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1.1: An excerpt from a movie database

(1) release(’The Blues Brothers’, france, 1980).
(2) release(’Soul Kitchen’, germany, 2009).
(3) release(’Soul Kitchen’, france, 2010).
(4) release(’Das Leben der Anderen’, germany, 2006).
(5) release(’Das Leben der Anderen’, france, 2007).
(6) director(’John Landis’, ’The Blues Brothers’).
(7) director(’Fatih Akin’, ’Soul Kitchen’).
(8) cast(’The Blues Brothers’, ’Dan Aykroyd’, ’�Joliet" Jake Blues’).
(9) cast(’The Blues Brothers’, ’Aretha Franklin’, ’Mrs. Murphy’).
(10) cast(’Soul Kitchen’, ’Adam Bousdoukos’, ’Zinos Kazantsakis’).
(11) cast(’Soul Kitchen’, ’Moritz Bleibtreu’, ’Illias Kazantsakis’).
(12) cast(’Soul Kitchen’, ’Anna Bederke’, ’Lucia Faust’).
(13) cast(’Das Leben der Anderen’, ’Martina Gedeck’, ’Christa-Maria Sieland’).
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(1) release(’The Blues Brothers’, france, 1980).
(2) release(’Soul Kitchen’, germany, 2009).
(3) release(’Soul Kitchen’, france, 2010).
(4) release(’Das Leben der Anderen’, germany, 2006).
(5) release(’Das Leben der Anderen’, france, 2007).
(6) director(’John Landis’, ’The Blues Brothers’).
(7) director(’Fatih Akin’, ’Soul Kitchen’).
(8) cast(’The Blues Brothers’, ’Dan Aykroyd’, ’�Joliet" Jake Blues’).
(9) cast(’The Blues Brothers’, ’Aretha Franklin’, ’Mrs. Murphy’).
(10) cast(’Soul Kitchen’, ’Adam Bousdoukos’, ’Zinos Kazantsakis’).
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Queries A query to find
the year of the release of
Soul Kitchen:
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1.1: An excerpt from a movie database

⇒Write queries (and give the answers) to find the following :
1. the director of The Blues Brothers;

2. if Aretha Franklin played in a film by John Landis;

Observations:
• In both cases, there is only one answer, but in the first case,

the Prolog interpreter detects this and does not ask user if
she wants alternatives.

• We get the name of the movie and even the role although we
might not care.
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3. actors of movies by Fatih Akin;
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4. the directors of movies in which Dan Aykroyd and Anna Bederke
were co-stars;



1.1: An excerpt from a movie database

3. actors of movies by Fatih Akin;

We get the names of the movies and roles although we might not
care.

4. the directors of movies in which Dan Aykroyd and Anna Bederke
were co-stars;

Apparently there are no such movies.



1.1: An excerpt from a movie database

5. if Anna Bederke played in a movie by John Landis or Fatih Akin;
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We try the directors one by one and get an answer more specific
than what we asked for.



1.1: An excerpt from a movie database

5. if Anna Bederke played in a movie by John Landis or Fatih Akin;

We try the directors one by one and get an answer more specific
than what we asked for.
Alternative :

At this point it might become clear that:
• “,” stands for the logical conjunction (“and”, ∧),
• “;” stands for the logical disjunction (“or”, ∨)



1.1: An excerpt from a movie database

6. actors who are also directors?
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6. actors who are also directors?

Apparently there are none.
7. actors who played with Dan Aykroyd.



1.1: An excerpt from a movie database

6. actors who are also directors?

Apparently there are none.
7. actors who played with Dan Aykroyd.

You need to make explicit that you don’t count Dan Aykroyd as
an actor playing with Dan Aykroyd =⇒ negation (see later).



1.1: An excerpt from a movie database

• We have seen “,” and “;”. Another important logical connective is
implication: →.

• In logic programming, it is usually reversed (←) and written :-.
• It is needed to write rules, which are used for defining new rela-

tions from given ones. E.g., directed(D,A) is true if A played in a
movie directed by D

directed(D,A) :-

director(D,M),

cast(M,A,R).
(14)
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1. co_star(A1, A2) – the actor/actress played in the same movie
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1.1: An excerpt from a movie database

Add rules to the database to define the following:
1. co_star(A1, A2) – the actor/actress played in the same movie

co_star(A1,A2) :-

cast(M,A1,R1),

cast(M,A2,R2).

Problem with this code?
2. the films in which played some actor who played in a film by

Fatih Akin or John Landis
akin_or_landis_film(F) :-

(director('Fatih Akin',F2);

director('John Landis',F2)),

cast(F2,A,R2),

cast(F,A,R).



1.2: A short history of logic programming

1970s: Kowalski (Edinburgh):
the logical formula ϕ← ψ1 ∧ . . . ∧ ψn (ϕ is true if all the ψis are)
has a procedural meaning: “In order to prove ϕ, it is sufficient to
prove ψ1, . . . , ψn”.
Colmerauer (Aix-Marseille): Prolog,
theorem prover based on the same ideas as Kowalski.



1.2: A short history of logic programming

1970s: Kowalski (Edinburgh):
the logical formula ϕ← ψ1 ∧ . . . ∧ ψn (ϕ is true if all the ψis are)
has a procedural meaning: “In order to prove ϕ, it is sufficient to
prove ψ1, . . . , ψn”.
Colmerauer (Aix-Marseille): Prolog,
theorem prover based on the same ideas as Kowalski.

end of the 70s: Warren (Edinburgh): Prolog-10,
a fast Prolog implementation; the underlying ideas still are at the
core of numerous recent implementations.



1.2: A short history of logic programming

begining of 21st century:
• a standard Prolog language (syntax “of Edinburgh”);
• far from the ideal of logic programming (a small subset of

classical logic);
• extension to constraints programming
• numerous implementations, some are open source or free,

some have good IDE. . . ;
• interface Prolog/other langages (C, Java,. . . ).
• Prolog widely used, eg.:
∗ Prolog Development Center: airport scheduling (teams,

runways, shopfloor,. . . ), environmental disaster manage-
ment,. . .

∗ RDF analysis (Resource Description Framework, W3C)
∗ youbet.com: analysis of information coming from a num-

ber of webpages, rules easy to maintain when these pages
are modified



1.3: A few books

To start with:
Learn Prolog Now! Patrick Blackburn, Johan Bos and Kristina Strieg-

nitz. College Publications, 2006.
On-line version, with lecture slides: learnprolognow.org

The Art of Prolog. Leon Sterling and Ehud Shapiro.
MIT Press, 1999 (3rd edition).
⇒ very logical approach (available in French)

Prolog : Programming for Artificial Intelligence. Ivan Bratko.
Addison Wesley, 2001 (3rd edition).
⇒ more computer science oriented (available in French)

More advanced topics:
Programming in Prolog William Clocksin and Christopher Mellish.

Springer, 1987.
The Craft of Prolog Richard O’Keefe. MIT Press, 1990.



2: First steps in Prolog
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2.1: How to start Prolog

The GNU Prolog system is documented at gprolog.org. That website
has a manual. Gnu Prolog is free, and there are binaries available
for most operating systems. GNU Prolog can be used in interactive
mode, like a command interpreter (shell): the user types in queries,
called goals, and the system replies with solutions to the queries, and
prompts the user for a new query.
This interactive system must be started from a terminal using a Unix
command interpreter (sh, csh, ksh,. . . ); the command to start Gnu
Prolog is gprolog.



2.1: How to start Prolog

Programs are written in files, using standard text editors. The name
of the program files must end with .pl. The predicate consult is used
to load programs: consult('my_prog.pl'). There are a few shortcuts for
this type of very frequent goals: consult(my_prog). or even [my_prog].
or ['my_prog.pl']. This shows two things:
• the ' around the file name are needed because the name contains

some special characters (the “.” here);
• every query is terminated with a “.”.

After a query has been submitted, the Prolog system will try to com-
pute a first answer, that may be yes, no, or a list of values for the
variables that appear in the query: in this case, to obtain more solu-
tions, one must type in a semicolon.

Exiting Prolog The query halt. terminates the prolog interpreter.



2.2: First Exercise

Exercise 1 This exercise uses the “movie” database, you should
download it, have a look at its content with a text editor and “consult”
it with prolog.

Exercise 2 Use prolog to find actors and actresses who have:
• been directed by Brian de Palma;
• been directed by Tim Burton and also by Francis Ford Coppola;
• played in at least two different movies by Sofia Coppola;



2.2: First Exercise

Exercise 1 This exercise uses the “movie” database, you should
download it, have a look at its content with a text editor and “consult”
it with prolog.

