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Abstract. The aim of this paper is to evaluate to what extent an argu-
mentation graph (a set of arguments and attacks between them) is con-
flicting. For that purpose, we introduce the novel notion of disagreement
measure as well as a set of principles that such a measure should satisfy.
We propose some intuitive measures and show that they fail to satisfy
some of the principles. Then, we come up with a more discriminating
measure which satisfies them all. Finally, we relate some measures to
those quantifying inconsistency in knowledge bases.

1 Introduction

An argumentation framework is a graph whose nodes are arguments and edges
are attacks between pairs of arguments. The graph may be extracted from a
knowledge base (e.g., in [1]), or from a dialogue between agents (e.g., [2]), etc.
Whatever the source of the graph, the presence of attacks means existence of
disagreements and three questions raise quite naturally: (1) how to model dis-
agreements? (2) what is their amount? and how to solve them? Works in com-
putational argumentation focused mainly on questions (1) and (3). They assume
that disagreements in an argumentation graph are nothing more than the attacks
of the graph, and represent them either as abstract relations between pairs of
arguments (e.g., in [3]), or as logical relations between arguments (e.g., undercut
[4], rebuttal [5]). An impressive amount of work has also been done on solving
disagreements using the so-called acceptability semantics, of which extension
semantics [3] are some examples.

The question of measuring the amount of disagreements in an argumentation
graph has never been studied. Consider the six argumentation graphs below.
There is no method in the literature that evaluates the amount of disagreement
in each of them.
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Existing semantics solve disagreements without bothering about their
amount. Nevertheless, quantifying disagreement is relevant for various purposes.
Namely, in the context of inconsistency handling, an argumentation graph is
extracted from a (inconsistent) knowledge base (KB). Quantifying disagreements
in the graph allows evaluating at what extent the knowledge base is inconsis-
tent. Motivated by important applications like software specifications, quantify-
ing inconsistency in a KB has become a hot topic the last six years (e.g. [6–11]).
Since the number of applications of argumentation grows steadily, it is important
that the approach has its own tools for answering various needs of the applica-
tions including measuring inconsistency. Hence, argumentation not only handles
inconsistency in KBs, but it will also be used for measuring inconsistency in
those KBs.

The contribution of this paper is fourfold: First, we introduce the novel notion
of disagreement measure, that is a real-valued function that assigns to each argu-
mentation framework a value representing its amount of disagreements. Second,
we propose principles that a disagreement measure should satisfy. These princi-
ples serve as theoretical criteria for judging and comparing disagreement mea-
sures. Third, we define five intuitive disagreement measures, one of which satisfies
all the principles. Finally, we make a first bridge with works on inconsistency
measures by showing that some of our measures return the same result as an
existing inconsistency measure.

The paper is structured as follows: Sect. 2 recalls basic concepts. Section 3
defines disagreement measures and proposes principles they should satisfy.
Section 4 introduces six measures and discusses their properties. Section 5 shows
how some measures evaluate inconsistency in KBs.

2 Basic Concepts

An argumentation framework (or argumentation graph) A is a graph consisting
of a non-empty set A of nodes representing arguments, and a set R of links
(or edges). A link r ∈ R is an ordered pair (a1, a2) representing a direct attack
from argument a1 to argument a2 (a1, a2 ∈ A). Throughout the paper, we write
A = 〈A,R〉. A graph is finite iff its set of arguments is finite.

– A path from argument a to argument b in A is a sequence 〈a0, . . . , an〉 of
arguments of A such that a0 = a, an = b, for any 0 ≤ i < n, (ai, ai+1) ∈ R,
and for all i �= j, ai �= aj . We say that b is reachable from a when there is
a path from a to b. If n = 2m + 1 and m > 0, then the pair (a0, an) is an
indirect attack on an.

– A cycle is a path 〈a0, . . . , an〉 such that (an, a0) ∈ R. It is elementary iff there
does not exist a cycle 〈b0, . . . , bm〉 such that {b0, . . . , bm} ⊂ {a0, . . . , an}. A
graph is acyclic if it does not contain any cycle.

