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The paper tackled the issue of arguments evaluation in weighted bipolar argumentation 
graphs (i.e., graphs whose arguments have basic strengths, and may be both supported and 
attacked). We introduce principles that an evaluation method (or semantics) could satisfy. 
Such principles are very useful for understanding the foundations of semantics, judging 
them, and comparing semantics. We then analyze existing semantics on the basis of our 
principles, and finally propose a new semantics for the class of acyclic graphs. We show 
that it satisfies all the principles.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Argumentation is a form of common-sense reasoning consisting of the justification of claims by arguments. An argument 
is made of a set of premises (called reason), a conclusion (the justified claim), and the two are related with a link. An 
argument has also generally a basic strength which may represent different issues like the certainty degree of its premises 
[2], the strength of its link [3], the importance of values supported by the argument [4], or the trustworthiness of the source 
providing the argument [5].

Despite its explanatory power, an argument does not guarantee the validity of its conclusion. Indeed, its premises may 
be wrong, its link may be flawed, and in some cases the premises may be irrelevant to the conclusion. These flaws of 
an argument may themselves be supported by arguments, which are seen as attackers of the original one. An argument 
may also be supported by other arguments, which endorse either its premises, its conclusion, or its link. This leads to 
weighted bipolar argumentation graphs, i.e., graphs whose nodes represent arguments with numerical basic strengths, and 
edges represent attack and support relationships between pairs of arguments.

An evaluation of the overall strength of each argument is crucial for deciding whether or not one may rely on the 
argument’s conclusion. Phan Ming Dung was the first to investigate in [6] this evaluation issue. He focused on a simple 
input: a set of arguments, having all the same basic strength, and an attack relation between pairs of arguments. Leaving 
the origin and the nature of arguments/attacks unspecified, Dung proposed several semantics specifying which sets of 
arguments (called extensions) are acceptable. Such graphs may have zero, one, or several extensions. A single qualitative 
status is then assigned to each argument as follows: an argument is accepted if it belongs to all extensions, and rejected
otherwise. This status represents the overall strength of the argument.

✩ This paper extends the content of the conference paper [1].
✩✩ This paper is part of the Virtual special issue on the 14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty 
(ECSQARU 2017), Edited by Alessandro Antonucci, Laurence Cholvy and Odile Papini.
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This seminal paper has led to substantial work either on proposing new alternative semantics dealing with the same 
input (e.g., [7,8]), or on extending Dung’s semantics for dealing with richer input, i.e., previous flat graphs with one of the 
following features: preferences between arguments (or basic strengths of arguments) [3,4,9], weights on attacks [10–12], or 
support relation between arguments [13–18]. To the best of our knowledge there is no extension semantics dealing with 
weighted bipolar argumentation graphs.

More recently, another family of semantics, called weighted semantics, is gaining interest (e.g., [1,5,19–21]). These se-
mantics focus on the evaluation of individual arguments rather than sets of arguments. Furthermore, unlike extension-based 
semantics which assign a qualitative overall strength (accepted, rejected) to each argument, they assign a numerical value 
to each argument. Finally, instead of a coarse classification of arguments as accepted/rejected, weighted semantics allow 
fine-grained classifications. Most existing semantics deal only with unipolar graphs (i.e., graphs that consider either attack 
relation or support one but not both). Two notable exceptions are QuAD semantics [22] and DF-QuAD [23]. In [24] the 
authors discussed advantages of weighted semantics in case of bipolar argumentation graphs, but they did not propose 
concrete semantics.

While there is a consensus in the argumentation community on the role of attackers and how they should be taken 
into account in the evaluation of individual arguments, the situation is less clear for supporters. Indeed, different interpre-
tations are given to support relation (deductive [17], evidence [15], necessary [18]), leading to semantics which may return 
completely different evaluations of arguments of the same graph. This complicates the comparison of existing semantics for 
weighted bipolar graphs. Another source of difficulty is the absence of formal principles that guide the well-definition and 
formal comparisons of semantics.

This paper focuses on the evaluation of arguments in weighted bipolar argumentation graphs. It extends our previous 
works on axiomatic foundations of semantics for unipolar graphs (support graphs [25] and attack graphs [26]). It defines 
principles that a semantics would satisfy in a bipolar setting. Such principles are very useful for judging and understanding 
the underpinnings of semantics, and also for comparing semantics of the same family, and those of different families. Some 
of the proposed principles are simple combinations of those proposed in [25,26]. Others are new and show how support 
and attack might be aggregated. The second contribution of the paper consists of analyzing existing semantics against 
the principles. The main conclusion is that extension semantics do not harness the potential of support relation. Indeed, 
when the attack relation is empty, the existing semantics declare all (supported, non-supported) arguments of a graph as 
equally accepted. Weighted semantics take into account supporters in this particular case, however they violate some key 
principles. The third contribution of the paper is the definition of a novel weighted semantics for the sub-class of acyclic 
bipolar graphs. We show that it satisfies all the proposed principles. Furthermore, it avoids the big jump problem that may 
impede the relevance of existing weighted semantics for practical applications, like dialogue.

The paper is structured as follows: Section 2 introduces basic notions, Section 3 presents our list of principles, Section 4
analyses existing semantics, and Section 5 introduces our new semantics and discusses its properties.

2. Main concepts

This section introduces the main concepts of the paper. Let us begin with the useful notion of weightings.

Definition 1 (Weighting). A weighting on a set X is a function from X to [0, 1].

Next, we introduce the argumentation graphs (called frameworks in the literature) we are interested in, namely weighted 
bipolar argumentation graphs (wBAGs).

Definition 2 (wBAG). A weighted bipolar argumentation graph (wBAG) is a quadruple A = 〈A, w, R, S〉, where A is a finite set 
of arguments, w a weighting on A, R ⊆A ×A, and S ⊆A ×A. Let wBAG denote the set of all possible wBAGs.

Given two arguments a and b, aRb (resp. aSb) means a attacks (resp. supports) b, and w(a) is the basic strength of a. The 
latter may represent various issues like the certainty degree of the argument’s premises, trustworthiness of the argument’s 
source, . . ..

We turn to the core concept of the paper. A semantics is a function transforming any weighted bipolar argumentation 
graph into a weighting on the set of arguments. The weight of an argument given by a semantics represents its overall 
strength. It is obtained from the aggregation of its basic strength and the overall strengths of its attackers and supporters. 
Arguments that get value 1 are extremely strong whilst those that get value 0 are worthless.

Definition 3 (Semantics). A semantics is a function S transforming any A = 〈A, w, R, S〉 ∈ wBAG into a weighting DegS
A

on A. Let a ∈A, DegS
A(a) denote the overall strength of a.

Let us recall the notion of isomorphism between graphs.

Definition 4 (Isomorphism). Let A = 〈A, w, R, S〉, A′ = 〈A′, w ′, R′, S ′〉 ∈ wBAG. An isomorphism from A to A′ is a bijective 
function f from A to A′ such that the following hold:
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• ∀ a ∈A, w(a) = w ′( f (a)),
• ∀ a, b ∈A, aRb iff f (a)R′ f (b),
• ∀ a, b ∈A, aSb iff f (a)S ′ f (b).

Let us recall the notion of path between two nodes in a graph.

Definition 5 (Path). Let A = 〈A, w, R, S〉 ∈ wBAG, and a, b ∈A. A path from b to a is a finite non-empty sequence 〈x1, . . . , xn〉
such that x1 = b, xn = a, and ∀i < n, xiRxi+1 or xiSxi+1.