Exercise 2 Use prolog to find actors and actresses who have:
• been directed by Brian de Palma;
• been directed by Tim Burton and also by Francis Ford Coppola;
• played in at least two different movies by Sofia Coppola;

For stating that 2 movies are different, you will need the \= predicate.
Observe how its position in the query matters!
This also allows us to improve some previous code:

| ?- cast(M,'Dan Aykroyd',R), cast(M,A,R2), A\='Dan Aykroyd'.

co_star(A1,A2) :-

cast(M,A1,R1),

cast(M,A2,R2),

A1 \= A2.



3: Syntax of Prolog programms
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3.1: Atoms

atom: a name adhering to certain syntactic conventions; it is used in
Prolog for several purposes. An atom can be:
• a sequence of letters, digits that starts with a lowercase letter,

and can also contain the underscore “_”
• a sequence of characters enclosed between two single quotes

Examples: cast 'The Blues Brothers' germany



3.2: Terms

A term is an expression that represents a data object. It may be:
variable: string of letters, digits, “_” that starts with an uppercase

letter, or with “_”
Examples: X1 Toto12_urt___cur4 _123urc_

numerical constant: usual representations for (signed) integers and
floating point numbers
Examples: 14 3.14

(term) constant: an arbitrary atom
Examples: 'Tim Burton' apple �sh

compound term: of the form f (t1, . . . , tn) where f is an atom
(function symbol, term constructor) and t1, . . . , tn are terms
Examples: father('Tim Burton')
cons(3,cons(2,cons(5,nil))) (example of a list, see later)



3.3: Atomic Formulas

Atomic formula expression of the form p(t1, . . . , tn)
where p is an atom called predicate or relation, and t1, . . . , tn are
terms.
It can be true of false.
Example: release(’The Blues Brothers’, france, 1980).
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3.3: Atomic Formulas

Atomic formula expression of the form p(t1, . . . , tn)
where p is an atom called predicate or relation, and t1, . . . , tn are
terms.
It can be true of false.
Example: release(’The Blues Brothers’, france, 1980).

Caution: do not confuse “atom” (Prolog terminology) with “atomic
formula” (traditional logic terminology)!
Question: how to distinguish a term from an atomic formula?
Both term constructors and predicates are arbitrary atoms chosen by
the programmer, no distinction possible. It depends on the context!



3.4: Logical constructs

formula: atomic formulas assembled with connectives
∧ (conjunction), ∨ (disjunction), ¬ (negation)

rule: H︸︷︷︸ ← ϕ︸︷︷︸ .
head body

where H is an atomic formula and ϕ is a formula.
fact: rule with ϕ = > (always true); writtten H.
Definite clause: rule of the form H ← A1 ∧ . . . ∧ Am

where A1, . . .Am are atomic formulas (no disjunction).
General clause: rule of the form H ← L1 ∧ . . . ∧ Lm

where L1, . . .Lm are literals, that is, atomic formulas and negated
(discussed later) atomic formulas.
In Prolog, “,” is used instead of ∧.



3.5: Predicates again

A predicate is an arbitrary atom defined by the programmer.
The programmer would always want an arity (number of arguments)
to be associated with a predicate.
In compiler messages, manuals etc., a predicate p with arity n is often
denoted as p/n.
Within a program, a predicate p/n “exists” thanks to the fact that it is
defined, by a set of rules / facts of the form:
p(t1, . . . , tn)← ϕ or p(t1, . . . , tn).



3.5: Predicates again

A predicate is an arbitrary atom defined by the programmer.
The programmer would always want an arity (number of arguments)
to be associated with a predicate.
In compiler messages, manuals etc., a predicate p with arity n is often
denoted as p/n.
Within a program, a predicate p/n “exists” thanks to the fact that it is
defined, by a set of rules / facts of the form:
p(t1, . . . , tn)← ϕ or p(t1, . . . , tn).

Remark Any rule is equivalent to a set of clauses
because of properties of ¬, ∧, ∨ (Boolean algebra), and because: ψ ←

ϕ1 ∨ ϕ2 is equivalent to

ψ ← ϕ1

ψ ← ϕ2

 and

negated formulas in bodies can also be compiled away (see later).

Predicates are to Prolog what functions / procedures are to functional
(or imperative) programming languages.



3.6: Programs

logic program: a set of definitions of predicates.

Remark Clauses or rules that define a predicate p/n must not be
interleaved with rules or clauses that define other predicates.
(If the definition of predicate p is scattered at different places in
a file, Prolog considers that they are successive definitions of the
predicate p, each definition canceling the previous one.)

query/goal: a formula of the form L1, . . . , Lm.



3.7: Exercise

Exercise 3
1. Write a database of the UK royal family (at least 10 relatives

of King Charles III) using the predicates isChildOf, male, and
female.

2. Write clauses for defining the predicates siblings, isSisterOf,
isNephewOf(X,Y), isGrandchildOf, cousins.

3. Test your program with queries of the kind isSisterOf(X,Y) . . .



4: Semantics of Prolog programms
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4.1: Semantics of a clause (quantification)

directed(D,A)← director(D,M) ∧ cast(M,A,R). is read:
“for all D,A, D has directed A if there exists some M , the director of
which is D, and in which A played”
In logic, we would write:
∀D,A(directed(D,A)← ∃M,R(director(D,M) ∧ cast(M,A,R)))

• The variables that appear in the head of a clause have an implicit
universal quantification / meaning.
It is understood that the clause is true for all possible values of
these variables.

• The variables that appear only in the body of a clause have an
implicit existential quantification/meaning within the body of the
clause.
It is understood that the head of the clause is true if there is at
least one value for each of these variables for which the body of
the clause is true.

This is not an ad-hoc interpretation of logic programming but has a
clear logical explanation . . .



4.1: Semantics of a clause (quantification)

Caveat: We are still looking at logic programs without negation, but
in the following logical transformation, negation comes into play: the
clause (with only positive literals!)

directed(D,A)← director(D,M) ∧ cast(M,A,R).

is a-priori quantified universally:

∀D,A,M,R (directed(D,A)← director(D,M) ∧ cast(M,A,R))

but



4.1: Semantics of a clause (quantification)

Caveat: We are still looking at logic programs without negation, but
in the following logical transformation, negation comes into play: the
clause (with only positive literals!)

directed(D,A)← director(D,M) ∧ cast(M,A,R).

is a-priori quantified universally:

∀D,A,M,R (directed(D,A)← director(D,M) ∧ cast(M,A,R))

but

∀D,A,M,R (directed(D,A)← director(D,M) ∧ cast(M,A,R)) ≡
∀D,A,M,R (directed(D,A) ∨ ¬(director(D,M) ∧ cast(M,A,R))) ≡
∀D,A (directed(D,A) ∨ ∀M,R ¬(director(D,M) ∧ cast(M,A,R))) ≡
∀D,A (directed(D,A) ∨ ¬∃M,R (director(D,M) ∧ cast(M,A,R))) ≡
∀D,A (directed(D,A)∨ ← ∃M,R (director(D,M) ∧ cast(M,A,R)))

The second ≡-step is subtle but correct.



4.2: Declarative semantics

Declarative semantics of pure logic programming:
What does the logic program P make true?
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4.2: Declarative semantics

Digression: What does “making true” mean?
In logic, we call a formula C a logical consequence of a set of for-
mulas Γ, written Γ |= C, if every valuation v such that v(H) = 1 (“H
is true”) for every H ∈ Γ, we have v(C) = 1 as well.
Example: {snow , snow → cold} |= cold .
“If it is snows and if snow implies cold, then inevitably it is cold”.
This notion applies to logic programs, here an example:
{mammal(dog).,∀X animal(X)← mammal(X)} |= animal(dog).
When you are asking a query animal(X), you are searching for the
answer animal(dog). animal(dog) is (part of) the semantics of the pro-
gram.
Now more abstractly . . .



4.2: Declarative semantics

Given a logic program P and a query ϕ, let U be the vector of all the
variables that appear in ϕ, we want to know what are the values of U
for which P |= ϕ.
(Due to negation and some other issues, the reality deviates from this
ideal.)