– An argumentation graph A = 〈{a0, . . . , an},R〉 is a cycle iff
R = {(ai, ai+1) | 0 ≤ i < n} ∪ {(an, a0)}. The graph A = 〈{a0, . . . , an},R〉 is
a simple path iff R = {(ai, ai+1) | 0 ≤ i < n}.
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– The length of a path (resp. cycle) 〈a0, . . . , an〉 is n (resp. n + 1).
– An isomorphism from A = 〈A,R〉 to A′ = 〈A′,R′〉 is a bijective function f

from A to A′ such that ∀ a, b ∈ A, (a, b) ∈ R iff (f(a), f(b)) ∈ R′.

Notations: We denote by Args an infinite set of all possible arguments, and by
U the universe of finite argumentation graphs built from Args. For any argu-
mentation graph A = 〈A,R〉, Arg(A) = A, Att(A) = R, and SelfAtt(A) =
{a ∈ A | (a, a) ∈ R}.

3 Principles for Disagreement Measures

Our aim is to evaluate the amount of disagreements contained in an argumenta-
tion graph. This is done by a disagreement measure, that is a real-valued function
that assigns a disagreement value to every argumentation graph.

Definition 1 (Disagreement Measure). A disagreement measure is a func-
tion K : U → [0,+∞). For an argumentation graph A = 〈A,R〉 ∈ U , K(A) is
called the disagreement value of A.

For two argumentation graphs A and A′, we say that A is more conflicting
than A′ if K(A) > K(A′). The value 0 stands for absence of disagreements.

We propose next a set of principles that any disagreement measure should
satisfy. The first principle states that the disagreement value of an argumentation
graph does not depend on the identity of its arguments. Note that this axiom is
used in most axiomatic approaches including game theory (e.g., Shapley value
[12]).

Principle 1 (Anonymity). For all argumentation graphs A = 〈A,R〉 and
A′ = 〈A′,R′〉 in U , if A and A′ are isomorphic, then K(A) = K(A′).

The second principle states that attacks are the only source of disagreements.
Thus, any argumentation graph that has an empty attack relation receives the
value 0. This axiom is somehow similar to the consistency axiom proposed in [6]
for measuring inconsistency in knowledge bases.

Principle 2 (Agreement). For any argumentation graph A = 〈A,R〉 ∈ U , if
R = ∅, then K(A) = 0.

The third principle concerns “harmless” arguments (i.e., arguments which
neither attack nor are attacked by other arguments). The principle states that
adding such arguments to an argumentation graph will not modify its disagree-
ment value. This axiom is also in the same spirit as the “free formula indepen-
dence” axiom proposed in [6].

Principle 3 (Dummy). For any argumentation graph A = 〈A,R〉 ∈ U , for
any a ∈ Args \ A, K(A) = K(A′), where A′ = 〈A ∪ {a},R〉.
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The next principle states that if new attacks are added to an argumentation
graph, its disagreement value increases. This axiom is in the spirit of monotony
axiom in [6] which states that if a knowledge base is extended by formulas, its
inconsistency degree cannot decrease.

Principle 4 (Monotony). For any argumentation graph A = 〈A,R〉 ∈ U , for
any r ∈ (A × A) \ R, K(A) < K(A′), where A′ = 〈A,R ∪ {r}〉.

So far, we have seen that disagreements contained in an argumentation graph
are due to direct attacks (i.e., elements of R). It is also well-known that the role
of such attacks is to weaken their targets (see the weakening property in [13]).
Indeed, whatever the semantics that is used for evaluating arguments, it should
satisfy the weakening property since it defines the essence of attacks. However,
the effect of weakening may propagate in the graph, giving birth to indirect
attacks. Consider the following graph.

a0 a1 a2 a3

Under stable semantics [3], the graph has one extension {a0, a2}, and the argu-
ment a3 is rejected. If we remove the attack from a0 to a1, the new graph has
{a0, a1, a3} as stable extension, and a3 becomes accepted. Thus, the attack (a0, a1)
has a negative effect on a3. The same phenomenon occurs under the h-categorizer
semantics proposed by Besnard and Hunter [1]. The argument a3 has an accept-
ability degree 0.60 in the initial graph and 0.66 in the modified one. Thus, a3 looses
weight in presence of the attack (a0, a1). The argument a0 is then considered as
an indirect attacker of a3. This shows that indirect attacks are also source of dis-
agreement in argumentation graphs since they are not only harmful for their direct
targets (a1 in the example), but also to the indirect ones (a3).