Below is the list of all notations used in the paper.

Notations. Let A = 〈A, w, R, S〉 ∈ wBAG and a ∈A. We denote by AttA(a) the set of all attackers of a in A (i.e., AttA(a) =
{b ∈A | bRa}), and by sAttA(a) the set of all significant attackers of a, i.e., attackers x of a such that DegS

A(x) 	= 0. Similarly, 
we denote by SuppA(a) the set of all supporters of a (i.e., SuppA(a) = {b ∈ A | bSa}) and by sSuppA(a) the significant 
supporters of a, i.e., supporters x such that DegS

A(x) 	= 0.
Let now A′ = 〈A′, w ′, R′, S ′〉 ∈ wBAG be such that A ∩ A′ = ∅. We denote by A ⊕ A′ the element 〈A′′, w ′′, R′′, S ′′〉

of wBAG such that A′′ = A ∪ A′ , R′′ = R ∪ R′ , S ′′ = S ∪ S ′ , and ∀x ∈ A′′ , the following holds: w ′′(x) = w(x), if x ∈ A; 
w ′′(x) = w ′(x), if x ∈A′ .

3. Principles for semantics

In what follows, we propose principles that shed light on foundational choices made by semantics. In other words, 
properties that help us to better understand the underpinnings of semantics, and that facilitate their comparisons. The first 
nine principles are simple combinations of axioms proposed for graphs with only one type of interactions (support in [25], 
attack in [26]). The three next principles are new and show how the overall strengths of supporters and attackers of an 
argument might be aggregated, and the last one shows how to regulate the intensity of support in case of weighted bipolar 
argumentation graphs.

The first very basic principle, Anonymity, states that the strength of an argument is independent of its identity. It com-
bines the two Anonymity axioms from [25,26].

Principle 1 (Anonymity). A semantics S satisfies anonymity iff, for any A = 〈A, w, R, S〉, A′ = 〈A′, w ′, R′, S ′〉 ∈ wBAG, for any 
isomorphism f from A to A′ , the following property holds: ∀ a ∈A, DegS

A(a) = DegS
A′ ( f (a)).

Bi-variate independence principle states the following: the overall strength of an argument a should be independent of 
any argument b that is not connected to it (i.e., there is no path from b to a, ignoring the direction of the edges). This 
principle combines the two independence axioms from [25,26].

Principle 2 (Bi-variate Independence). A semantics S satisfies bi-variate independence iff, for all A = 〈A, w, R, S〉, A′ =
〈A′, w ′, R′, S ′〉 ∈ wBAG such that A ∩A′ = ∅, the following property holds: ∀ a ∈A, DegS

A(a) = DegS
A⊕A′ (a).

Bi-variate directionality principle combines Non-Dilution from [25] and Circumscription from [26]. It states that the 
overall strength of an argument should depend only on its incoming arrows, and thus not on the arguments it itself attacks 
or supports.

Principle 3 (Bi-variate Directionality). A semantics S satisfies bi-variate directionality iff, for all A = 〈A, w, R, S〉, A′ =
〈A′, w ′, R′, S ′〉 ∈ wBAG such that A =A′ , R ⊆R′ , and S ⊆ S ′ , the following holds: for all a, b, x ∈A, if R′ ∪S ′ =R ∪S ∪{(a, b)}
and there is no path from b to x, then DegS

A(x) = DegS
A′ (x).

Bi-variate Equivalence principle ensures that the overall strength of an argument depends only on its basic strength and 
on the overall strengths of its direct attackers and supporters. It combines the two equivalence axioms from [25,26].

Principle 4 (Bi-variate Equivalence). A semantics S satisfies bi-variate equivalence iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all 
a, b ∈A, if:

• w(a) = w(b),
• there exists a bijective function f from AttA(a) to AttA(b) such that ∀x ∈ AttA(a), DegS

A(x) = DegS
A( f (x)), and

• there exists a bijective function f ′ from SuppA(a) to SuppA(b) such that ∀x ∈ SuppA(a), DegS
A(x) = DegS

A( f ′(x)),

then DegS (a) = DegS (b).
A A
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Stability axiom combines Minimality [25] and Maximality [26] axioms. It states the following: if an argument is neither 
attacked nor supported, its overall strength should be equal to its basic strength.

Principle 5 (Stability). A semantics S satisfies stability iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for any a ∈A, if AttA(a) = SuppA(a) =
∅, then DegS

A(a) = w(a).

Neutrality axiom generalizes Dummy axiom [25] and Neutrality one from [26]. It states that worthless attackers or 
supporters have no effect.

Principle 6 (Neutrality). A semantics S satisfies neutrality iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a, b, x ∈A, if:

• w(a) = w(b),
• AttA(a) ⊆ AttA(b),
• SuppA(a) ⊆ SuppA(b),
• AttA(b) ∪ SuppA(b) = AttA(a) ∪ SuppA(a) ∪ {x}, and DegS

A(x) = 0,

then DegS
A(a) = DegS

A(b).

Bi-variate Monotony states the following: an argument is all the stronger when it is less attacked and more supported. 
This means that attacks cannot be beneficial to their targets and supports cannot be harmful. This axiom generalizes four 
axioms from the literature (Monotony and Counting [25] for supports, and the same axioms from [26] for attacks).

Principle 7 (Bi-variate Monotony). A semantics S satisfies bi-variate monotony iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a, b ∈A
such that:

• w(a) = w(b),
• AttA(a) ⊆ AttA(b),
• SuppA(b) ⊆ SuppA(a),

the following hold:

• DegS
A(a) ≥ DegS

A(b); (Monotony)
• if (DegS

A(a) > 0 and sAttA(a) ⊂ sAttA(b)) or (DegS
A(b) < 1 and sSuppA(b) ⊂ sSuppA(a)), then DegS

A(a) > DegS
A(b). 

(Strict Monotony)

The next axiom concerns the quality of attackers and supporters. It states that any argument becomes stronger if the 
quality of its attackers is reduced and the quality of its supporters is increased. It combines the two Reinforcement axioms 
from [25,26].

Principle 8 (Bi-variate Reinforcement). A semantics S satisfies bi-variate reinforcement iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all 
C, C ′ ⊆A, for all a, b ∈A, for all x, x′, y, y′ ∈A \ (C ∪ C ′) such that

• w(a) = w(b) > 0,
• DegS

A(x) ≤ DegS
A(y),

• DegS
A(x′) ≥ DegS

A(y′),
• AttA(a) = C ∪ {x},
• AttA(b) = C ∪ {y},
• SuppA(a) = C ′ ∪ {x′},
• SuppA(b) = C ′ ∪ {y′},

the following hold:

• DegS
A(a) ≥ DegS

A(b); (Reinforcement)
• if (DegS

A(a) > 0 and DegS
A(x) < DegS

A(y)) or (DegS
A(b) < 1 and DegS

A(x′) > DegS
A(y′)), then DegS

A(a) > DegS
A(b). 

(Strict Reinforcement)

We have shown previously that an attacker may weaken (respectively a supporter may strengthen) a target. However, 
nothing is said about the intensity of an attack or support, i.e., to what extent an attack or a support may impact a targeted 
argument. Can an attack completely kill an argument? Can a support fully rehabilitate a weak argument? The answers to 
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these questions depend on the nature of arguments. For instance, deductive arguments whose premises are information that 
may be true or false may be killed by attacks. Consider the two arguments A and B below.