4.2: Declarative semantics

Given a logic program P and a query ϕ, let U be the vector of all the
variables that appear in ϕ, we want to know what are the values of U
for which P |= ϕ.
(Due to negation and some other issues, the reality deviates from this
ideal.)
A notion from semantic theory: A set M of ground (not containing
variables) atomic formulas such that M |= ϕ for every ϕ ∈ P is called
a model of P. Execution of a logic programming is about extracting
atomic formulas from a model of P.
To be a bit more precise, it is about extracting atomic formulas that
are true in every model of P. This is equivalent to saying that for such
an atomic formula, P |= A.
We will have a closer look at this when we look at negation . . .



4.3: Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”
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4.3: Unification

Logic programming emerged from the procedural interpretation of
logic formulas of the form:

p(X1, . . . , Xn)← ϕp

which can be read:
“In order to prove p(X1, . . . , Xn), it is sufficient to prove ϕp.”

Q: What if we try to prove p(t1, . . . tn), where t1, . . . , tn are terms ?
A: Replace the Xis with the tis in ϕp

Q: What if there are terms in the head of the clause? p(u1, . . . , un)←
ϕp

A: try to unify (match) the ui’s and the ti’s, and make the appropriate
substitutions in ϕp

Example p(X, g(X, Y,X)) can be unified with p(2, L):
2→ X, g(2, Y, 2)→ L.



4.3: Unification

Exercise 4 Use Prolog to test unification for:
• p(X, g(X, Y,X)) and p(2, L);
• p(X, g(X, Y,X)) and p(2, g(X, 3, X));
• p(X, g(X, Y,X)) and p(2, g(3, Y, 3));
• p(X1, X2, X3, X4, X5, X6, X7, X8) and
p(f (X2, X2), f (X3, X3), f (X4, X4), f (X5, X5),
f (X6, X6), f (X7, X7), f (X8, X8), f (c, c))

• p(g(X)) and p(X).



4.3: Unification

Exercise 4 Use Prolog to test unification for:
• p(X, g(X, Y,X)) and p(2, L);
• p(X, g(X, Y,X)) and p(2, g(X, 3, X));
• p(X, g(X, Y,X)) and p(2, g(3, Y, 3));
• p(X1, X2, X3, X4, X5, X6, X7, X8) and
p(f (X2, X2), f (X3, X3), f (X4, X4), f (X5, X5),
f (X6, X6), f (X7, X7), f (X8, X8), f (c, c))

• p(g(X)) and p(X).

What do you observe for the last example?



4.4: Example search tree

directed(’Fatih Akin’,A) ?

(14) ’Fatih Akin’→D

director(’Fatih Akin’,M), cast(M,A,R) ?

(7) ’Soul Kitchen’→M

cast(’Soul Kitchen’,A,R) ?

(10)
’Adam Bousdoukos’→A
’Zinos Kazantsakis’→R

Answ. 1: A=’Adam Bousdoukos’

(11)
’Moritz Bleibtreu’→A
’Illias Kazantsakis’→R

Answ. 2: A=’Moritz Bleibtreu’

(12)
’Anna Bederke’→A
’Lucia Faust’→R

Answ. 3: A=’Anna Bederke’



4.4: Example search tree

• Backward chaining ; atomic formulas in a conjunction are proved
/ executed from left to right.

• Executing an atomic formula means:
∗ replacing it with a condition that makes it true, i.e., unifying

it with a clause head and replacing the atomic formula with
the appropriate instance of the clause body, which then in
turn has to be made true, or

∗ simply deleting it if it appears in the database (possibly after
some variable instantiation), or

∗ returning “false" if it is not possible to make it true.
• Facts / clauses of the program are tried in the order in which they

appear in the program.
• Prolog systems use a depth-first search strategy.



4.4: Example search tree

• Backward chaining ; atomic formulas in a conjunction are proved
/ executed from left to right.

• Executing an atomic formula means:
∗ replacing it with a condition that makes it true, i.e., unifying

it with a clause head and replacing the atomic formula with
the appropriate instance of the clause body, which then in
turn has to be made true, or

∗ simply deleting it if it appears in the database (possibly after
some variable instantiation), or

∗ returning “false" if it is not possible to make it true.
• Facts / clauses of the program are tried in the order in which they

appear in the program.
• Prolog systems use a depth-first search strategy.

Exercise 5 How many leaves have the trees for the queries
• cast(M,A, S), cast(M, ’Anna Bederke’, R), and
• cast(M, ’Anna Bederke’, R), cast(M,A, S)?



5: Lists and Recursion

IENAC S



5.1: Lists

Observations:
• The introduction to the syntax above suggests that atoms used

as term constants, term constructors and predicate symbols are
completely user-defined.

• In the example programs so far, we have not seen any term con-
tructors yet.

• If the number of atoms is finite, one needs term constructors if
one wants to generate an arbitrary number of terms. Example:
father(. . . father(’Moritz Bleibtreu’) . . .)



5.1: Lists

Observations:
• The introduction to the syntax above suggests that atoms used

as term constants, term constructors and predicate symbols are
completely user-defined.

• In the example programs so far, we have not seen any term con-
tructors yet.

• If the number of atoms is finite, one needs term constructors if
one wants to generate an arbitrary number of terms. Example:
father(. . . father(’Moritz Bleibtreu’) . . .)

Linked lists are the simplest example of a recursive datastructure,
allowing for arbitrarily big terms. They are widely used in functional
and logic programming.
A list can store any number of data objects.



5.1: Lists

A list: d •c •b •a •

The basic syntax for lists uses a constant nil and a term constructor
cons. Inductive definition:
• nil is the empty list.
• If l is a list and h is an arbitrary term, then cons(h, l) is a list. We

call h the head and l the tail of the list cons(h, l).
Example: cons(3, cons(2, cons(4, cons(1, nil))))



5.1: Lists

Since this notation is cumbersome, some syntactic sugar is intro-
duced: cons(h, l) is written [h | l], and [h1 | [h2 | l]] can be simplified to
[h1, h2 | l]] (recursively).
Examples of prolog lists: [1, 2, 3, [−1, a, [ ] ], 'movie_bd'] [ ] [_, X, Y, 1]

We have [1, 2, 3, 4] = [1, 2, 3| [4] ] = [1| [2| [3| [4| [ ] ] ] ] ].
(But [1, 2, 3, 4] 6= [ [1, 2] | [3, 4] ]. Why ?)



5.1: Lists

Since this notation is cumbersome, some syntactic sugar is intro-
duced: cons(h, l) is written [h | l], and [h1 | [h2 | l]] can be simplified to
[h1, h2 | l]] (recursively).
Examples of prolog lists: [1, 2, 3, [−1, a, [ ] ], 'movie_bd'] [ ] [_, X, Y, 1]

We have [1, 2, 3, 4] = [1, 2, 3| [4] ] = [1| [2| [3| [4| [ ] ] ] ] ].
(But [1, 2, 3, 4] 6= [ [1, 2] | [3, 4] ]. Why ?)
To summarise:
• A list is enclosed in squared brackets
• The elements are separated by commas “,”
• Elements of all types can be put in a list
• A list can contain other lists

Exercise 6 Type the query

| ?- X = "abcd".

How do you interpret the result?



5.2: Lists and Filtering

Having clause heads of the form p(t1, . . . , tn), with arbitrary terms
t1, . . . , tn rather than the generic X1, . . . , Xn, implies that for a given
query p(. . .), some clause may be applicable (unifiable arguments)
while another one may not be applicable. This is called filtering and
has its equivalent in functional programming.



5.2: Lists and Filtering

Having clause heads of the form p(t1, . . . , tn), with arbitrary terms
t1, . . . , tn rather than the generic X1, . . . , Xn, implies that for a given
query p(. . .), some clause may be applicable (unifiable arguments)
while another one may not be applicable. This is called filtering and
has its equivalent in functional programming.
Filtering is often used for lists, e.g. to have a an argument that only
matches a non-empty list. Example:
isFirstElmtOf(X,L): true if X is the first element of the list L⇒

isFirstElmtOf(X,L)← L = [X|R].

or simply
isFirstElmtOf(X, [X|R]).

Exercise 7 Define the predicate isSecondElmtOf(X,L).



5.3: Recursive programming

Example We wish to retrieve the last element of a list:
isLastElmtOf(X,L) must be true if X is the last element of L.
• the linked list must be scanned until its last element is reached
• we do not know in advance how many steps will be needed
⇒ recursive programming:

X is last element of [ Y | R ] if and only if X is last element of R
Termination: X is the last element of [X ]

isLastElmtOf(X,[X]).

isLastElmtOf(X,[_|R]) :- isLastElmtOf(X,R).