The next principle states that an acyclic graph containing indirect attacks is
more conflicting than an acyclic graph containing only direct ones. This holds
for graphs that have the same number of arguments and the same number of
attacks.

Principle 5 (Reinforcement) For argumentation graphs A = 〈A,R〉 and
A′ = 〈A′,R′〉 in U such that:

– A = A′ = {a0, . . . , an, b0, . . . , bn} with n ≥ 3,
– R = {(ai, bi) | i ∈ {0, . . . , n − 1}},
– R′ = {(ai, ai+1) | i ∈ {0, . . . , n − 1}},
it holds that K(A′) > K(A).

The two graphs A and A′ have n−1 direct attacks. In addition, A′ contains
at least one indirect attack (e.g. (a0, an) when n = 3). So, A is less conflicting
than A′. Note that due to the Anonymity principle, Reinforcement holds also
for argumentation graphs that contain different sets of arguments.

The two argumentation graphs of Reinforcement are acyclic. Assume now
an acyclic graph with 100 direct attacks and a 10-length elementary cycle.
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The latter contains thus 10 attacks and several indirect attacks. Which of the two
graphs is more conflicting? There are two possible (but incompatible) answers
to this question: (i) to give more weight to disagreements generated by direct
attacks, (ii) to give an overwhelming weight to cycle since it represents a dead-
lock situation while conflicts are open in an acyclic graph. This second choice is
captured by the following optional principle.

Principle 6 (Cycle Precedence) For all graphs A = 〈A,R〉 and A′ =
〈A′,R′〉 in U , if A is acyclic and A′ is an elementary cycle, then K(A) < K(A′).

The last and optional principle says that a disagreement measure could take
the size of cycles into account. The idea is that the larger the size of a cycle is, the
less severe the disagreement; said differently, the less arguments are needed to
produce a cycle, the more “obvious” and strong the disagreement. For instance,
a cycle of length 2 is more conflicting than a cycle of length 1000. The latter is
less visible than the former.

Principle 7 (Size Sensitivity). For all elementary cycles A = 〈A,R〉, A′ =
〈A′,R′〉 in U , if |A′| < |A|, then K(A) < K(A′).

The seven principles are independent (none of them follows from the others).
They are also compatible (they can be satisfied all together by a disagreement
measure).

Theorem 1. The principles are independent and compatible.

4 Five Disagreement Measures

This section introduces disagreement measures and analytically evaluates them
against the proposed principles, especially the five mandatory ones. We introduce
them from the most naive to the most elaborated one.

4.1 Connectance Measure

The first measure that comes in mind for evaluating disagreements in an argu-
mentation graph is the one that counts the number of attacks in a graph. Such
a measure is very natural since disagreements come from attacks.

Definition 2 (Connectance measure). Let A = 〈A, R〉 be an argumentation
graph. Kc(A) = |R|.

Let us illustrate the measure with a running example.

Example 1. Consider the six argumentation graphs from the introduction. It
can be checked that Kc(A0) = 0, Kc(A1) = 1, Kc(A2) = 2, Kc(A3) = 3,
Kc(A4) = 5, and Kc(A5) = 9.

The measure Kc satisfies four out of seven principles.
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Theorem 2. Connectance measure satisfies Anonymity, Agreement, Dummy,
and Monotony. It violates Reinforcement, Size sensitivity and Cycle Precedence.

The fact that Kc violates Reinforcement means that it does not take into
account indirect attacks, which is a real weakness of a disagreement measure.
This shows also that the amount of disagreement is not the simple number of
attacks.

4.2 In-Degree Measure

The second candidate measure counts the number of arguments that are attacked
in an argumentation graph.

Definition 3 (In-degree measure). Let A = 〈A,R〉 be an argumentation
graph. Ki(A) = |{a ∈ A | ∃(x, a) ∈ R}|.