(A) Tweety is a bird, therefore it flies.
(B) Tweety is a penguin, therefore the rule “birds fly” is not applicable.

Clearly, B undercuts A [27], and A may be fully rejected since the rule “birds fly” is indeed not applicable in the 
particular case of penguins. Consider now the two arguments C and D provided respectively by Paula and Paul:

(C ) Senor Taco has the best Mexican food, therefore we go there.
(D) Food is much better at COATL restaurant.

The argument D denies the premise of C . However, both arguments are based on personal opinions of Paula and Paul 
and there is no reason for fully rejecting C .

The same reasoning holds for support relations. Indeed, in some cases it is reasonable to fully rehabilitate an argument 
with supporters. However, irrational behaviors, like fully accepting fallacious arguments that are supported are also possible 
and should be avoided. The argument E below remains fallacious even if it is clearly supported by the argument F .

(E) Tweety needs fuel, since it flies like planes.
(F ) Indeed, Tweety flies. It is a bird.

In this paper, arguments are abstract entities and thus their internal structure, content, and nature are unspecified. Thus, 
it is not possible to distinguish between cases where killing is suitable for attacks and cases where it is not. Similarly, cases 
of full rehabilitation of support cannot be identified. Thus, in this paper we follow a cautious approach by avoiding both 
forms (killing, full rehabilitation). For that purpose, we combine Imperfection axiom from [25] with Resilience axiom from 
[26]. Imperfection states that an argument whose basic strength is less than 1 cannot be fully rehabilitated by supports. 
In other words, it cannot get an overall strength 1 due to supports. Resilience in [26] states that an argument whose basic 
strength is positive cannot be completely destroyed by attacks. Unlike the previous principles, the next one is not mandatory 
since its suitability depends on the nature of arguments being evaluated.

Principle 9 (Resilience). A semantics S satisfies resilience iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a ∈ A, if 0 < w(a) < 1, then 
0 < DegS

A(a) < 1.

Resilience forbids an argument from getting an overall strength equal to 1 due simply to supporters. However, it allows 
an argument whose basic weight is, for instance, 0.1 to get an overall strength 0.9 if it is supported by one strong argument. 
This phenomenon, called big jump, may be undesirable. Consider the analogical arguments G and H below:

(G) Both restaurants X and Y are Italian, X serves good food, therefore Y serves good food as well.
(H) The two restaurants X and Y use the same products.

The link between the conclusion and the premises in G is clearly very weak. Strengthening this analogical argument 
amounts to finding important additional similarities between the compared objects (namely X and Y ). However, pointing 
out one very important similarity may not be sufficient for making G very strong. The argument H supports G since it 
points out one additional similarity between the two restaurants. However, even if H is very strong (its premises are true, 
and it is not attacked), the link in G is still weak since the two restaurants may not have the same chef de cuisine. Thus, if 
the basic weight of G was initially 0.1 (due to its weak link), its overall strength cannot become for instance 0.9 simply due 
to H .

As for Resilience, there are cases where a weak argument may become very strong due to a single supporter. However, 
since arguments are abstract entities in our setting, we follow a cautious approach by forbidding big jumps between the 
basic weight of an argument and its overall strength. The next principle is also about the intensity of support. It aims 
at preventing supporters from having an exaggerated impact on their targets. More precisely, the idea is the following: if 
we add a new supporter (of any strength) to an argument A, then the distance between the strength of A and 1 cannot 
be reduced more than the half. This halfway philosophy seems to well-balance freedom of movement and prevention of 
exaggerated movements. It is worth mentioning that this principle concerns the impact of a single supporter, and does not 
prevent a weak argument from becoming very strong due to the combined effect of several supporters.

Principle 10 (Inertia). A semantics S satisfies inertia iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a, b, x ∈A, if

• w(a) = w(b),
• SuppA(b) = SuppA(a) ∪ {x},
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• AttA(b) = AttA(a),

then DegS
A(b) ≤ DegS

A(a) + [1 − DegS
A(a)]/2.

The next three axioms answer the same question: how the overall strengths of attackers and supporters of an argument 
are aggregated? To answer this question, it is important to specify first which of the two types of interactions is more 
important. There are three options:

• Attacks are as important as supports,
• Attacks are more important than supports,
• Supports are more important than attacks.

The first option makes perfect sense in a decision making context. Indeed, in multiple criteria decision making, each 
argument promotes a criterion (see e.g., [28,29]). A supporter is an argument showing that a criterion is satisfied while an 
attacker shows a criterion that is violated. In this context, if an attacker and a supporter of the same argument have equal 
strength, they counter-balance each other. This principle is used in [28] for aggregating arguments of options/alternatives in 
decision making context. In another context like reasoning with inconsistent/defeasible information, supporters (respectively 
attackers) aim at confirming (respectively denying) parts of an argument. Thus, the exact part that is confirmed/denied plays 
a role. However, even if a supporter and an attacker target the same part, they do not necessarily counter-balance each 
other. Consider again the previous analogical argument G . Assume that it is supported by H and attacked by the following 
argument I:

(I) The two restaurants X and Y have different chef de cuisine.

Even if we assume that I is as strong as H (because for instance they both use certain information and are not attacked), 
the analogy used in G is weakened since there is one important feature on which the two compared restaurants X and Y
differ. Please recall that an analogy is all the stronger when the number of “important” properties shared between X and 
Y is high and the number of different important properties is low. This example suggests that attacks take precedence over 
supports.

The third option (supports take precedence over attack) is not reasonable. An argument can be seen as a chain made of 
different components (premises, conclusion, link). Attacking one of the components is sufficient for weakening or destroying 
the whole chain. However, supporting one element of the chain does not necessarily make an argument strong. Thus, an 
attack cannot be ignored even in presence of (several) supporters.

The next principle captures the two first options. Franklin principle states that a supporter may never be more im-
portant than an attacker of equal strength while Strict Franklin states that an attacker and a supporter of equal strength 
counter-balance each other.

Principle 11 (Franklin). A semantics S satisfies Franklin iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a, b, x, y ∈A, if

• w(b) = w(a),
• DegS

A(x) = DegS
A(y)

• AttA(a) = AttA(b) ∪ {x},
• SuppA(a) = SuppA(b) ∪ {y},

then the following hold:

• DegS
A(a) ≤ DegS

A(b), (Franklin)
• DegS

A(a) = DegS
A(b). (Strict Franklin)

We show that attacks and supports of equal strengths eliminate each other when a semantics satisfies Strict Franklin.

Proposition 1. Let S be a semantics that satisfies Bi-variate Independence, Bi-variate Directionality, Stability and Strict Franklin. For 
any A = 〈A, w, R, S〉 ∈ wBAG, for any a ∈A, if there exists a bijective function f from AttA(a) to SuppA(a) such that ∀x ∈ Att(a), 
DegS

A(x) = DegS
A( f (x)), then DegS

A(a) = w(a).

Weakening states that if attackers overcome supporters, the argument should lose weight. The idea is that supports are 
not sufficient for counter-balancing attacks. Please note that this does not mean that supports will not have an impact on 
the overall strength of an argument. They may mitigate the global loss due to attacks.