5.3: Recursive programming

Exercise 8 Write definitions for the following predicates to manipu-
late lists:
memb/2: such that memb(X,L) is true if X is element of list L.
sel/3: a predicate that can be used to “delete" an occurrence of an

element of a list. For instance, to the query sel(X, [a, b, c, a], R)
Prolog should answer:
X = a ∧ R = [b, c, a] ∨ X = b ∧ R = [a, c, a] ∨ X = c ∧ L =
[a, b, a] ∨X = a ∧ L = [a, b, c].

app/3: app(L,M,R) is true if R is the list that contain the elements of
L followed by those of M .

rev/2: rev(L,R) is true if R is the list that contain the elements of L in
reverse order.



6: Negation
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6.1: Semantics of negation

Suppose we have a world consisting of three blocks a, b, c, that can
be piled upon another, and we are interested in the relation of “being
above”. E.g.:

c

b

a

The following Prolog program models
this situation:

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Z) :- on(X,Y), above(Y,Z).

Exercise 9 Use Prolog execution to calculate the “most natural”
model of this program.



6.1: Semantics of negation

Suppose we have a world consisting of three blocks a, b, c, that can
be piled upon another, and we are interested in the relation of “being
above”. E.g.:

c

b

a

The following Prolog program models
this situation:

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Z) :- on(X,Y), above(Y,Z).

Exercise 9 Use Prolog execution to calculate the “most natural”
model of this program.

The model that seems to describe exactly the picture is this:

{ on(a,b), on(b,c), above(a,b), above(b,c), above(a,c) }



6.1: Semantics of negation

But there are also other models of this program, e.g., the model in
which “everything is true”:

{ on(a,a), on(a,b), on(a,c),

on(b,a), on(b,b), on(c,c),

on(c,a), on(c,b), on(c,c),

above(a,a), above(a,b), above(a,c),

above(b,a), above(b,b), above(c,c),

above(c,a), above(c,b), above(c,c) }

Two conclusions
• Definite programs, taken literally, cannot model negative infor-

mation.
• In this example, and elsewhere, humans very often work with a

closed world assumption: everything that is not explicitly true, is
false. How to formalise this?



6.1: Semantics of negation

The completion of a program is supposed to have only the “most nat-
ural” model:
on(X, Y )↔ (X = a ∧ Y = b) ∨ (X = b ∧ Y = c).
above(X,Z)↔ on(X,Z) ∨ (on(X, Y ) ∧ above(Y, Z)).

• This “program” only exists in theory!
• Use↔ instead of←, only one “clause” per predicate, disjunction,

no filtering.
• If we use negation as failure for negated atomic formulas in queries,

with the original program, then the completion gives a semanti-
cal reference . . .



6.2: Negation as failure

Procedural meaning given to negation:
In order to prove ¬ϕ, try to prove that ϕ. If it fails, then ¬ϕ
succeeds.

Remark: negation is written \+ is Prolog, and negated goals consist-
ing of several atomic formulas should be enclosed in (()).

Exercise 10 Use Prolog to check whether block a is on itself, and
whether block c is on block a.
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Procedural meaning given to negation:
In order to prove ¬ϕ, try to prove that ϕ. If it fails, then ¬ϕ
succeeds.

Remark: negation is written \+ is Prolog, and negated goals consist-
ing of several atomic formulas should be enclosed in (()).

Exercise 10 Use Prolog to check whether block a is on itself, and
whether block c is on block a.

There is actually a clean semantics of this, paraphrased as follows:
For a ground atomic formula A, if A finitely fails for program
P, then ¬A is a logical consequence of the completion of P.



6.2: Negation as failure

Procedural meaning given to negation:
In order to prove ¬ϕ, try to prove that ϕ. If it fails, then ¬ϕ
succeeds.

Remark: negation is written \+ is Prolog, and negated goals consist-
ing of several atomic formulas should be enclosed in (()).

Exercise 10 Use Prolog to check whether block a is on itself, and
whether block c is on block a.

There is actually a clean semantics of this, paraphrased as follows:
For a ground atomic formula A, if A finitely fails for program
P, then ¬A is a logical consequence of the completion of P.

This even works for non-ground atomic formulas. For example, the
query \+ on(c,X) succeeds, since the query on(c,X) fails. This says:
∀X.¬on(c,X) is a logical consequence of the completion of the pro-
gram, since there is no block on block a.
However, this universal quantification is not always what one wants,
at least logically . . .



6.2: Negation as failure

Exercise 11 Consider the following situation:

c

b d

a

Modify your program to model this situation and write a query to
search for a block on block c, that does not have block a on it.



6.2: Negation as failure

Exercise 11 Consider the following situation:

c

b d

a

Modify your program to model this situation and write a query to
search for a block on block c, that does not have block a on it.

We observe: The query on(X,c), \+ on(a,X). gives the expected an-
swer but \+ on(a,X), on(X,c). does not.
Lesson: place calls with negation so that they are ground at the time
of execution!
Otherwise, you will have no logical reading at all or at least not the
one you expect.
Less strict: be sure that when a negated atomic query ¬A(X̄) is called,
∀X̄.¬A is intended.



6.3: Negation in clause bodies

Negation would be very limited if we only allowed it in queries but
not in programs, clause bodies to be more precise. But it turns out
that allowing for negation in clause bodies again endangers the logi-
cal reading of programs:

p(X) :- \+ p(X)

How can we hope to give a semantics to this program, whose com-
pletion would read as follows: p(X)↔ ¬p(X)?
We do not go into the details as to how to avoid this, but at least one
simple lesson: do not use negation in recursive calls!



6.3: Negation in clause bodies

Negation would be very limited if we only allowed it in queries but
not in programs, clause bodies to be more precise. But it turns out
that allowing for negation in clause bodies again endangers the logi-
cal reading of programs:

p(X) :- \+ p(X)

How can we hope to give a semantics to this program, whose com-
pletion would read as follows: p(X)↔ ¬p(X)?
We do not go into the details as to how to avoid this, but at least one
simple lesson: do not use negation in recursive calls!
(Although it sometimes works:

even(0).

even(s(X)) :-

\+ even(X).

)



6.4: Clean exercises

We start with some exercises where negation is meant to have a clear
logical meaning.

Exercise 12 Write queries (and give the answers) to find the follow-
ing :
1. actors who played in more than one movie;
2. directors who where never an actor;
3. actors who never played in a movie directed by Tim Burton.

Exercise 13 Add clauses to the database to define the following:
1. the actors who played in at least two films by Francis Ford Cop-

pola.
2. movies in which played actors who were never directed by Fran-

cis Ford Coppola (note that plausibly, this would be true for all
movies not directed by Francis Ford Coppola; otherwise, there
would have to be a movie, not directed by Francis Ford Coppola,
such that all actors of the movie have already been directed by
Francis Ford Coppola).



6.5: Dirty Exercise

Now an exercise that makes some clever use of negation, but without
clear logical meaning.

Cannibals ambush a safari in the jungle and capture three men. The
cannibals give the men a single chance to escape uneaten.

The captives are lined up in order of height, and are tied to stakes.
The man in the rear can see the backs of his two friends, the man in
the middle can see the back the man in front, and the man in front
cannot see anyone. The cannibals show the men five hats. Three of
the hats are black and two of the hats are white.

Blindfolds are then placed over each man’s eyes and a hat is placed on
each man’s head. The two hats left over are hidden. The blindfolds
are then removed and it is said to the men that if one of them can
guess what color hat he is wearing they can all leave unharmed.

The man in the rear who can see both of his friends’ hats but not his
own says, "I don’t know". The middle man who can see the hat of the
man in front, but not his own says, "I don’t know". The front man
who cannot see ANYBODY’S hat says "I know!"



6.5: Dirty Exercise

How did he know the color of his hat and what color was it?1

(Hint: Prolog’s negation as failure is perfect to represent “I cannot
guess the color of my hat knowing. . . ”. You can define a first predi-
cate that enumerates the possible hat combinations.)

1Excerpt from mathsisfun.com



6.5: Dirty Exercise

whiteorblack(white).

whiteorblack(black).

possible(A,B,C) :-

whiteorblack(A), whiteorblack(B), whiteorblack(C),

\+(( A = white , B = white , C = white )).

%Rear guy can guess his colour C if C is possible and no

%other colour is possible

guess_rear(A,B,C) :-

possible(A,B,C) , \+((possible(A,B,X) , X \= C )).

%Middle guy can guess the colour B of his hat knowing the

%colour A of the guy before him and knowing that the guy

%behind him could not guess his colour.

guess_middle(A,B) :-

possible(A,B,_) ,

\+(( possible(A,X,_) , \+(guess_rear(A,X,_)) , X \= B)).