Let us illustrate the measure with the six graphs given in the introduction.

Example 1 (cont): According to the In-degree measure, Ki(A0) = 0,
Ki(A1) = 1, Ki(A2) = 2, and Ki(A3) = Ki(A4) = Ki(A5) = 3. Thus, A3

is more conflicting than A2 which is more conflicting than A1.

This measure satisfies only three out of seven principles.

Theorem 3. In-degree measure satisfies Anonymity, Agreement, and Dummy.
It violates Monotony, Reinforcement, Cycle Precedence, and Size Sensitivity.

This measure has two weaknesses: it does not distinguish an elementary cycle
from a complete graph (see graphs A3 and A5 in Example 1). Moreover, like
Connectance measure, it does not take into account indirect attacks.

Remark: In-degree measure focuses on attacked arguments. One may define
another measure which rather evaluates the number of “aggressive” arguments,
that is, arguments which attack other arguments. Such a measure satisfies
(respectively violates) exactly the same principles as In-degree measure. Thus,
it is not a good candidate for assessing disagreement in an argumentation graph.

4.3 Extension-Based Measures

We now define two measures that are based on acceptability semantics, namely
on extension-based semantics proposed in [3]. Those semantics were introduced
for solving disagreements in an argumentation graph. Before introducing the
measures, let us first recall the semantics we will consider. Let A = 〈A,R〉 be
an argumentation graph and E ⊆ A.

– E is conflict-free iff �a, b ∈ E such that (a, b) ∈ R.
– E defends an argument a ∈ A iff ∀b ∈ A, if (b, a) ∈ R, then ∃c ∈ E such that

(c, b) ∈ R.
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Definition 4 (Acceptability semantics). Let A = 〈A,R〉 be an argumen-
tation graph, and E ⊆ A be conflict-free.

– E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.
– E is a preferred extension iff it is a maximal (w.r.t. set ⊆) set that defends

all its elements.

Notations: Extx(A) denotes the set of all extensions of A under semantics x
where x ∈ {n, p} and n (respectively p) stands for naive (respectively preferred).

The basic idea behind extension-based measures is that the existence of mul-
tiple extensions means presence of disagreements in the graph. Furthermore,
the greater the number of extensions of an argumentation graph, the greater
the amount of disagreements in the graph. However, a disagreement measure
which counts only the number of extensions (under a given semantics) may miss
disagreements. Consider the following argumentation graph:

a0 a1 a2

This graph has two naive extensions ({a0} and {a1}), which are mainly due
to the conflict between a0 and a1 neglecting thus the self-attack. Similarly, the
graph has a single preferred extension {a0} and the self-attack is again neglected.
In what follows, we propose two measures (one for each of the two semantics
recalled above) which take into account both the number of extensions and the
number of self-attacking arguments in an argumentation graph.

Definition 5. (Extension-based measure) Let A = 〈A,R〉 be an argumen-
tation graph and x ∈ {n, p}.

Kx
e (A) = |Extx(A)| + |SelfAtt(A)| − 1.

The subtraction of 1 in the above equation is required in order to ensure
agreement in case of empty attack relations.

Example 1 (cont): Under naive semantics, Kn
e (A0) = 0, Kn

e (A1) = Kn
e (A2) =

1, Kn
e (A3) = Kn

e (A4) = 2, and Kn
e (A5) = 3.

Under preferred semantics, Kp
e(A0) = Kp

e(A1) = Kp
e(A2) = Kp

e(A3) = 0,
Kp

e(A4) = 1, Kp
e(A5) = 3.

These two measures are clearly not powerful since they are not discriminating
as shown in Example 1. For instance, under preferred semantics, the correspond-
ing measure does not make any difference between graphs with empty attack
relations (A0) and those that have one preferred (resp. stable) extension (A1

and A2). The measure is also unable to make a difference between a graph which
has one non-empty extension and a graph which has a single empty extension
(A2 and A3). The following result confirms these observations. Indeed, the two
measures satisfy only three principles out of seven.
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Theorem 4. Extension-based measures satisfy Anonymity, Agreement and
Dummy. They violate Monotony, Reinforcement, Cycle Precedence, and Size
Sensitivity.