Principle 12 (Weakening). A semantics S satisfies weakening iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a ∈ A, if w(a) > 0 and 
there exists an injective function f from SuppA(a) to AttA(a) such that:
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• ∀x ∈ SuppA(a), DegS
A(x) ≤ DegS

A( f (x)); and
• sAttA(a) \ { f (x) | x ∈ SuppA(a)} 	= ∅ or ∃x ∈ SuppA(a) s.t. DegS

A(x) < DegS
A( f (x)),

then DegS
A(a) < w(a).

Strengthening states that if supporters overcome attackers, the argument should gain weight. Indeed, attacks are not 
sufficient for counter-balancing supports, however, they may mitigate the global gain due to supports.

Principle 13 (Strengthening). A semantics S satisfies strengthening iff, for any A = 〈A, w, R, S〉 ∈ wBAG, for all a ∈ A, if w(a) < 1
and there exists an injective function f from AttA(a) to SuppA(a) such that:

• ∀x ∈ AttA(a), DegS
A(x) ≤ DegS

A( f (x)); and
• sSuppA(a) \ { f (x) | x ∈ AttA(a)} 	= ∅ or ∃x ∈ AttA(a) s.t. DegS

A(x) < DegS
A( f (x)),

then DegS
A(a) > w(a).

It is worth mentioning that weakening and strengthening generalize their corresponding axioms in [25,26]. Indeed, when 
the support relation is empty, bipolar version of weakening coincides with weakening axiom in [26]. However, it handles 
additional cases when supports exist. Similarly, when the attack relation is empty, the principle coincides with strengthening 
axiom in [25].

Almost all axioms are independent, i.e., they do not follow from others. Notable exceptions are Bi-variate Monotony 
which follows from five other principles (namely Bi-variate Independence, Bi-variate Directionality, Stability, Neutrality and 
Bi-variate Reinforcement) and Franklin which follows from Strict Franklin.

Proposition 2. Let S be a semantics.

• If S satisfies Bi-variate Independence, Bi-variate Directionality, Stability, Neutrality and Bi-variate Reinforcement, then S satisfies 
Bi-variate Monotony.

• If S satisfies Strict Franklin, then S satisfies Franklin.

All axioms are compatible, i.e., they can be satisfied all together by a semantics.

Proposition 3. All the axioms are compatible.

4. Formal analysis of existing semantics

There are several proposals in the literature for the evaluation of arguments in bipolar argumentation graphs. They can 
be partitioned into two families: extension semantics [14–18,30,31] and weighted semantics [22–24,32,33].

Extension semantics extend Dung’s ones [6] for accounting for supports between arguments. They take as input flat
bipolar argumentation graphs, i.e., graphs where arguments have all the same basic strength.

Definition 6 (Flat Bipolar Graphs). A flat bipolar argumentation graph is an element 〈A, w, R, S〉 ∈ wBAG such that for any 
a ∈A, w(a) = 1.

The first work on extension semantics in the bipolar context was done by Cayrol and Lagasquie in [14]. The authors 
argued that two kinds of attacks may emerge from a bipolar graph: supported attacks and secondary ones.

Definition 7 (Complex Attacks). Let 〈A, w, R, S〉 ∈ wBAG be a flat bipolar argumentation graph, and a, b ∈ A.

• There is a supported attack from a to b iff there is a sequence a1R1 . . .Rn−1an , n ≥ 3, with a1 = a, an = b, for any 
i = 2, . . . , n − 2, Ri = S and Rn−1 =R.

• There is a secondary attack from a to b iff there is a sequence a1R1 . . .Rn−1an , n ≥ 3, with a1 = a, an = b, R1 =R, and 
for any i = 2, . . . , n − 2, Ri = S .

Let Rc denote the set of all attacks of R and the supported/secondary ones; i.e., Rc =R ∪ {(a, b) | there exists a supported
or secondary attack from a to b}.

Example 1. Consider the flat bipolar argumentation graph depicted in Fig. 1. Dashed lines represent support relations and 
plain lines represent attack ones.

There is a supported attack from argument e to a (e S c R a) and a secondary attack from f to b ( f R d S b).
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Fig. 1. Bipolar graph A1.

Extension semantics look for acceptable sets of arguments, called extensions in [6]. Each extension represents a coherent 
position, thus it should satisfy a coherence property, called conflict-freeness, and a defence one. The former ensures that an 
extension does not contain conflicting arguments, while the latter requires that an extension defends its elements against 
any attack. These two properties were extended in [14] for accounting for complex attacks that may emerge in flat bipolar 
argumentation graphs.

Definition 8 (Conflict-freeness–Safety–Defence). Let 〈A, w, R, S〉 ∈ wBAG be a flat bipolar argumentation graph, and E ⊆A.

• E is conflict-free iff �a, b ∈ E such that aRcb.
• E is safe iff �a, b, c ∈A such that:

– a, b ∈ E ,
– bSc or c ∈ E , and
– aRcc.

• E defends an argument a ∈ A iff for any b ∈A, if bRca, then ∃c ∈ E such that cRcb.

Example 1. In the graph A1, the set {e, c} is safe while the set {e, c, f } is not since it both supports and attacks the 
argument b.

Definition 9 (Extensions). Let A = 〈A, w, R, S〉 ∈ wBAG be a flat bipolar argumentation graph, and E ⊆A.

• E is a stable extension iff E is conflict-free and for any a /∈ E , there exists c ∈ E such that cRca.
• E is a d-preferred extension iff E is maximal (for set inclusion) among the sets that are conflict-free and defend all their 

elements.
• E is a s-preferred extension iff E is maximal (for set inclusion) among the sets that are safe and defend all their elements.

Let Extx(A) denote the set of all extensions of A under semantics x (x being stable, or d-preferred, or s-preferred).

Throughout this section, we refer to the three above semantics by reviewed semantic.

Example 1 (Cont.). The graph A1 has one stable and d-preferred extension: {e, c, f }. It has however two s-preferred exten-
sions: {e, c} and { f }.

Once extensions are computed, in [7,34–37], a three-valued qualitative overall strength is assigned to every argument as 
follows: an argument is accepted if it belongs to all extensions, undecided (or credulously accepted) if it belongs to some but 
not all extensions, and rejected if it does not belong to any extension. For the purpose of analyzing these semantics against 
the principles, we replace the three qualitative values with numerical ones as follows.

Definition 10 (Argument’s overall strength). Let A = 〈A, w, R, S〉 ∈ wBAG be a flat bipolar argumentation graph, a ∈ A, and x
is one of the reviewed semantics.

• Degx
A(a) = 1 iff a ∈ ⋂

E∈Extx(A)

E . (Accepted argument)

• Degx
A(a) = 0.5 iff ∃E, E ′ ∈ Extx(A) such that a ∈ E and a /∈ E ′ . (Undecided argument)

• Degx
A(a) = 0 iff a /∈ ⋃

E∈Extx(A)

E . (Rejected argument)

When the attack relation is empty, any flat bipolar argumentation graph has a single extension, which contains all the 
arguments. Thus, all arguments have the same overall strength.

Proposition 4. Let A = 〈A, w, R, S〉 ∈ wBAG be a flat bipolar argumentation graph. If R = ∅, then for any x ∈ {stable, d-preferred,

s-preferred},
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Fig. 2. Bipolar graph A2.

• Extx(A) = {A}.
• For any a ∈A, Degx

A(a) = 1.

