ S(A).

The last postulate says that, all other things remaining equal, a distributed defense is
better than a focused one. This postulate is not at all mandatory. It simply represents a
reasonable choice that one can make in very specific situations. More precisely, the idea
is to compare two arguments having the same number of attackers and the same number
of defenders. In addition, each defender attacks exactly one attacker. The postulate says
that, in this case, the best kind of defense is the totally distributed one, i.e. each defender
attacks a distinct attacker. In some sense, there is no “overkill”.

First, we formally define what is a simple and distributed defense.

Definition 8 (Simple/distributed defense)LetA = 〈A,R〉 be an argumentation frame-
work anda ∈ A.

The defense ofa in A is simpleiff every defender ofa attacks exactly one attacker of
a.
The defense ofa in A is distributediff every attacker ofa is attacked by at most one
argument.

We are ready to define our last postulate:

Postulate 9 (Distributed-Defense Precedence)A ranking-based semanticsS satisfies
distributed-defense precedence(DDP) iff for any argumentation frameworkA = 〈A,R〉,
∀ a, b ∈ A such that|Att(a)| = |Att(b)| and |Def(a)| = |Def(b)|, if the defense
of a is simple and distributed and the defense ofb is simple but not distributed, then
〈b, a〉 /∈ S(A).

Let us illustrate these concepts on the following example.

Example 5 Consider the argumentation framework depicted in the figurebelow.

l h c e j

a k b

g d i

The two argumentsa andb have the same number of defenders:Def(a) = {h, g} and
Def(b) = {e, k}. However, the defense ofa is simple and distributed while the defense
of b is simple but not distributed. The postulate(DDP) ensures thata is more acceptable
thanb, despite the fact that the defenders ofa are weaker than those ofb.



4 Relationships between postulates

So far we have proposed a set of postulates that are suitable for defining a ranking-
based semantics in argumentation theory. In the present section, we briefly study their
dependencies, as well as their compatibilities (i.e., whether they can be satisfied together
by a semantics). We start by showing that the postulates(CT), (SCT), (VP) and(DP) are
not independent.

Proposition 2 LetS be a ranking-based semantics:

if S satisfies(SCT), then it satisfies(VP);
if S satisfies both(CT) and(SCT), then it satisfies(DP).

Let us now check the compatibility of the postulates. Unsurprisingly, (CP) and
(QP) cannot be satisfied together. Example 4 already illustratesthis issue. Indeed,(QP)
prefersa to b, while (CP) prefers the converse.

Proposition 3 No ranking-based semantics can satisfy both(CP) and(QP).

In the next section, we construct a ranking-based semanticsshowing the following
compatibility result:

Proposition 4 The postulates(Ab), (In), (CT), (SCT), (CP), and(DDP) are compatible.

5 Discussion-based and Burden-based semantics

This section introduces two semantics satisfying most of our postulates, namely those
that are compatible with(CP).

The first semantics, calleddiscussion-based semantics, is centered on a notion of
linear discussion similar to ‘argumentation line’ in [8]. Alinear discussion is a sequence
of arguments such that each argument attacks the argument preceding it in the sequence.

Definition 9 (Linear discussions) Let A = 〈A,R〉 be an argumentation framework
anda ∈ A. A linear discussionfor a in A is a sequences = 〈a1, . . . , an〉 of elements
ofA (wheren is a positive integer) such thata1 = a and∀ i ∈ {2, 3, . . . , n} aiRai−1.
The length ofs is n. We say that:s is won iff n is odd;s is lost iff n is even.

Let us illustrate this notion on an example.

Example 5 (Cont)Two won linear discussions for the argumenta are e.g.,s1 = 〈a〉
and s2 = 〈a, d, g〉 and one lost linear discussion is, for instance,s3 = 〈a, c, h, l〉.
Similarly, three won linear discussions for the argumentb ares′1 = 〈b〉, s′2 = 〈b, j, e〉
ands′3 = 〈b, j, k〉 and one lost discussion iss′4 = 〈b, i〉.

The basic idea behind the semantics is the following: for every argumenta, for
every positive integeri, we count the number of linear discussions fora of lengthi. We
positively count the lost discussions and negatively countthe won discussions. So, in
any case, the smaller the number calculated, the better the situation fora.



Definition 10 (Discussion count)Let A = 〈A,R〉 be an argumentation framework,
a ∈ A, andi a positive integer. We define that:

DisAi(a) =

{

−N if i is odd;
N if i is even;

whereN is the number of linear discussions fora in A of lengthi.

Example 5 (Cont)The following table provides the discussion countsDisAi of the two
argumentsa andb.

i a b
1 -1 -1
2 2 2
3 -2 -2
4 1 0

Our strategy is to lexicographically rank the arguments on the basis of their won
and lost linear discussions.