Despite the fact that these measures satisfy (respectively violate) the same
principles as Ki, they may return different results. Indeed, Ki assigns the same
value to A3 and A4 while Kp

e assigns to them different values. Similarly, Ki

assigns different values to A1 and A2 while naive measure assigns to both graphs
the same value 1.

Remark: It is worth mentioning that it is possible to define other measures
using other extension semantics like complete, stable, semi-stable, etc. However,
they will all satisfy the same set of principles as the two discussed above.

4.4 Distance-Based Measure

The previous disagreement measures are unable to take into account indirect
attacks. Our last measure escapes this limitation. It satisfies thus reinforcement
as well as all the other principles. The basic idea for capturing indirect attacks
(and of course direct attacks) is to check the existence of a path between any pair
of arguments of an argumentation graph. Since two arguments may be related by
several paths, we consider the shortest one. Then, we compute a global distance
for the graph which is the sum of the lengths of those paths. Before defining
formally the new measure, let us first recall the notion of distance in graphs.

Table 1. Satisfaction of principles by the measures (the symbol • stands for satisfaction
and ◦ for violation.)

Kx
e Kc Ki Kd

Anonymity • • • •
Agreement • • • •
Dummy • • • •
Monotony ◦ • ◦ •
Reinforcement ◦ ◦ ◦ •
Cycle precedence ◦ ◦ ◦ •
Size sensitivity ◦ ◦ ◦ •

Definition 6 (Distance). Let A = 〈A,R〉 be an argumentation graph and
a, b ∈ A. If a �= b, then the distance between a and b in A, d(a, b), is the length
of the shortest path from a to b if b is reachable from a, and d(a, b) = k if b is not
reachable from a. If a = b, d(a, b) is the length of the shortest elementary cycle
in which a is involved, and d(a, b) = k if a is not involved in cycles. Throughout
the paper, we assume that k = |A| + 1.
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Note that k is set to |A| + 1 because the longest path in an argumentation
graph is |A| − 1 and the length of the longest cycle is |A|.
Example 1 (cont): In argumentation graph A3, d(a1, a1) = 3, d(a1, a2) = 2
and d(a1, a3) = 1. In graph A2, d(a1, a1) = 4 and d(a1, a3) = 4 (here k = 4).

The domain of the distance function is delimited as follows.

Proposition 1. Let A = 〈A,R〉 be an argumentation graph. For all a, b ∈ A,
d(a, b) ∈ [1, k].

The global distance of an argumentation graph is the sum of lengths of the
shortest paths between any pair of arguments.

Definition 7 (Global distance). For any argumentation graph A = 〈A,R〉,

D(A) =
∑

ai∈A

∑

aj∈A
d(ai, aj)

Example 1 (cont): D(A0) = 2, D(A1) = 10, D(A2) = 28, D(A3) = 18,
D(A4) = 13 and D(A5) = 9.

Let us now delimit the upper and lower bounds of the global distance of an
argumentation graph.

Proposition 2. For any argumentation graph A = 〈A,R〉,
min ≤ D(A) ≤ max

where max = n2 × (n + 1), min = n2 and n = |A|.
We show next that the upper bound is reached by an argumentation graph

in case its attack relation is empty, while the lower bound is reached when the
graph is complete.

Proposition 3. For any argumentation graph A = 〈A,R〉,
– D(A) = max iff R = ∅
– D(A) = min iff R = A × A

Distance-based measure evaluates to what extent the global distance of an
argumentation graph is close to the upper bound. The more it is close to max,
the less disagreements are in the graph. The closer the global distance is to min,
the more the graph contains a lot of conflicts.

Definition 8 (Distance-based measure). For any argumentation graph A =
〈A,R〉,

Kd(A) =
max − D(A)
max − min

where max = n2 × (n + 1), min = n2 and n = |A|.
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Let us illustrate this measure with the running example.

Example 1 (cont): Kd(A0) = 0, Kd(A1) = 0.25, Kd(A2) = 0.29, Kd(A3) =
0.66, Kd(A4) = 0.88, and Kd(A5) = 1.