This means that when the attack relation is empty, the support relation does not play any role, and a supported argument 
is as acceptable as a non-supported one.

Example 2. Let us consider the flat bipolar argumentation graph depicted in Fig. 2. This graph has one stable, d-preferred, 
s-preferred extension: {a, b, c, d, e, f }. Hence, all the six arguments get value 1. Note that b which has 2 supporters is as 
strong as d, e, f which are not supported at all.

It was shown in [14] that when the support relation is empty, the three semantics of Definition 9 coincide with Dung’s 
ones. Consequently, each semantics violates the same axioms as its basic version in [6]. Note that in [26], a formal analysis 
of Dung’s semantics is done for flat attack graphs. The following result summarizes the axioms that are violated.

Proposition 5. Stable semantics violates Stability, Bi-variate Independence, and Bi-variate Directionality. The three semantics violate 
Bi-variate Equivalence, Neutrality, Resilience, Strict Monotony, Strict Reinforcement, Franklin and Strengthening.

It is worth mentioning that Inertia axiom does not apply to extension semantics since they allow only three values as 
possible overall strengths of arguments.

The approaches developed in [15–18] are similar to the one by Cayrol and Lagasquie. They also coincide with Dung’s 
framework in case the support relation is empty. Furthermore, when the attack relation is empty, the approaches in [16,
18] return a single extension. The latter contains the arguments that do not belong to any cycle. Thus, they also violate 
strengthening and the support relation may not be fully exploited in the evaluation of arguments. They also violate the 
same set of axioms as the approach of Cayrol and Lagasquie.

The second family of weighted semantics was introduced for the first time in [24]. In their paper, the authors presented 
some properties that such semantics should satisfy (like a particular case of strengthening). However, they did not define 
concrete semantics. To the best of our knowledge, the first weighted semantics was introduced in [32]. Basic weights of 
arguments represent positive and negative votes on arguments. The semantics evaluates in the same way but separately the 
attackers and supporters of an argument before aggregating them.

Definition 11. Let A = 〈A, w, R, S〉 ∈ wBAG and a ∈A. Let AttA(a) = {b1, . . . , bn} and SuppA(a) = {s1, . . . , sk}.

DegS
A(a) =

⎧⎪⎪⎨
⎪⎪⎩

w(a) if SuppA(a) = AttA(a) = ∅
fa(a) if SuppA(a) = ∅ and AttA(a) 	= ∅
f s(a) if SuppA(a) 	= ∅ and AttA(a) = ∅
fa(a)+ fs(a)

2 otherwise

where

fa(a) = w(a) × (1 − m(b1, . . . ,bn))

and

f s(a) = w(a) + (w(a) − w(a) × (1 − m(s1, . . . , sk)))

and

m(x1, . . . , x j) =
{

0 if j = 0
DegS

A(x1) + m(x2, . . . , x j) − DegS
A(x1) × m(x2, . . . , x j) otherwise

This semantics was proposed for any typology of graphs. However, it is easy to see that it does not handle correctly 
cycles. Assume a simple graph with two arguments a and b such that a attacks b and b attacks a. Assume also that 
w(a) = w(b) = 1. It is easy to check that this semantics assigns to each argument any solution of the equation DegS

A(a) +
DegS

A(b) = 1, hence an infinite number of values. This shows that the semantics is not well-defined.
Later in [22], QuAD semantics was introduced for evaluating arguments in acyclic weighted argumentation graphs.
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Fig. 3. Bipolar graph A3.

Definition 12 (Acyclic Graphs). A weighted bipolar argumentation graph A = 〈A, w, R, S〉 ∈ wBAG is acyclic iff the following 
holds: for any non-empty finite sequence a = 〈a1, a2, . . . , an〉 of elements of A, if ∀i ∈ {1, 2, . . . , n − 1}, 〈ai, ai+1〉 ∈ R ∪ S , 
then 〈an, a1〉 /∈R ∪ S .

Since a semantics takes as input any graph, we need to introduce the notion of restricted semantics. All notations and 
principles for semantics are straightforwardly adapted to restricted semantics.

Definition 13 (Restricted semantics). A restricted semantics is a function S transforming any acyclic A = 〈A, w, R, S〉 ∈ wBAG
into a weighting on A.

QuAD is then a restricted semantics which assigns a numerical value to every argument on the basis of its basic strength, 
and the overall strengths of its attackers and supporters. It evaluates separately the supporters (by a function f s) and the 
attackers (by a function fa) before aggregating them.

Definition 14 (QuAD). Let A = 〈A, w, R, S〉 be an acyclic weighted bipolar argumentation graph. For any a ∈ A,

DegQuADA (a) =

⎧⎪⎪⎨
⎪⎪⎩

fa(a) if SuppA(a) = ∅ and AttA(a) 	= ∅
f s(a) if SuppA(a) 	= ∅ and AttA(a) = ∅
w(a) if SuppA(a) = ∅ and AttA(a) = ∅
fa(a)+ fs(a)

2 otherwise

where

fa(a) = w(a) ×
∏

biRa

(1 − DegQuADA (bi))

and

f s(a) = 1 − (1 − w(a)) ×
∏
ciSa

(1 − DegQuADA (ci))

Example 3. Consider the acyclic bipolar argumentation graph depicted in Fig. 3.
It can be checked that DegQuADA3

(a) = 0.422, DegQuADA3
(b1) = DegQuADA3

(b2) = 0.8, and DegQuADA3
(b3) = 0.9.

The following result summarizes the principles that are satisfied (respectively violated) by QuAD.

Proposition 6. The following properties hold.

• QuAD satisfies Anonymity, Bi-variate Independence, Bi-variate Directionality, Bi-variate Equivalence, Stability, Neutrality, 
Monotony, Reinforcement.

• QuAD violates Strict Monotony, Strict Reinforcement, Resilience, Franklin, Weakening, Strengthening, and Inertia.

As a consequence of violating Weakening and Strengthening, QuAD may behave irrationally. Indeed, choosing which of 
support and attack should take precedence depends on the intrinsic strength of an argument.

Example 3 (Cont.). Consider the weighted bipolar argumentation A3 depicted in Fig. 3. The argument a has an attacker and a 
supporter of equal strengths, and an additional attacker b3. Note that if w(a) = 0.2, then DegQuADA3

(a) = 0.422 meaning that 
the single supporter is privileged to the two attackers. However, if w(a) = 0.7, DegQuADA3

(a) = 0.477 meaning that attacks are 
privileged to support. More generally, we can show that if w(a) ≥ 0.5, then DegQuAD(a) < w(a), else DegQuAD(a) > w(a).
A3 A3
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Fig. 4. Bipolar graph A4.

As a consequence of violating Inertia, QuAD may allow big jumps in gains from supports, and thus a fallacious argument 
may become very strong if it is supported by a strong argument. Let us illustrate the issue with the following example.

Example 4. Consider the weighted bipolar argumentation graph depicted in Fig. 4.
Note that the initial strength of a is extremely weak. It can be checked that DegQuADA4

(a) = 1. Indeed, a strong supporter 
makes a very weak argument very strong.

There are two issues with such big jump: First, the gain is enormous and not reasonable. Assume that a is the argument 
“Tweety needs fuel, since it flies like planes”. It is hard to accept a even when supported. The supporter may increase 
slightly the strength of the argument but does not correct the wrong premises of the argument. Second, such jump impedes 
the discrimination between different cases where w(a) > 0.001 since whatever the value of w(a), the overall strength is 
almost 1.