6.5: Dirty Exercise

solution(A,B,C) :-

possible(A,B,C) ,

\+(guess_rear(A,B,C)) ,

\+(guess_middle(A,B)).

Exercise 14 Calculate some (all) answers for possible, guess_rear,
guess_middle, solution using Prolog.



7: More details on running Prolog
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7.1: Syntax reminder

Summary (reminder) of syntax:
Syntax of Edinburgh / GNU Prolog
in order of increasing priorities:

Connective Meaning Logic Prolog
implication "if" ← :-

disjunction "or" ∨ ;

conjunction "and" ∧ ,

negation "not" ¬ \+

equality "equals" = =

inequality "different" 6= \=

Remark Most prolog interpreters require that the logical negation
connective \+ is followed, in some contexts, by two pairs of parenthe-
ses. It is safe to always put two pairs of parentheses.



7.2: A few debugging tools

Step-by-step execution It is possible to see each “call” to a given
predicate during execution of a program. The predicate spy/1 is used
to declare predicates to be "traced", e.g. spy(cast). It puts the inter-
active system in tracing mode. The predicate debug/0 also puts the
system in tracing mode. A call to nodebug/0 exits this mode.
In tracing mode, the interpreter stops when "calling" a traced predi-
cate and when "exiting" the call, that is, when it has found instances
of the variables that make the call "true"; at each stop, the interpreter
waits for an instruction:
l to “leap” to the next call to, or return from, a marked predicate;
A to see all alternatives (branches that still have to be explored);
a to abort execution;
g to see the ancestor calls;
h to get some help.



7.2: A few debugging tools

Exercise 15 Using the small movie database, trace the calls to the
predicates cast and director during the execution of the queries:

cast(M,A,R), directed('John Landis',A).

cast(M,A,R), \+ directed('John Landis',A).



7.3: Printing messages

The predicate write/1 can be used to print out a term on the screen,
e.g.
p(X)← write(′X =′),write(X), q(X).



7.4: The anonymous variable

The variable _ is anonymous: it does not really have a name; each
occurrence refers to a different variable. It should be used whenever
a variable has only one occurrence in a clause, otherwise Prolog will
write a “singleton variable. . . ” message.
For instance, the clause

p(X,Y) :-

q(X), r(X,Z), s(Z,U).

should be written

p(X,_) :-

q(X), r(X,Z), s(Z,_).

Advice: From now on, use anonymous variables in your programs to
avoid the “singleton variable. . . ” message.



7.5: Arithmetic

• Most usual arithmetic expressions are part of the Prolog lan-
guage, for instance sqrt(4 ∗X − 3) + 2.3.

• However, Prolog was first designed to manipulate non numerical
data⇒ the evaluation of arithmetic expressions is not automatic.
For instance, try the query X = sqrt(4 ∗ 5− 3) + 2.3.
A Prolog predicate does not return a value.

⇒ The binary predicate is
∗ evaluates an arithmetic expression, and
∗ instantiates a variable with the result.

For instance, to the query: X is sqrt(4 ∗ 2− 3) + 2.3
Prolog replies: X = 4.53 . . .



7.5: Arithmetic

• Most usual arithmetic expressions are part of the Prolog lan-
guage, for instance sqrt(4 ∗X − 3) + 2.3.

• However, Prolog was first designed to manipulate non numerical
data⇒ the evaluation of arithmetic expressions is not automatic.
For instance, try the query X = sqrt(4 ∗ 5− 3) + 2.3.
A Prolog predicate does not return a value.

⇒ The binary predicate is
∗ evaluates an arithmetic expression, and
∗ instantiates a variable with the result.

For instance, to the query: X is sqrt(4 ∗ 2− 3) + 2.3
Prolog replies: X = 4.53 . . .

The following infix binary predicates expect arithmetic expressions
on both sides: <, >, =<, >=, =:=, =\=.
They evaluate the two expressions, and compare the results.
(X=:=Y is true if the value of X is equal to the value of Y,
and X=\=Y is true if the value of X is different from that of Y).



7.5: Arithmetic

Exercise 16 Define a predicate that can compute the value of n! =
n · (n− 1) · . . . · 3 · 2 · 1.

Exercise 17 Define a predicate quadEq/4 that computes the solutions
of a quadratic equation: quadEq(A,B,C,X) should be true if AX2 +
BX + C = 0.

Exercise 18
• Define the predicate len/2 for computing the length of a list.
• Define the predicate quicksort/2 for sorting a list of numbers.
• Define the predicate mergesort/2 for sorting a list of numbers.



8: About Prolog search strategy
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8.1: Non terminating queries: Retrieval in a graph

Directed graph = binary relation⇒ predicate edge/2:
edge(X, Y ) is true if there is an edge between from vertex X to Y .

edge(a, c). edge(a, d).
edge(c, e). edge(e, f ).
edge(d, f ).

a

b

c

d

e

f



8.1: Non terminating queries: Retrieval in a graph

Directed graph = binary relation⇒ predicate edge/2:
edge(X, Y ) is true if there is an edge between from vertex X to Y .

edge(a, c). edge(a, d).
edge(c, e). edge(e, f ).
edge(d, f ).

a

b

c

d

e

f

Definition of a predicate path/2, such that path(X, Y ) is true if there
is a path, of any length, from X to Y :

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

Exercise 19 Draw the search trees for the following queries:
path(a, e)? path(e, a)? path(a, U)?



8.1: Non terminating queries: Retrieval in a graph

edge(a, c). edge(a, d).
edge(c, e). edge(e, f ).
edge(d, f ).

a

b

c

d

e

f

Exercise 20 Now, draw the search trees for the query path(a, e)?

If we re-define path/2 as follows:

path(X,Y) :- edge(X,Y).

path(X,Y) :- path(Z,Y), edge(X,Z).



8.1: Non terminating queries: Retrieval in a graph

edge(a, c). edge(a, d).
edge(c, e). edge(e, f ).
edge(d, f ).

a

b

c

d

e

f

Exercise 20 Now, draw the search trees for the query path(a, e)?

If we re-define path/2 as follows:

path(X,Y) :- edge(X,Y).

path(X,Y) :- path(Z,Y), edge(X,Z).

Is it better with the original definition?

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

⇒ In general, it is better to instantiate variables before the recursive
call(s).



8.2: Recursive predicates that construct a list

In some typical applications of graph traversal (e.g. a route planner)
one does not only want to check if there is a path from X to Y , but
also to return that path.
We do not know the length of the path in advance⇒ store it in a list



8.2: Recursive predicates that construct a list

In some typical applications of graph traversal (e.g. a route planner)
one does not only want to check if there is a path from X to Y , but
also to return that path.
We do not know the length of the path in advance⇒ store it in a list
⇒ Define a predicate path/3 such that path(X, Y, P ) is true if P is a
list of vertices on a path from X to Y :

path(X,Y,[X,Y]) :- edge(X,Y).

path(X,Y,[X|P1]) :- edge(X,Z), path(Z,Y,P1).

Exercise 21 Draw the search tree for the queries path(a, e, P ),
path(a, b, P ) and path(a, f, P ).



8.2: Recursive predicates that construct a list

Exercise 22 On the graph example again.
Question 22.1 What happens if we add an edge from c to a?
Question 22.2 Re-define your predicate path/3, so that it gives “some”
paths without looping even if the graph has cycles.
(Hint: use a list of “forbidden” nodes, and an intermediate predicate
path/4.)
More difficult: give a solution that enumerates all paths (is complete)
when the graph has cycles.

Exercise 23 Define a predicate to compute the length of a list, and
another predicate to generate a list of a given length.



8.2: Recursive predicates that construct a list

Exercise 24 Once upon a time a farmer went to the market and
purchased a fox, a goose, and a bag of beans. On his way home,
the farmer came to the bank of a river and hired a boat. But in
crossing the river by boat, the farmer could carry only himself and
a single one of his purchases - the fox, the goose, or the bag of the
beans. If left alone, the fox would eat the goose, and the goose would
eat the beans. The farmer’s challenge was to carry himself and his
purchases to the far bank of the river, leaving each purchase intact.2

You will later write a Prolog program to discover how he did it, with
a predicate that computes a sequence of crossings that leads from the
initial state (the farmer and his goods on one side of the river) to the
final state (the farmer and his goods on the other side). A state of the
problem can be described with a pair of lists of the elements on both
sides of the river. For instance, the initial state could be described by
river([b, f, g, x], [ ]), the final state is river([ ], [b, f, g, x]).