This measure computes somehow the degree of connectivity of an argumen-
tation graph. Indeed, a high disagreement value means that the graph is highly
connected, and small disagreement value means that the graph is not very con-
nected. It makes thus fine grained comparisons of argumentation graphs, namely
of various forms of cyclic graphs. In Example 1, A5 is more conflicting than A4

which is itself more conflicting than A3.
In what follows, we introduce the notion of connectivity degree of an argu-

mentation graph. It is the proportion of pairs of arguments which are related by
at least one path.

Definition 9 (Connectivity degree). The connectivity degree of an argu-
mentation graph A = 〈A,R〉 is

Co(A) =
|{(a, b) ∈ A2 | d(a, b) < k}|

|A|2 .

The next result shows that the upper bound of the disagreement value of an
argumentation graph is exactly the connectivity degree of the graph.

Theorem 5. For any argumentation graph A = 〈A,R〉, Kd(A) ∈ [0, Co(A)].

Proof. Let A = 〈A,R〉 be an argumentation graph such that |A| = n. Let
B = {(ai, aj) ∈ A × A | d(ai, aj) < k}. From Proposition 4, Kd(A) =

Co(A) + Co(A)
n −

∑
(ai,aj)∈B d(ai,aj)

n3 = Co(A)(n+1)
n −

∑
(ai,aj)∈B d(ai,aj)

n3 .
It holds that

∑
(ai,aj)∈B d(ai, aj) ≥ n2Co(A) (since |B| = n2Co(A and

d(a, b) ∈ [1, k]). Thus,
∑

(ai,aj)∈B d(ai,aj)

n3 ≥ n2Co(A)
n3 . Consequently, Co(A)

n −
∑

(ai,aj)∈B d(ai,aj)

n3 ≤ 0.

So, Co(A) + Co(A)
n −

∑
(ai,aj)∈B d(ai,aj)

n3 ≤ Co(A). Thus, Kd(A) ≤ Co(A).

Let us now characterize the disagreement values of elementary cycles. The
shorter an elementary cycle, the more conflicting it is. The maximal value (1)
is given to cycles of length 1, that is graphs that contain only one argument,
moreover it is self-attacking. This value decreases when the length of cycles
increases. However, we show that it cannot be less than 0.5. This means that
the distance-based measure considers cycles as very conflicting even when they
are very long, which is very natural.

Proposition 4. For any elementary cycle A = 〈A,R〉, Kd(A) ∈ (12 , 1].

Proof. Let A = 〈A,R〉 be an elementary cycle, and let n = |A|. For any a ∈
A,

∑
bi∈A d(a, bi) = 1 + 2 + 3 + . . . + n = n×(n+1)

2 . Thus, D(A) = n2×(n+1)
2 .

Kd(A) = n2×(n+1)−D(A)
n2×(n+1)−n2 , thus Kd(A) = n2×(n+1)

2n3 = n+1
2n = 1

2 + 1
2n . Kd(A) = 1

in case n = 1, i.e., A is made of a self attacking argument. Since A is finite,
then A is finite. Consequently, Kd(A) > 1

2 .
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The next result delimits the disagreement values of acyclic argumentation graphs.

Proposition 5. For any acyclic argumentation graph A = 〈A,R〉, Kd(A) ∈
[0, 1

2 ).

Proof. Let A = 〈A,R〉 be an acyclic argumentation graph such that |A| = n.
Since A is acyclic, then ∀a ∈ A, d(a, a) = k. Moreover, ∀a, b ∈ A, if
d(a, b) < k then d(b, a) = k (since there is no cycle in the graph). Thus,
|{(a, b) ∈ A2 | d(a, b) < k}| ≤ n2−n

2 . Consequently, |{(a,b)∈A2 | d(a,b)<k}|
n2 ≤ n2−n

2n2 .
We get Co(A) ≤ 1

2 − 1
2n . Since A is finite, then Co(A) < 1

2 . From Theorem 5,
Kd(A) ≤ Co(A). So, Kd(A) < 1

2 .