QuAD was recently extended to DF-QuAD in [23]. The new semantics is restrictive since it focuses also on acyclic graphs. 
Unlike QuAD, it uses the same function for aggregating supporters and attackers separately. It satisfies Strict Franklin axiom, 
thus it treats equally attacks and supports. It violates Strengthening and Weakening in presence of attackers/supporters of 
degree 1. However, the semantics avoids the irrational behavior of QuAD.

Definition 15 (DF-QuAD). Let A = 〈A, w, R, S〉 ∈ wBAG be an acyclic weighted bipolar argumentation graph and a ∈ A. Let 
SuppA(a) = {c1, . . . , cn} and AttA(a) = {b1, . . . , bm}.

DegDFA (a) =
{

w(a) − w(a) × |F(x) −F(y)| if F(y) ≥ F(x)
w(a) + (1 − w(a)) × |F(x) −F(y)| if F(y) < F(x)

where

x = F(DegDFA (c1), . . . ,Deg
DF
A (cn))

y = F(DegDFA (b1), . . . ,Deg
DF
A (bm))

F(v1, . . . , vk) =
{

0 if k = 0
1 − ∏k

i=1(1 − vi) otherwise

Proposition 7. The following properties hold.

• DF-QuAD satisfies Anonymity, Bi-variate Independence, Bi-variate Directionality, Bi-variate Equivalence, Stability, Neutrality, 
Monotony, Reinforcement, and Franklin.

• DF-QuAD violates Strict Monotony, Strict Reinforcement, Resilience, Weakening, Strengthening, and Inertia,.

Like QuAD, the restricted semantics DF-QuAD suffers from the big jump problem. Consider the graph depicted in Fig. 4. 
Note that the argument a has a very low basic strength (w(a) = 0.1). This argument is supported by the very strong 
argument b. According to DF-QuAD, DegDFA4

(a) = 0.991. Thus, the value of a makes a big jump from 0.1 to 0.991. Ta-
ble 1summarizes the properties of the discussed semantics.

In [33] the authors investigated weighted bipolar argumentation graphs and how arguments can be evaluated in such 
graphs. They defined principles which are similar to ours since they also generalized the ones proposed in [25,26]. They also 
provided six novel ones (neutralization, continuity, interchangeability, linearity, reverse impact, boundedness). The authors 
proposed also semantics that satisfy all or some principles. The first semantics, called Direct Aggregation Semantics, is a 
function that is based on a damping factor and that computes the values of arguments in an iterative way. The sequence of 
values converges in case the damping factor is greater than the in-degree of the argumentation graph. Direct Aggregation 
Semantics is thus graph-dependent; it changes from one graph to another since it should check the in-degree of the latter. 
This semantics does not thus evaluate arguments in a uniform way. In our paper, we argue that a semantics should be 
applied in a uniform way to any family of graphs and should not change from one graph to another. The second semantics, 
called Sigmoid directed aggregation semantics, is an adaptation of the first one in a way that the final values of arguments 
are in the interval (0, 1) rather than in the set of real numbers. It is thus well-defined in a particular case. The third 
semantics uses a function, called Recursive Sigmoid Aggregation Function, it is based on the previous one for capturing two 
semantics from [0, 1]. This function does not converge in general. The two other semantics (recursive damped aggregation 
and Damped dogged) are discussed very briefly and their convergences are not shown yet.
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Table 1
The symbol • (resp. ×, !) stands for satisfied (resp. violated, not applicable).

Family of semantics Extension semantics Gradual semantics

Cyclic + acyclic graphs Acyclic graphs Acyclic non-maximal graphs

Stable s-Preferred d-preferred QuAD DF-QuAD DF-QuAD Ebs

Anonymity • • • • • • •
Bi-variate Independence × • • • • • •
Bi-variate Directionality × • • • • • •
Bi-variate Equivalence × × × • • • •
Stability × • • • • • •
Neutrality × × × • • • •
Monotony • • • • • • •
Strict Monotony × × × × × × •
Reinforcement • • • • • • •
Strict Reinforcement × × × × × × •
Resilience × × × × × × •
Inertia ! ! ! × × × •
Franklin • • • × • • •
Strict Franklin × × × × • • •
Weakening • • • × × • •
Strengthening × × × × × • •

5. Exponent-based semantics

As shown in the previous sections, no existing semantics satisfies all our principles together. The goal of the present 
section is to handle this issue. More precisely, we construct a new semantics satisfying all principles, but at the cost of a 
certain degree of coverage. Indeed, we only consider non-maximal and acyclic weighted argumentation graphs.

Definition 16 (Non-maximality). A weighted bipolar argumentation graph A = 〈A, w, R, S〉 ∈ wBAG is non-maximal iff ∀a ∈
A, w(a) < 1.

Without loss of generality, the basic strengths of arguments are less than 1. Note that few arguments are intrinsically 
perfect. The probability of false information, exceptions, etc., is rarely 0. In contrast, the loss of cyclic graphs is important. 
But, we consider that the class of all acyclic non-maximal weighted bipolar graphs is expressive enough to deserve attention.

Definition 17 (Restricted semantics). A restricted semantics is a function S transforming any acyclic non-maximal weighted 
bipolar argumentation graph A = 〈A, w, R, S〉 ∈ wBAG into a weighting on A.

Before presenting our semantics, we need to introduce a relation between arguments based on the longest paths to reach 
them (mixing support and attack arrows).

Definition 18 (Well-founded relation). Let A = 〈A, w, R, S〉 ∈ wBAG be an acyclic weighted bipolar argumentation graph 
and a ∈ A. A path to a in A is a non-empty finite sequence a = 〈a1, a2, . . . , an〉 of elements of A such that an = a and 
∀i ∈ {1, 2, . . . , n − 1}, 〈ai, ai+1〉 ∈R ∪S . We denote by Rel(A) the well-founded binary relation ≺ on A such that ∀x, y ∈A, 
x ≺ y iff max{n | there exists a path to x of length n} < max{n | there exists a path to y of length n}. Since A is acyclic, 
those maximum lengths are well-defined, so is Rel(A).

We are ready to define the Exponent-based restricted semantics. The general idea is to take into account supporters and 
attackers in an exponent E of 2 (the smallest natural number that can be effectively exponentiated). More precisely, the 
stronger or more-numerous the supporters, the greater and more-likely-positive that exponent. Obviously, the inverse is 
true with the attackers. Then, the overall strength of an argument a is naturally defined as w(a)2E . Finally, we need certain 
tweakings (including a double polarity reversal) to make our function a restricted semantics in the first place, and to have 
it satisfy all our axioms. More formally:

Definition 19 (Exponent-based restricted semantics). We denote by Ebs the restricted semantics such that for any acyclic 
non-maximal weighted bipolar argumentation graph A = 〈A, w, R, S〉 ∈ wBAG, Ebs(A) is the weighting f on A recursively 
defined with Rel(A) as follows: ∀a ∈ A,

f (a) = 1 − 1 − w(a)2

1 + w(a)2E
where E =

∑
x∈Supp(a)

f (x) −
∑

x∈Att(a)

f (x).
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Fig. 5. Bipolar graph A5.