Question 24.1 Define a predicate safeState/1 such that safeState(E) is

2en.wikipedia.org/wiki/Fox,_goose_and_bag_of_beans_puzzle



8.2: Recursive predicates that construct a list

true if E represents a state where the fox is not left alone with the
goose, and the goose is not left with the bag of beans. (Use the built-
in predicate member/2.)

The main predicate of your program, plan/1, must be defined so that
the query:
?− plan(L).
yields a list of successive states that lead from the initial state to the
final state: L = [ river([b, f, g, x], [ ]) , river([b, x], [. . .]) . . .].

Question 24.2 Define a predicate step/2 such that step(E1, E2) is true
if it is possible to change from state E1 to state E2 with a single
crossing step of the farmer, with or without one good. (Use the built-
in predicate select/3.)

Question 24.3 Define a predicate plan/4 such that plan(I, F, P,N) is
true if it possible to go from state I to state F with the states in the
list P as intermediary states, without going through the states in the
list of forbidden states N . (Note: checking that a state is not in N is
not trivial, since there are different possibilities to describe one state;



8.2: Recursive predicates that construct a list

for instance, [f, x, b] and [x, f, b] may refer to the same state.)
Question 24.4 Finally define plan/1: plan(P ) must be true if P is a
sequence of states that describe a valid plan from the initial state to
the final state.



8.3: Accumulators

Consider the predicate to reverse a list:
reverse([a, b, c], R)⇒ R = [c, b, a]

First solution with append: append(L1, L2, L3) is true if L3 = L1.L2.

rev([],[]).

rev([H|T],L) :-

rev(T,L2),

app(L2,[H],L).

Number of operations in O(|L|2).
Can we do better?



8.3: Accumulators

Idea: Through the recursive calls, we should somewhow shuffle the
elements starting from the beginning of the first argument, into the
second argument, in a single pass:

rev_test([H|T],A) :-

rev_test(T,[H|A]).

We need a base case, let’s simply try:

rev_test([],_).

Exercise 25
• Try this in Prolog with the query rev_test([1,2,3],[]). Is the

result informative in any way?



8.3: Accumulators

Idea: Through the recursive calls, we should somewhow shuffle the
elements starting from the beginning of the first argument, into the
second argument, in a single pass:

rev_test([H|T],A) :-

rev_test(T,[H|A]).

We need a base case, let’s simply try:

rev_test([],_).

Exercise 25
• Try this in Prolog with the query rev_test([1,2,3],[]). Is the

result informative in any way?
• Now try it with the tracer to see that the reversed list is indeed

constructed.

The result only appears at the leaf of the search tree, it is invisible at
the root. How can we carry this solution from the leaf to the root?



8.3: Accumulators

Using an accumulator:

rev(L,R) :-

rev_aux(L,R,[]).

rev_aux([],A,A).

rev_aux([H|T],R,A) :-

rev_aux(T,R,[H|A]).



8.3: Accumulators

Using an accumulator:

rev(L,R) :-

rev_aux(L,R,[]).

rev_aux([],A,A).

rev_aux([H|T],R,A) :-

rev_aux(T,R,[H|A]).

Number of operations in O(|L|)

Remark The predicates member/2, append/3, select/3 and reverse/2 are
usually predefined in Prolog.
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One disadvantage of recursion compared to iteration is that, in gen-
eral, recursion needs to store in a stack the successive values of the
parameters with which the recursive predicate is called.
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One disadvantage of recursion compared to iteration is that, in gen-
eral, recursion needs to store in a stack the successive values of the
parameters with which the recursive predicate is called.
For instance, consider the following program, which prints on the
screen the integers from X to N :
count(X,X).
count(X,N)← X < N ∧ write(X) ∧ Y isX + 1 ∧ nl ∧ count(Y,N).



8.4: Last call optimization∗

One disadvantage of recursion compared to iteration is that, in gen-
eral, recursion needs to store in a stack the successive values of the
parameters with which the recursive predicate is called.
For instance, consider the following program, which prints on the
screen the integers from X to N :
count(X,X).
count(X,N)← X < N ∧ write(X) ∧ Y isX + 1 ∧ nl ∧ count(Y,N).

The query count(1, 1000000) works fine.



8.4: Last call optimization∗

One disadvantage of recursion compared to iteration is that, in gen-
eral, recursion needs to store in a stack the successive values of the
parameters with which the recursive predicate is called.
For instance, consider the following program, which prints on the
screen the integers from X to N :
count(X,X).
count(X,N)← X < N ∧ write(X) ∧ Y isX + 1 ∧ nl ∧ count(Y,N).

The query count(1, 1000000) works fine.
But if we define a predicate to count backwards:

revcount(X,X).
revcount(X,N)← X<N∧YisX+1∧ revcount(Y,N)∧write(Y )∧nl

the query revcount(1,1000000) leads to a crash: stack overflow!



8.4: Last call optimization∗

Explanation Most compilers for functional / logic programming lan-
guages are able to transform a recursion into an iteration, if the re-
cursive call is the last one in the clause.
In prolog, the recursion is usually transformed into an iteration if:
• the recursive call is the last one in the clause, and
• no other clause can be tried after the recursive call

(the other clauses must therefore in general appear before the
recursive one

• no more backtrack is possible with the other goals in the clause
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8.5: Generate and test

C

A B

D E

“Map coloring”: Choose a color for each
region, so that no two adjacent regions
have the same color.
3 colors: green, orange, purple
(Is it possible with fewer colors?)

solution(A,B,C,D,E) :- generate(A,B,C,D,E), test(A,B,C,D,E).

generate(A,B,C,D,E) :-

color(A), color(B), color(C), color(D), color(E).

color(green). color(purple). color(orange).

test(A,B,C,D,E) :- A \= B, A \= C, A \= D, A \= E,

B \= C, B \= D, B \= E, C \= D, C \= E, D \= E.



8.5: Generate and test

C

A B

D E

“Map coloring”: Choose a color for each
region, so that no two adjacent regions
have the same color.
3 colors: green, orange, purple
(Is it possible with fewer colors?)

solution(A,B,C,D,E) :- generate(A,B,C,D,E), test(A,B,C,D,E).

generate(A,B,C,D,E) :-

color(A), color(B), color(C), color(D), color(E).

color(green). color(purple). color(orange).

test(A,B,C,D,E) :- A \= B, A \= C, A \= D, A \= E,

B \= C, B \= D, B \= E, C \= D, C \= E, D \= E.

⇒ How many leaves does the search tree have?
(In general, this problem is called graph coloring.)



8.5: Generate and test

Exercise 26 ∗ Ann, Bill, Charlie, Don, Eric own one box each but
we don’t know which box. We know the size and color of each box:
one box is of size 3 and black; one is of size 1 and black; one is of
size 1 and white; one is of size 2 and black; the last one is of size 3
and white. We also have some information about the characteristics
of the boxes owned by each person :
• Ann and Bill have boxes with

the same colour;
• Don and Eric have boxes with

the same colour;

• Charlie and Don have boxes
with the same size;

• Eric’s box is smaller than Bill’s.

We want to know who owns which box. In order to solve the problem,
you can:
1. Write a Prolog database with the characteristics of the boxes, as-

sociating a number to each box, for instance: box(2, 1, black) rep-
resents that the second box is of size 1 and black;

2. Write a predicate to compute the solution of the problem:
solution(A,B,C,D,E) must be true if A is the box owned by Ann,
B the one owned by Bill, and so on. . .



8.5: Generate and test

Exercise 27 The arithmetic cryptographic puzzle: Find distinct digits
for S, E, N, D, M, O, R, Y such that S and M are non- zero and the
equation SEND+MORE=MONEY is satisfied.
Hint: define and use predicates all_member and all_diff.



8.5: Generate and test

“Generate & test” for Sudoku
2

1

4
1

sudoku4(L) :- generate(L) , test(L).

generate(L) :- all_member([_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_], [1,2,3,4]).

test([X11, X12, X13, X14, X21, X22,..., X42, X43, X44]) :-

all_diff([X11,X12,X13,X14]), all_diff([X21,X22,X23,X24]) ,

all_diff([X31,X32,X33,X34]), all_diff([X41,X42,X43,X44]),

all_diff([X11,X21,X31,X41]), all_diff([X14,X24,X34,X44]),

all_diff([X12,X22,X32,X42]), all_diff([X13,X23,X33,X43]),

all_diff([X11,X12,X21,X22]), all_diff([X13,X14,X23,X24]),

all_diff([X31,X32,X41,X42]), all_diff([X33,X34,X43,X44]).

all_member([],_).

all_member([V|Vs],D) :- member(V,D) , all_member(Vs,D).

all_diff([]).

all_diff([X|L]) :- \+ member(X,L) , all_diff(L).