Definition 11 (Discussion-based semantics)The ranking-based semanticsDbs trans-
forms any argumentation frameworkA = 〈A,R〉 into the rankingDbs(A) onA such
that∀ a, b ∈ A, 〈a, b〉 ∈ Dbs(A) iff one of the two following cases holds:

∀ i ∈ {1, 2, . . .}, Disi(a) = Disi(b);
∃ i ∈ {1, 2, . . .}, Disi(a) < Disi(b) and∀ j ∈ {1, 2, . . . , i− 1}, Disj(a) = Disj(b).

Example 5 (Cont)For everyi ∈ {1, 2, 3}, Disi(a) = Disi(b). However,Dis4(a) >
Dis4(b). Thus,〈a, b〉 /∈ Dbs(A), i.e.,b is strictly more acceptable thana.

At first sight, the infinite character of the set{1, 2, . . .} of all positive integers may
look like an issue from a computational point of view. Indeed, Disi(a) may never stop
evolving. This is due to the possible presence of cycles in the argumentation framework.
But, if Disi(a) never stops evolving, it evolves cyclically. So, we strongly conjecture
that there exists a thresholdt such that if∀ i ≤ t, Disi(a) = Disi(b), then∀ i > t,
Disi(a) = Disi(b). Such an equality-ensuring threshold would be dependent onthe
length of the longest elementary cycle in the argumentationframework. This threshold
would be useful to write a program implementing our discussion-based semantics.

Note also that the computation can simply be done up to a fixed stept. The greater
t, the closer the ranking obtained to the actual discussion-based ranking.

Next, the postulates represent theoretical validations for our semantics:

Theorem 1 Dbs satisfies(Ab), (In), (CT), (SCT), and(CP).

From Proposition 2, it is immediate thatDbs satisfies additional postulates:

Corollary 1. Dbs satisfies(VP) and(DP).

Theorem 2 Dbs does not satisfy(DDP).



Next, we show thatDbs treats odd and even length cycles in a similar way:

Proposition 5 LetA = 〈A,R〉 be an argumentation framework. Suppose thatA takes
the form of a unique cycle, i.e. there exists an enumeration〈a1, . . . , an〉 of A (without
repetition and wheren is a positive integer) such that∀i ∈ {1, 2, . . . , n−1},Att(ai) =
{ai+1}, andAtt(an) = {a1}. Then,∀ a, b ∈ A, 〈a, b〉 ∈ Dbs(A).

The second semantics, calledburden-based semantics, satisfies(DDP). It follows a
multiple steps process. At each step, it assigns aburden numberto every argument. In
the initial step, this number is1 for all arguments. Then, in each step, all the burden
numbers are simultaneously recomputed on the basis of the number of attackers and
their burden numbers in the previous step. More precisely, for every argumenta, its
burden number is set back to1, then, for every argumentb attackinga, the burden
number ofa is increased by a quantityinverselyproportional to the burden number ofb
in the previous step. More formally:

Definition 12 (Burden numbers) Let A = 〈A,R〉 be an argumentation framework,
i ∈ {0, 1, . . .}, anda ∈ A. We denote byBurAi(a) theburden numberof a in the ith

step, i.e.:

Buri(a) =

{

1 if i = 0;
1 +Σb∈Att(a)1/Buri−1(b) otherwise.

By convention, ifAtt(a) = ∅, thenΣb∈Att(a)1/Buri−1(b) = 0.
Let us illustrate this function on the following example.

Example 2 (Cont)The burden numbers of each argument are summarized in the table
below. Note that these numbers will not change beyond step 2.

Stepi a b c
0 1 1 1
1 1 2 2
2 1 2 1.5
...

...
...

...

We lexicographically compare two arguments on the basis of their burden numbers.

Definition 13 (Burden-based semantics)The ranking-based semanticsBbs transforms
any argumentation frameworkA = 〈A,R〉 into the rankingBbs(A) on A such that
∀ a, b ∈ A, 〈a, b〉 ∈ Bbs(A) iff one of the two following cases holds:

∀ i ∈ {0, 1, . . .}, Buri(a) = Buri(b);
∃ i ∈ {0, 1, . . .}, Buri(a) < Buri(b) and∀ j ∈ {0, 1, . . . , i− 1}, Burj(a) = Burj(b).

As for the discussion-based semantics, an equality-ensuring threshold probably ex-
ists for the burden-based semantics. Such a threshold wouldmake possible an exact
computation, despite the fact that{0, 1, . . .} is infinite.

Note that both semantics (Dbs andBbs) do not take into account possible depen-
dencies between an argument and one of its attackers, nor thedependencies between



two attackers. Actually,Dbs andBbs rank the arguments only on the basis of the struc-
ture obtained by “unrolling” the cycles. For example, our semantics do not distinguish
between a loop (e.g.aRa) and a cycle (e.g.aRb, bRa). The notion of dependence is
hard to capture and beyond the scope of this paper. Our goal inthe present paper is
essentially to introduce a new kind of semantics, basic postulates for it, and instances
satisfying those postulates.