The two previous results show that the measure Kd considers any acyclic
graph as strictly less conflicting than any elementary cycle. Moreover, the ratio
of disagreement in an acyclic graph is always not very high and can never reach
the maximal value 1. On the contrary, the ratio of disagreement in an elementary
cycle is always high.

Proposition 6. Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be simple paths. If |A| <
|A′|, then Kd(A) < Kd(A′).

Proof. Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be two simple paths. Let n = |A| and
n′ = |A′|. Assume that n < n′. Thus, n2 < n′2 and 1

n2 > 1
n′2 . Consequently,

1 − 1
n2 < 1 − 1

n′2 and then Kd(A) < Kd(A′).

The distance-based measure satisfies all our principles.

Theorem 6. Kd satisfies all the seven principles.

Proof. Let A = 〈A,R〉 be an argumentation graph. Anonymity is obviously
satisfied. From Proposition 3, if R = ∅, D(A) = max, thus Kd(A) = 0 which
ensures Agreement.

Let A = 〈A,R〉 and A′ = 〈A′,R′〉 be two elementary cycles such that
|A| = n, |A′| = m and m > n. D(A) = n2(n+1)

2 , thus Kd(A) = n+1
2n , and

D(A′) = m2(m+1)
2 and Kd(A′) = m+1

2m = 1
2 + 1

2m . Since m > n then 2m > 2n
and 1

2m < 1
2n . Consequently, Kd(A′) < Kd(A). This shows that Size Sensitivity

is satisfied. Let us now show that Kd satisfies Dummy principle. Assume that
|A| = n Let a ∈ Args \ A and A′ = 〈A ∪ {a},R〉. We denote by k the maximal
distance in graph A and by k′ the maximal distance in graph A′. From definition,
k′ = n + 2 since |Arg(A′)| = n + 1. Since the new arguments does not attack
and is not attacked by other arguments, then the original distances in graph A
will not change except those that got value k which will be incremented by 1
each. Thus, D(A′) = D(A) + (2n + 1)k′ + x where x ≥ 0 is the number of pairs
(ai, aj) of arguments for which the length of the shortest path from ai to aj is
equal to k in graph A. We get D(A′) = D(A) + 2n2 + 5n + 2 + x. Moreover,
Kd(A) = 1 + 1

n − D(A)
n3 and Kd(A′) = 1 + 1

n+1 − D(A)
(n+1)3 − x+2n2+5n+2

(n+1)3 . Thus,
Kd(A′) < Kd(A).
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Let us now show that monotony is also satisfied. Let R′ ⊆ (A × A) \ R and
A′ = 〈A,R ∪ R′〉. Both A and A′ have the same min and max distances since
they have the same number of arguments. Consequently, Kd(A) = 1+ 1

n − D(A)
n3

and Kd(A′) = 1 + 1
n − D(A′)

n3 , with n = |A|. Assume that D(A′) > D(A). This
means that there exists a, b ∈ A such d(a, b) = x in graph A, d(a, b) = y in
graph A′ and y > x. This is impossible since the shortest path in A between a
and b still exists in A′. Thus, in A′, the shortest path between a and b is either
the same as in A or a path with y < x because of the additional attacks of R′.

Cycle Precedence follows from Propositions 4 and 5.
Reinforcement is also satisfied. Since the two graphs in the principle are

assumed to have the same number of arguments, then both graphs have the same
max and min values. It is thus sufficient to compare the global distances of the
graphs. We can easily compute the following values: D(A) = 8n3 +26n2 +32n+
14, and D(A′) = 20

3 n3 + 25n2 + 91
3 n + 12. D(A) > D(A′), thus K(A) < K(A′).

Distance-based measure satisfies all the principles. Thus, it takes into account
both the direct attacks in an argumentation graph as well as the indirect ones.
All these features make it the best candidate for measuring disagreement in
argumentation graphs. Table 1 recalls for each measure, the principles it satisfies
and those it violates.

5 Links Between Disagreement Measures and
Inconsistency Measures

In this section, we consider argumentation graphs 〈A,R〉 that are generated from
a propositional knowledge base Σ. The arguments of A are defined as follows:

Definition 10 (Argument). Let Σ be a propositional knowledge base. An
argument is a pair (X,x) s.t. X ⊆ Σ, X is consistent, X � x1, and �X ′ ⊂ X
such that X ′ � x.