As an immediate corollary, we have:

Corollary 1. Let A = 〈A, w, R, S〉 be an acyclic non-maximal weighted bipolar argumentation graph and a ∈A. The following holds:

DegEbsA (a) = 1 − 1 − w(a)2

1 + w(a)2E
where E =

∑
x∈Supp(a)

DegEbsA (x) −
∑

x∈Att(a)

DegEbsA (x).

Below is an example where most principles are exemplified. Every circle contains [argument name]:[intrinsic strength] 
and below [overall strength].

Example 5. The neutrality principle can be checked with g and e, stability with e.g. d, bivariate monotony with a and b, 
bivariate reinforcement with b and c, Imperfection with i, Strict Franklin with a, weakening with e.g. b, and strengthening 
with i.

Proposition 8. Ebs satisfies all the 13 principles.

Note that being supported by an extremely strong argument does not cause a weak argument to become extremely 
strong as well, which shows that Ebs does not suffer from the big jump problem (indeed, it satisfies inertia). Note that 
DegEbsA5

(i) = 0.17 and thus the jump is not big. Note also that by satisfying Weakening and Strengthening, the semantics 
avoids the irrational behavior of QuAD.

6. Conclusion

The paper presented for the first time principles that serve as guidelines for defining semantics in weighted bipolar set-
tings. It also analyzed existing semantics with regard to the principles. The results revealed that extension-based semantics 
like [14–18] fail to satisfy key properties like independence and directionality. Furthermore, the role of support relation is 
a bit ambiguous since in case the attack relation is empty, the argumentation graph has a single extension containing all 
the arguments. This means that supported and non-supported arguments are all equally acceptable. Weighted semantics 
defined in [22,23] for the subclass of acyclic weighted bipolar graphs satisfy more but not all the principles. We proposed a 
novel semantics which satisfies all the 13 principles. However, this semantics deals only with acyclic graphs.

An urgent future work would be to define a semantics which considers arbitrary graphs. Note that there is no such 
semantics in the literature. We also plan to investigate additional properties where attacks and supports do not have the 
same importance. Indeed, in some applications like handling inconsistency, it is generally the case that an attack is more 
important than a support. Thus, Strict Franklin is not suitable for such application. Another future work consists of investi-
gating graphs were supports are weighted. Such graphs allow a better encoding of relevance of supporters with regard their 
targets, and consequently the intensity of supports can be better captured.
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Fig. 6. Bipolar graph A6.

Appendix A. Proofs

Proof of Proposition 1. Let S be a semantics that satisfies Bi-variate Independence, Bi-variate Directionality, Stability and 
Strict Franklin. Let A = 〈A, w, R, S〉 and a ∈A such that there exists a bijective function f from AttA(a) to SuppA(a) such 
that ∀x ∈ Att(a), DegS

A(x) = DegS
A( f (x)). Let AttA(a) = {a1, . . . , an} and SuppA(a) = {s1, . . . , sn}.

Let A = 〈A′, w ′, R′, S ′〉 be such that A′ = A ∪ {y1, . . . , yn}, with {y1, . . . , yn} ⊆ Args \ A, ∀x ∈ A, w ′(x) = w(x), ∀i =
1, . . . , n, w ′(yi) = w(a), R′ =R and S ′ = S . From Bi-variate Independence of S, for any x ∈A, DegS

A′ (x) = DegS
A(x).

Let now A = 〈A′′, w ′′, R′′, S ′′〉 be such that A′′ =A′ , w ′′ = w ′ , R′′ =R′ ∪{(ai, y j) | aiRa, j ∈ {2, . . . , n}, i ∈ {1, . . . , j −1}}, 
and S ′′ = S ′ ∪{(si, y j) | siSa, j ∈ {2, . . . , n}, i ∈ {1, . . . , j −1}}. Note that each yi does not attack/support any other argument. 
Thus, from Bi-variate Directionality, it follows that ∀x ∈ A, DegS

A′′ (x) = DegS
A′ (x), thus DegS

A′′ (x) = DegS
A(x).

Since DegS
A′′ (a1) = DegS

A′′(s1), from Franklin, it follows that DegS
A′′ (y1) = DegS

A′′(y2). From Stability, DegS
A′′ (y1) = w(a). 

By applying recursively Strict Franklin, we get DegS
A′′(y1) = DegS

A′′ (a) = DegS
A(a) = w(a). �

Proof of Proposition 2. Let S be a semantics, which satisfies Bi-variate Independence, Bi-variate Directionality, Stability, 
Neutrality and Bi-variate Reinforcement. Let us show that S satisfies also Bi-variate Monotony.

Let A = 〈A, w, R, S〉 be a weighted bipolar argumentation graph, and a, b ∈ A such that:

• w(a) = w(b) > 0,
• AttA(a) ⊆ AttA(b),
• SuppA(b) ⊆ SuppA(a).

Assume that AttA(b) = AttA(a) ∪ Y , SuppA(a) = SuppA(b) ∪ X , |Y | = n, and |X | = m. Let A = 〈A′, w ′, R′, S ′〉 be such that 
A′ = A ∪ {a′, b′, y1, . . . , yn, x1, . . . , xm} with {a′, b′, y1, . . . , yn, x1, . . . , xm} ⊆ Args \A, ∀z ∈ A, w ′(z) = w(z), w ′(a′) = w(a), 
w ′(b′) = w(b), ∀i = 1, . . . , n, w ′(yi) = 0, ∀i = 1, . . . , m, w ′(xi) = 0, R′ = R and S ′ = S . From Bi-variate Independence of S, 
for any x ∈A, DegS

A′ (x) = DegS
A(x).

Let now A = 〈A′′, w ′′, R′′, S ′′〉 be such that A′′ = A′ , w ′′ = w ′ , R′′ = R′ ∪ {(x, a′) | xRa} ∪ {(yi, a′) | i = 1, n} ∪
{(x, b′) | xRb}, and S ′′ = S ′ ∪{(x, a′) | xSa} ∪{(x, b′) | xSb} ∪{(xi, b′) | i = 1, m}. Note that a′ and b′ do not attack/support any 
other argument. Thus, from Bi-variate Directionality, it follows that ∀x ∈A, DegS

A′′ (x) = DegS
A′ (x), thus DegS

A′′ (x) = DegS
A(x). 

From stability, for any i ∈ {1, . . . , n}, DegS
A′′(yi) = 0, and similarly, for any i ∈ {1, . . . , m}, DegS

A′′ (xi) = 0. Thus, from Neutral-
ity, DegS

A′′ (a′) = DegS
A′′ (a) = DegS

A(a), and DegS
A′′ (b′) = DegS

A′′(b) = DegS
A(b). From Reinforcement, DegS

A′′ (a′) ≥ DegS
A′′ (b′), 

hence DegS
A(a) ≥ DegS

A(b).
Let S satisfy Strict Franklin. Let A = 〈A, w , R, S〉 ∈ wBAG and let a, b, x, y ∈A be such that:

• w(b) = w(a),
• DegS

A(x) = DegS
A(y),

• AttA(a) = AttA(b) ∪ {x},
• SuppA(a) = SuppA(b) ∪ {y}.