Use with sudoko4([_,2,_,_,1,_,_,_,_,_,_,4,_,_,1,_]).



8.6: Exercises∗

Exercise 28 Consider the movie database. Let us define the degree of movie sepa-
ration between two actors or actresses A1 and A2 as follows: it is 0 if they played
in the same movie at least once; it is 1 if they did not play in the same movie, but
played in movies that have at least one common actor or actress; it is 2 if it is not
1 and there are two other actors or actresses B1 and B2 who played in the same
movie, and such that A1 and B1 (respectively A2 and B2) played in the same movie;
and so on. . . That is, it is the length of the shortest “movie path” between them. By
definition, the degree will be infinite if there is no “movie connection” between two
persons.



8.6: Exercises∗

Question 28.1 Define a predicate that can be used to find actors and actresses who
have a degree of movie separation of 2 with a given actor or actress A.

Question 28.2 Define a predicate that can compute the degree of movie separation
between two given actors or actresses.



8.6: Exercises∗

Exercise 29 The "flights" Prolog database 3 contains Prolog facts with the following
information:

• flying times, for instance
vol(it, 386, blagnac, cdg, [14, 30], [15, 30])

indicates that flight 386 of the company “it” takes off from Blagnac airport at
14h30 and lands at Charles-de-Gaulle at 15h30; in particular, times of the day
are represented using lists giving the hour and minutes.

• flight prices, for instance
tarif(it, toulouse, paris, 500)

indicates that a ticket to fly from Toulouse to Paris with “it” costs 500e;

• the cost of airport taxes, for instance
taxe(toulouse,100)

indicates that every passenger using an airport in Toulouse must pay a 100e
tax every time;

• location of airports, for instance
aeroport(toulouse, blagnac)

indicates that Blagnac airport is near Toulouse.

3www.irit.fr/~Jerome.Mengin/teaching/prolog/vols-payants-bd.pl



8.6: Exercises∗

Question 29.1 Load the file, and submit queries to get: all flight numbers from
Blagnac to Orly, flight numbers from Marseille to Paris, all London airports.

Question 29.2 Define a relation directConnection/4 such that connection(AD, HD, AA, HA)

is true if there is a direct flight from airport AD to airport AA leaving after time HD

and arriving before HA.

Question 29.3 Define now a relation route/4 such that route(AD, HD, AA, HA) is true
if there is a sequence of flights to go from airport AD to airport AA leaving after
time HD and arriving before HA. In case of stopovers, there must be at least 30
minutes if flights arrive and start from the same airport, and 2 hours if one must
change airport in the same city.

Question 29.4 Extend the preceding relation so that one can get the price of the
ticket, and the itinerary. (Airport taxes are paid for the starting and arrival airports,
as well as once for each stopover.)

Exercise 30 You are asked to write a program that analyses how some objects are
composed of other objects: their components, that can themselves be decomposed
into components. A small database contains, for each object, the list of its com-
ponents, using a relation components/2: components(O,L) is true if L is the list of
components of object O.
components(a, [b, c, d, c]). components(b, [e, f ]). components(f, [g, e]). components(c, [h, h, h]).



8.6: Exercises∗

Thus a has four components, two of type c ; b can itself be decomposed, as well as
c and f , whereas d, e, g and h are elementary components.

Question 30.1 Define a predicate allComp/2, such that allComp(O,L) is true if L
is the list of all the components, elementary or not, that constitute object O -
including O itself. For instance, the query allComp(a, U) should yield the answer
U = [a, b, e, f, g, e, c, h, h, h, d, c, h, h, h]. (The built-in predicate append/3 can be use-
ful.)

Question 30.2 Define a predicate compEl, such that compEl(O,L) is true if L is the list
of elementary components of object O. For instance, the query compEl(a, U) should
yield U = [e, g, e, h, h, h, d, h, h, h].



9: Meta-programming

IENAC S



9.1: List of solutions

Sometimes we would be happy to compute a list of all solutions to a given predi-
cate.
Suppose for instance we want all movies directed by Woody Allen, sorted in alpha-
betical ordering.

• All solutions to the query director(’Woody Allen’,M) are in different branches of
Prolog’s search tree.

• All branches of the search tree are independent of one another.



9.1: List of solutions

Prolog implementations provide a meta-predicate that lists solutions to a given
query:

�ndall(T,G(T ), L): here G(T ) means that G is goal (formula) in which the term T

appears; then the call will

• call the goal G(T );
• for each solution found, instantiate the term T according to the solution;
• construct the list L of these instances T .

For instance, with the movie database excerpt:
�ndall(A, directed(’Fatih Akin’, A), L)?⇒
L = [’Adam Bousdoukos’, ’Moritz Bleibtreu’, ’Anna Bederke’]
�ndall([D,M, Y ], director(D,M), L).⇒ L = . . .



9.1: List of solutions

bagof∗:

bagof(T,G(T ), L): similar to �ndall, but the results are grouped according to the
values of variables of G which do not appear in T

On the example: bagof(A, directed(D,A), L)?⇒ . . .

Exercise 31 Consider the graph above again: define a predicate reachable/2, such
that reachable(X,L) is true if L is the list of vertices to which there is a path from X.



10: The GNU Prolog finite domain
constraints solver
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10.1: The Sudoku 4× 4 in Prolog

Recall the Prolog solution:

sudoku4(L) :- generate(L) , test(L).

generate(L) :- all_member([_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_], [1,2,3,4]).

test([X11, X12, X13, X14, X21, X22,..., X42, X43, X44]) :-

all_diff([X11,X12,X13,X14]), all_diff([X21,X22,X23,X24]) ,

all_diff([X31,X32,X33,X34]), all_diff([X41,X42,X43,X44]),

all_diff([X11,X21,X31,X41]), all_diff([X14,X24,X34,X44]),

all_diff([X12,X22,X32,X42]), all_diff([X13,X23,X33,X43]),

all_diff([X11,X12,X21,X22]), all_diff([X13,X14,X23,X24]),

all_diff([X31,X32,X41,X42]), all_diff([X33,X34,X43,X44]).

all_member([],_).

all_member([V|Vs],D) :- member(V,D) , all_member(Vs,D).

all_diff([]).

all_diff([X|L]) :- \+ member(X,L) , all_diff(L).

Query:
sudoku4(L).
The search tree for sudoko4([_,2,_,_,1,_,_,_,_,_,_,4,_,_,1,_])has 412 =
17 million leaves !!



10.1: The Sudoku 4× 4 in Prolog

A more efficient version: Generate only valide lines
(somehow, the “generate” and “test” parts are interleaved).

all_member_diff([V|Vs],D) :- select(V,D,D1) , all_member_diff(Vs,D1).

all_member_diff([],_).

sudoku4(L)

:- L=[X11,X12,X13,X14,X21,X22,X23,X24,X31,X32,X33,X34,X41,X42,X43,X44]

, all_member_diff([X11,X12,X13,X14],[1,2,3,4])

, all_member_diff([X21,X22,X23,X24],[1,2,3,4])

, all_member_diff([X31,X32,X33,X34],[1,2,3,4])

, all_member_diff([X41,X42,X43,X44],[1,2,3,4]) , nl, write(L)

, all_diff([X11,X21,X31,X41]), all_diff([X11,X21,X31,X41])

, all_diff([X12,X22,X32,X42]), all_diff([X13,X23,X33,X43])

, all_diff([X11,X12,X21,X22]), all_diff([X13,X14,X23,X24])

, all_diff([X31,X32,X41,X42]), all_diff([X33,X34,X43,X44]).

select(V,D,RD) is true if V ∈ D and RD = D\V .



10.1: The Sudoku 4× 4 in Prolog

With the constraint solver:

sudoku4_fd(L)

:- L=[X11,X12,X13,X14,X21,X22,X23,X24,X31,X32,X33,X34,X41,X42,X43,X44]

, fd_domain(L,1,4)

, fd_all_different([X11,X12,X13,X14])

, fd_all_different([X21,X22,X23,X24])

, fd_all_different([X31,X32,X33,X34])

, fd_all_different([X41,X42,X43,X44])

, fd_all_different([X11,X21,X31,X41])

, fd_all_different([X11,X21,X31,X41])

, fd_all_different([X12,X22,X32,X42])

, fd_all_different([X13,X23,X33,X43])

, fd_all_different([X11,X12,X21,X22])

, fd_all_different([X13,X14,X23,X24])

, fd_all_different([X31,X32,X41,X42])

, fd_all_different([X33,X34,X43,X44])

, fd_labeling(L).