We turn to the postulate-based analysis ofBbs:

Theorem 3 Bbs satisfies(Ab), (In), (CT), (SCT), (CP), and(DDP).

From Proposition 2, it satisfies more postulates:

Corollary 2. Bbs satisfies(VP) and(DP).

Let us see on examples how the semantics works.

Example 2 (Cont)According toBbs, the argumenta is strictly more acceptable thanc
which is itself strictly more acceptable thanb.

Note thatBbs returns a more refined result than Dung’s semantics. Indeed,the set
{a, c} is a (preferred, grounded, stable) extension according to [6]. Our approach refines
the result by rankinga higher thanc since it is not attacked. This does not mean that
Bbs semantics coincides with Dung’s ones. The following example shows that the two
approaches may return different results since they are grounded on different principles.

Example 4 (Cont) The argumentation framework has a unique extension{h, g, a, e}
which is grounded, preferred and stable. Thus, the argumentb is rejected. Let us now
apply theBbs semantics on the same framework. The table below provides the burden
numbers of the arguments.

Stepi h g c d a e b
0 1 1 1 1 1 1 1
1 1 1 2 2 3 1 2
2 1 1 2 2 2 1 2
...

...
...

...
...

...
...

...

Bbs provides the following ranking:h, g, e � c, d, b � a. Thus,b is more acceptable
thana. The reason is thatb has less attackers andBbs give precedence to the cardinality
of the attackers over their quality.

Example 5 (Cont)According toBbs, a is strictly more acceptable thanb.

Note that in this example, the semanticsDbs returns the converse. This shows that
the two semantics may return very different results. This difference comes from the
postulateDDP which is satisfied byBbs but violated byDbs.

As with Dbs, we show next that theBbs semantics treats odd and even length cycles
in a similar way.



Proposition 6 LetA = 〈A,R〉 be an argumentation framework. Suppose thatA takes
the form of a unique cycle, i.e. there exists an enumeration〈a1, . . . , an〉 of A (without
repetition and wheren is a positive integer) such that∀i ∈ {1, 2, . . . , n−1},Att(ai) =
{ai+1}, andAtt(an) = {a1}. Then,∀ a, b ∈ A, 〈a, b〉 ∈ Bbs(A).

6 Related work

There are three works in the literature which are somehow related to our contribution.
The first attempts were done in [1, 2] where the authors identified different principles
and compared existing semantics wrt them. The principles are tailored for extension-
based semantics, and do not apply for ranking-based ones.

The work in [4] is closer to ours. The authors defined a notion of gradual acceptabil-
ity. The idea is to assign a numerical value to each argument on the basis of its attackers.
The properties of the valuation function are unclear. Our approach defines, through a
set of formal postulates, the desirable properties of our semantics.

In [7], Dung’s abstract framework was extended by considering weighted attacks.
The basic idea is to removesomeattacks up to a certain degree representing the tol-
erated incoherence, and then apply existing semantics to the new graph(s) by ignoring
completely the weights. This leads to extensions which are not conflict-free in the sense
of the attack relation. Consider the following weighted framework. If one tolerates in-
coherence up to degree 1 (β = 1), then the attack froma to b is ignored. Consequently,
∅ and{a, b} are twoβ-grounded extensions.

a

c b

1

4

5

This approach is different from ours for several reasons.
First, it does not obey the four graded considerations at thebasis of our postulates

and semantics (i.e., weakening, counting, relativity, andgraduality), it rather obeys the
four traditional non-graded considerations described in the introduction (i.e., killing,
existence, absoluteness, and flatness). Indeed, weights are only used for deciding which
attacks can be ignored when computing the extensions.

The second main difference stems from the fact that weights of attacks areinputsof
the argumentation system of [7]. In our approach, degrees are located in theoutput, i.e.
we compute the relative degree of acceptability of each argument. Note that the more an
argument is acceptable, the more the attacks emanating fromit are important. However,
this does not mean that weights of attacks are generated. In our approach, the three
argumentsa, b andc are equivalent with regard toBbs andDbs. Finally, our semantics
can be extended to deal with weighted attacks as input.

7 Conclusion

The paper develops an axiomatic approach for defining semantics for argumentation
frameworks. It proposes postulates (each of which represents a criterion) that a seman-
tics may satisfy. The approach offers thus a theoretical framework for comparing se-
mantics. It is worth emphasizing that only some of the postulates (e.g. abstraction) are



satisfied by Dung’s semantics (when the arguments are rankedon the basis of their sta-
tus, i.e. accepted arguments are ranked above undecided ones, which are ranked above
rejected ones). The other postulates are based on graded considerations which may be
natural in applications like decision-making.

Another novelty of our approach is that it computes the acceptability of arguments
without passing through multiple points of view. Its basic idea is to compute a complete
ranking on the set of arguments. The paper proposes two novelsemantics that satisfy
the postulates but that do not necessarily return the same results. An important future
work is to find sufficiently many postulates to characterize our semantics.
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