Regarding the attack relation R, we consider assumption-attack defined in [5].

Definition 11 (Assumption-Attack). An argument (X,x) attacks (Y, y)
(((X,x), (Y, y)) ∈ R) iff ∃y′ ∈ Y such that x ≡ ¬y′2.

In [14], the authors proposed a measure (I) that quantifies the amount of
inconsistency in a propositional knowledge base Σ. That amount is equal to the
number of maximal (for set inclusion) consistent subsets of Σ and the number
of inconsistent formulas in Σ minus 1.

1 The symbol � stands for propositional inference relation.
2 The symbol ≡ stands for logical equivalence.
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Definition 12 (Inconsistency Measure). For any propositional knowledge
base Σ,

I(Σ) = |Max(Σ)| + |Inc(Σ)| − 1

Max(Σ) is the set of maximal (for set ⊆) consistent subsets of Σ, and Inc(Σ) is
the set of inconsistent formulae in Σ. I(Σ) is called the inconsistency value of
Σ.

Given a knowledge base Σ, we show that its inconsistency value (as computed
by measure I) is equal to the disagreement values of the corresponding argu-
mentation graph using the three extension-based measures Kx

e with x ∈ {n, p}.

Theorem 7. Let Σ be a propositional knowledge base such that Inc(Σ) = ∅.
Let A = 〈A,R〉 be the argumentation graph built over Σ. The following holds:

Kn
e (A) = Kp

e(A) = I(Σ)

Proof. Let Σ be a propositional knowledge base such that Inc(Σ) = ∅. Let
A = 〈A,R〉 be the argumentation graph built over Σ. From Theorem 8 in [15],
Extn(A) = Extp(A). Furthermore, there is a full correspondence between the
naive extensions of A and the maximal (for set inclusion) consistent subsets of
Σ. Hence, |Extn(A)| = |max(Σ)|. Since Inc(Σ) = ∅, then I(Σ) = |max(Σ)|−1.
Since by definition of arguments, SelfAtt(A) = ∅, then Kx

e (A) = |Extx(A)|−1.
Thus, Kx

e (A) = I(Σ).

This result shows that not only the two extension-based measures return the
same result in case of propositional knowledge bases, but also they are equivalent
to the inconsistency measure proposed in [14].

6 Related Work

Despite the great amount of work on argumentation, there is no work on comput-
ing the amount of disagreements in argumentation graphs. Our paper presented
the first attempt in this direction. In [16], the authors studied to what extent the
extensions (under a given semantics) of an argumentation graph are different.
The problem they addressed is thus completely different from the purpose of our
paper.

Several measures were proposed in the literature for quantifying inconsistency
in propositional knowledge bases (e.g., [6–8]). Our extension-based measures are
equivalent to one of them, namely the one proposed in [14].

7 Conclusion

This paper studied for the first time how to quantify disagreements in an argu-
mentation graph. It showed that disagreements is more than direct attacks. It
proposed principles which serve as theoretical criteria for validating and com-
paring disagreement measures. It defined six intuitive measures and investigated



Measuring Disagreement in Argumentation Graphs 221

their properties. The distance-based measure is the most powerful one. It not
only satisfies all the proposed principles, but it is also very discriminating, that
is, it provides a fine grained evaluation of argumentation graphs. Moreover, it
captures very well the two sources of disagreement: direct and indirect attacks.
Furthermore, the paper made a first bridge with works on inconsistency mea-
sures. It showed that extension-based measures return the same amount of con-
flict as one proposed in [14].

This work can be extended in several ways. First, we plan to investigate
more deeply the relationship between the disagreement value of an argumenta-
tion graph and existing inconsistency degree of the knowledge base over which
the graph is built. A particular focus will be put on distance-based measure
since it captures well indirect attacks in an argumentation graph. Another line
of research consists of evaluating the contribution of each argument to the dis-
agreement value of a graph. Such information may be useful in a dialogues for
identifying the culprit that should be attacked.
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