10.1: The Sudoku 4× 4 in Prolog

Comparison of the 3 versions
• first version: implemented without thinking about how Prolog

evaluates the queries, too slow.
• second version: faster, but the programmer had to think more

about Prolog’s evaluation mechanism – this is not the aim with
logic programming.

• third version: even faster, and written without thinking about
how constraints are solved.
It uses an external constraint solver.



10.2: An overview of the constraint solver

1. each variable receives an initial domain;
(above: the call fd_domain(L, [1, 2, 3, 4]) associates the domain
{1, 2, 3, 4} to all variables in L)
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{1, 2, 3, 4} to all variables in L)

2. every encountered constraint is stored



10.2: An overview of the constraint solver

1. each variable receives an initial domain;
(above: the call fd_domain(L, [1, 2, 3, 4]) associates the domain
{1, 2, 3, 4} to all variables in L)

2. every encountered constraint is stored
with domain reduction based on local consistency conditions if
possible; above:
• X12 instantiated to 2
• constraint fd_all_di�([X11, X12, X13, X14])
⇒ the value 2 is removed from the domains of X11, X13, X14

3. the call fd_labeling triggers the external constraint solver.



10.2: An overview of the constraint solver : Domains

A domain DX is associated with each variable X that appears in a
constraint.
Initially: DX = [0, . . . , fd_max_integer] ⊆ N+

| ?- X = Y.

Y = X

yes

| ?- X #= Y.

X = _#0(0..268435455)

Y = _#0(0..268435455)

yes



10.2: An overview of the constraint solver : Domains

A domain DX is associated with each variable X that appears in a
constraint.
Initially: DX = [0, . . . , fd_max_integer] ⊆ N+

| ?- X = Y.

Y = X

yes

| ?- X #= Y.

X = _#0(0..268435455)

Y = _#0(0..268435455)

yes

| ?- X\=Y.

no

| ?- X\==Y.

yes

| ?- X #\= Y.

X = _#2(0..268435455)

Y = _#20(0..268435455)

yes



10.2: An overview of the constraint solver : Domains

The first effect of a constraint is to reduce the domain of the variables:

| ?- X + Y #= 5.

X = _#21(0..5)

Y = _#39(0..5)

yes



10.2: An overview of the constraint solver : Domains

The first effect of a constraint is to reduce the domain of the variables:

| ?- X + Y #= 5.

X = _#21(0..5)

Y = _#39(0..5)

yes

| ?- X #< 3.

X = _#2(0..2)

yes



10.2: An overview of the constraint solver : Domains

The first effect of a constraint is to reduce the domain of the variables:

| ?- X + Y #= 5.

X = _#21(0..5)

Y = _#39(0..5)

yes

| ?- X #< 3.

X = _#2(0..2)

yes

| ?- X #< 3 , X+Y #= 6.

X = _#2(0..2) Y = _#41(4..6)

yes



10.2: An overview of the constraint solver : Domains

| ?- X #< 3 , write(X) , nl , write(Y), X + Y #= 6.

_#2(0..2)

_22

X = _#2(0..2) Y = _#41(4..6)

yes



10.2: An overview of the constraint solver : Domains

| ?- X #< 3 , write(X) , nl , write(Y), X + Y #= 6.

_#2(0..2)

_22

X = _#2(0..2) Y = _#41(4..6)

yes

| ?- X #< 2 , Y #< 2 , Z #< 2, X #\= Y , X #\= Z , Y #\= Z.

X = _#2(0..1) Y = _#22(0..1) Z = _#42(0..1)

yes



10.2: An overview of the constraint solver : Domains

Remarks:
• the predicates #=, #>, . . . do not completely solve the constraints.
• the evaluation of each constraint C only eliminates from the do-

mains of the variables values that do not appear in any solution
of C: it ensures local consistency (it is local to one constraint)



10.2: An overview of the constraint solver : Invoking the solver

The predicate fd_labeling solves all the constraints that have been
posted :

| ?- X #< 3 , X + Y #= 6 , fd_labeling([X,Y]).

X = 0 Y = 6 ? ;

X = 1 Y = 5 ? ;

X = 2 Y = 4

yes



10.2: An overview of the constraint solver : Invoking the solver

| ?- X #< 2 , Y #< 2 , Z #< 2 , X #\= Y , X #\= Z , Y #\= Z

, fd_labeling([X,Y,Z]).

no

The actual constraint solving algorithm will not be studied here. . .
Remark: all constraints are simultaneously solved, not only the ones
that involve the variables that appear in the parameter of fd_labeling:

| ?- X #< 2 , Y #< 2 , Z #< 2 , X #\= Y , X #\= Z , Y #\= Z

, fd_labeling([X,Y]).

no



10.2: An overview of the constraint solver : Other predicates

fd_domain(X,L): removes from the domain of X values that are not
in L.

fd_domain_bool(L): removes from the domain of each variable in L
values that are not in {0, 1}.

fd_all_di�erent(L): constraints all variables in the list L to have dif-
ferent values.
fd_all_different([X,Y,Z]) is equivalent to:
X #\= Y , X #\= Z , Y #\= Z



10.2: An overview of the constraint solver : Other predicates

| ?- fd_domain_bool([X,Y,Z]) , fd_all_different([X,Y,Z]).

X = _#0(0..1) Y = _#18(0..1) Z = _#36(0..1)

yes

| ?- fd_domain_bool([X,Y,Z]) , fd_all_different([X,Y,Z])

, fd_labeling([X,Y,Z]).

no

fd_atmost(N,L, V ): imposes that at most N variables from the list L
have value V .
There is also fd_atleast and fd_exactly.



10.2: An overview of the constraint solver

Exercise 32 Consider the following fragment of a program for the
famous 8-queens problem:

%noattack(Q,Qs,D):

%Q is vertical position of some queen

%Qs represents the vertical positions of all queens of some lower

%fragment of the chessboard, starting from the row D rows beneath the

%row of Q.

noattack(Q,[],_).

...

safe([]).

safe(...) :- noattack(...) , safe(...).

eightqueens(Solution) :-

Solution = [_,_,_,_,_,_,_,_],

fd_domain(Solution,1,8),

safe(Solution),

fd_labeling(Solution).



10.2: An overview of the constraint solver

• Complete the missing parts.
• Add a predicate nqueens that generalizes eightqueens to an arbi-

trary number of queens.



10.2: An overview of the constraint solver : Optimisation

The predicate fd_minimize returns the minimum value allowed for a
variable X among those possible when constraints are solved with
fd_labeling:

| ?- X + Y #= 10 , Y #< 3 , fd_minimize(fd_labeling([X,Y]),X).

X = 8 Y = 2

yes

How it works:
• each time fd_labeling([X, Y ]) gives a solution X = n, the search is

started again with a new constraint X #< n;
• when a failure occurs (either because there are no remaining

choice-points for Goal or because the added constraint is incon-
sistent with the rest of the store) the last solution is recomputed
since it is optimal.

There is also fd_maximize.



10.3: Exercises

Exercise 33 The arithmetic cryptographic puzzle: Find distinct digits
for S, E, N, D, M, O, R, Y such that S and M are non- zero and the
equation SEND+MORE=MONEY is satisfied.
Soleve the problem using the constraint solver.



10.3: Exercises

Exercise 34 ∗ A factory has four workers w1,w2,w3,w4 and four
products p1,p2,p3,p4. The problem is to assign workers to products
so that each worker is assigned to one product, each product is as-
signed to one worker, and the profit maximized. The profit made by
each worker working on each product is given in the matrix:

p1 p2 p3 p4
w1 7 1 3 4
w2 8 2 5 1
w3 4 3 7 2
w4 3 1 6 3



10.3: Exercises

Exercise 35 ∗ Four roommates are subscribing to four newspapers.
The table gives the amounts of time each person spends on each
newspaper. Akiko gets up at 7:00, Bobby gets up at 7:15, Chloé gets
up at 7:15, and Dola gets up at 8:00.

The Guardian Le Monde El Pais Die Taz
Albert 60 30 2 5
Bobby 75 3 15 10
Chloé 5 15 10 30
Dola 90 1 1 1

Nobody can read more than one newspaper at a time and at any
time a newspaper can be read by only one person. Schedule the
newspapers such that the four persons finish the newspapers at an
earliest possible time.