Since S satisfies Strict Franklin, then DegS
A(a) = DegS

A(b). Thus, S satisfies Franklin. �
Proof of Proposition 3. Euler-based semantics satisfies all the axioms. �
Proof of Proposition 4. Let A = 〈A, w, R, S〉 be a flat bipolar argumentation graph such that R = ∅. It follows straightfor-
wardly from Definition 8 that for any set E ⊆ A, E is both conflict-free and safe. From Maximality of extensions, A is the 
only stable (resp. d-preferred and s-preferred) extension. Finally, it follows that any a ∈ A, Degx

G(a) = 1. �
Proof of Proposition 5. Since the three semantics generalize Dung’s ones with a support relation, then any axiom violated 
by Dung’s semantics is also violated by their extended versions. Consider then the counter-examples given in [26]. From 
graph A2 (Fig. 2), it is also clear that Strengthening is violated by the three semantics. Let us consider the following simple 
graph A6 (depicted in Fig. 6) to show that the 3 semantics violate Franklin.
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Fig. 7. Bipolar graph A7.

Fig. 8. Bipolar graph A8.

Fig. 9. Bipolar graph A9.

Fig. 10. Bipolar graph A10.

This graph has one stable (respectively d-preferred, s-preferred) extension {a, c, d}. Thus, Degx
G(a) = 1 while Degx

G(b) =
0. �
Proof of Proposition 6. The satisfied axioms were proved in [22]. In order to show that QuAD violates Inertia, it is sufficient 
to consider Example 4.

To show that QuAD violates Resilience, consider the argumentation graph depicted in Fig. 7. It can be checked that 
DegQuADA7

(b) = 0 while w(b) > 0.
To show that QuAD violates Strict Franklin principle, consider the bipolar argumentation graph depicted in Fig. 8. Note 

that DegQuADA8
(a) = 0.55 < w(a). Assume now that w(a) = 0.4. Hence, DegQuADA8

(a) = 0.45 > w(a), which shows that QuAD 
violates Franklin.

To show that QuAD violates Strict Monotony, consider the weighted bipolar argumentation graph depicted in Fig. 9. Note 
that DegQuADA9

(a) = DegQuADA9
(b) = 0.475.

To show that QuAD violates Strict Reinforcement, it is sufficient to consider the bipolar argumentation graph depicted in 
Fig. 10. It can be checked that DegQuADA10

(a) = DegQuADA10
(b). �

Proof of Proposition 7. The satisfied properties were already proved in [23]. Let us show that DF-QuAD violates Resilience. 
Consider a simple graph A made of two arguments a and b such that w(a) = 1, w(b) = 0.5 and aRb. It follows that 
DegDFA (b) = 0.

To show that it violates Strict Monotony, it is sufficient to consider the counter-example given for QuAD (Fig. 9). It can 
be checked that DegDFA9

(a) = DegDFA9
(b) = 0.45.

To show that DF-QuAD violates Strict Reinforcement, it is sufficient to consider the counter-example given for QuAD 
(Fig. 10). It can be checked that DegDFA10

(a) = DegDFA10
(b).

In order to show that DF-QuAD violates Inertia, it is sufficient to consider the graph of Fig. 5. Note that DegDFA5
(i) = 0.991

while w(i) = 0.1.
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Fig. 11. Bipolar graph A11.

Fig. 12. Bipolar graph A12.

Let us show that it violates Strengthening. For that purpose, let us consider the graph depicted in Fig. 11. Note that 
DegDFA11

(a) = w(a) = 0.5 while it should be greater than 0.5.
Let us now show that DF-QuAD violates Weakening. For that purpose, consider the graph depicted in Fig. 12. Note that 

DegDFA12
(a) = w(a) while it should be less than 0.5. �

Proof of Proposition 8. Anonymity, Bi-variate independence, Bi-variate equivalence are obvious.
Bi-variate directionality comes from the fact that the strength of an argument only depends on its attackers, the attackers 

of its attackers, an so on.
Stability is satisfied, because DegEbsA (a) = 1 − 1−w(a)2

1+w(a)20 = 1 − 1−w(a)2

1+w(a)
= 1+w(a)−1+w(a)2

1+w(a)
= w(a)+w(a)2

1+w(a)
= w(a)(1+w(a))

1+w(a)
=

w(a).
Neutrality holds, because 

∑
x∈Supp(a) Deg

Ebs
A (x) −∑

x∈Att(a) Deg
Ebs
A (x) = ∑

x∈Supp(a) Deg
Ebs
A (x) −∑

x∈Att(a) Deg
Ebs
A (x) +

0 = ∑
x∈Supp(b) Deg

Ebs
A (x) − ∑

x∈Att(b) Deg
Ebs
A (x).

Monotony holds, because 
∑

x∈Supp(a) Deg
Ebs
A (x) − ∑

x∈Att(a) Deg
Ebs
A (x) ≥ ∑

x∈Supp(b) Deg
Ebs
A (x) − ∑

x∈Att(b) Deg
Ebs
A (x).

Strict monotony holds, because 1 − w(a)2 > 0 (recall the graph is non-maximal) and 
∑

x∈Supp(a) Deg
Ebs
A (x) −∑

x∈Att(a) Deg
Ebs
A (x) >

∑
x∈Supp(b) Deg

Ebs
A (x) − ∑

x∈Att(b) Deg
Ebs
A (x).

The proof of reinforcement and strict reinforcement are similar to those of monotony and strict monotony, respectively.

Concerning resilience, DegEbsA (a) ≥ 1 − 1−w(a)2

1+0 = w(a)2 > 0. In addition, there exists a natural number n such that 

DegEbsA (a) ≤ 1 − 1−w(a)2

n , but 1 − w(a)2 > 0 (by non-maximality), thus 1−w(a)2

n > 0, thus 1 − 1−w(a)2

n < 1.
Franklin is satisfied, because 

∑
x∈Supp(a) Deg

Ebs
A (x) −∑

x∈Att(a) Deg
Ebs
A (x) = ∑

x∈Supp(b) Deg
Ebs
A (x) −∑

x∈Att(b) Deg
Ebs
A (x).

Weakening holds, because 
∑

x∈Supp(a)Deg
Ebs
A (x) <

∑
x∈Att(a)Deg

Ebs
A (x), thus 

∑
x∈Supp(a)Deg

Ebs
A (x) −∑

x∈Att(a)Deg
Ebs
A (x)

< 0, thus DegEbsA (a) < 1 − 1−w(a)2

1+w(a)
= w(a) (recall 1 − w(a)2 > 0 by non-maximality).

The proof of strengthening is similar to that of weakening.
Finally, we turn to inertia. We have 

∑
x∈Supp(b) Deg

Ebs
A (x) ≤ 1 +∑

x∈Supp(a) Deg
Ebs
A (x). Thus, E(b) = ∑

x∈Supp(b) Deg
Ebs
A (x)

− ∑
x∈Att(b) Deg

Ebs
A (x) ≤ 1 + ∑

x∈Supp(a) Deg
Ebs
A (x) − ∑

x∈Att(a) Deg
Ebs
A (x) = 1 + E(a). So, DegEbsA (b) = 1 − 1−w(a)2

1+w(a)2E(b) ≤
1 − 1−w(a)2

1+w(a)2(1+E(a)) = 1 − 1−w(a)2

1+w(a)2E(a)2
. So, DegS

A(a) + [1 − DegS
A(a)]/2 = DegS

A(a) + 1/2 − DegS
A(a)/2 = 1/2 + DegS

A(a)/2 =
1/2 + 1/2 − 1−w(a)2

2+w(a)2E(a)2
= 1 − 1−w(a)2

2+w(a)2E(a)2
> 1 − 1−w(a)2

1+w(a)2E(a)2
≥ DegEbsA (b). �
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