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Motivation

Basic Idea of Model Checking

Analyze the state graph of a given �nite system

system: algorithm, circuit, protocol, . . .
represented by a transition system

Properties to verify:

safety: nothing bad will ever happen
liveness: something good will eventually happen

Main application domains:

reactive systems: permanent interaction with environment
parallel and distributed algorithms, protocols, controllers

Control is more important than data

Systems are usually composed of several parts
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Motivation

Three Steps of Model Checking

1 Construct system model

describe each system component (e.g., process) by a (�nite) automaton
languages: TLA+/ PlusCal, Promela, Petri nets, process algebra, . . .
possibly: automatic extraction from source code

2 Speci�cation of expected properties by temporal logic. Examples:

mutual exclusion �¬(pc[0] = �cs� ∧ pc[1] = �cs�)

guaranteed response (pc[0] = �a2�) (pc[0] = �cs�)

3 Veri�cation

�push-button�: automatic veri�cation by model checker
failure: examine counter-example to determine why property fails
success: property holds for the model
memory over�ow / timeout: simplify the model
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Discrete transition systems Transition systems

General Framework for Modelling Discrete Systems

Transition system ≈ automaton, without acceptance condition

example: counter modulo 3
0 1

2

Generator of runs

run: in�nite sequence of states and transitions
system properties are evaluated over runs
�at model: internal structure of states is not represented
abstract from variables, processes, communication, . . .
observe only which state the system is currently in
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Discrete transition systems Transition systems

Transition systems: de�nition

Abstract model of reactive systems T = (Q, I , δ)

Q �nite set of states
I ⊆ Q initial states
δ ⊆ Q × Q (total) transition relation:

for all q ∈ Q there exists q′ ∈ Q s.t. (q, q′) ∈ δ

In practice: T (i.e., Q and δ) described implicitly

TLA+/Promela: state = assignment of values to state variables
Petri nets: state = marking of places in the net

Size of Q is in general exponential in size of the description of T

9 M1 CSA � IES � MC Université de Toulouse/IRIT Year 2021/2022



Discrete transition systems Transition systems

Transition systems: remarks

Totality of δ

technical requirement: simpli�es subsequent de�nitions
every �nite execution can be extended to an in�nite one
deadlock must be modelled explicitly

q q′  q q′ qdead

Variant: labelled transitions δ ⊆ Q ×A× Q

explicitly identify actions responsible for transitions
distinguish internal and communication transitions
timed systems, probabilistic systems, . . . (more later and in M2 V&C)
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Discrete transition systems Transition systems

Runs of Transition Systems

Run ρ = q0q1 . . . of T = (Q, I , δ)

q0 ∈ I initial state
(qi , qi+1) ∈ δ state succession

labelled transitions: ρ = q0
a0−→ q1

a1−→ q2 . . .

Unfolding: tree (or forest) representing all runs of T

t

0

2

3

4

1
nodes states of T
edges transitions
paths runs
branching non-determinism
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Discrete transition systems Transition systems

Example: Digicode as Labelled Transition System

1 2 3 4
A B A

openB,C

C

A

B,C

Door opens in state 4 and is closed otherwise

The door opens for any code ending in ABA

Runs of this transition system

sequence of states (and actions) describing system evolution

1
B−→ 1

A−→ 2
A−→ 2

C−→ 1 . . .
1

A−→ 2
B−→ 3

C−→ 1
C−→ 1

A−→ 2
B−→ 3

A−→ 4
open−→ 1 . . .

Exercise 1

Give another run of this system.
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Discrete transition systems Transition Systems with Variables

Augmented Transition Systems

We introduce variables over �nite domains.

system state: automaton state + variable values

more succinct model, easier to understand

Having variables, it makes sense to annotate transitions:

guard: predicate over variables restricts transition

update: change values of some variables upon transition

Same expressiveness as basic transition systems

make as many copies of states as there are values of variables

evaluate guards and assignments over constant values
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Discrete transition systems Transition Systems with Variables

Example: Digicode with Counter

1cnt := 0 2 3 4

err

A B A

open, cnt:=0[cnt<3]B,C

cnt++

[cnt<3]C

cnt++ [cnt<3]A

cnt++

[cnt<3]B,C

cnt++

[cnt==3]B,C [cnt==3]A,C
[cnt==3]B,C

A,B,C

variable cnt indicates number of successive erroneous entries

door remains locked after more than 3 erroneous attempts
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Discrete transition systems Transition Systems with Variables

Digicode with Counter, Flattened

1,0 2,0 3,0 4,0

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

err

A B A

open

B,C
C

A

B,C

A B A

B,C
C

A

B,C

A B A

B,C
C

A

B,C

A B A

B,C A,C
B,C

A,B,C

Exercise 2

How many states are
there, and why?
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Discrete transition systems Composition of Transition Systems

Composition of Transition Systems

Systems are usually built from components

parallel programs built from processes
hardware built from interacting circuits
networked systems built from communicating nodes

Example: an elevator is made of a cabin, doors and a controller.
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Discrete transition systems Composition of Transition Systems

Composition of Transition Systems (2)

Assemble overall transition system

represent each component by separate transition system
derive global transition system from component systems
di�erent system paradigms re�ected by synchronization schemes; here
we consider synchronous composition

Interest for model checking

need not explicitly store global transition system
component systems can be much smaller than global system
can sometimes bene�t from symmetries to reduce state space
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Discrete transition systems Composition of Transition Systems

Synchronizing (Handshake) Composition

Synchronization via shared actions

assume labelled transition systems Ti = (Qi ,Ai , Ii , δi ) (i = 1, 2)
synchronized product T = (Q1 × Q2,A1 ∪ A2, I1 × I2, δ)(

(q1, q2), a, (q′
1
, q′

2
)
)
∈ δ i�

a ∈ A1 \ A2 and (q1, a, q
′
1
) ∈ δ1 and q′

2
= q2 or

a ∈ A2 \ A1 and (q2, a, q
′
2
) ∈ δ2 and q′

1
= q1 or

a ∈ A1 ∩ A2 and (q1, a, q
′
1
) ∈ δ1 and (q2, a, q

′
2
) ∈ δ2

joint actions must be executed together, local actions interleave

Generalizations beyond 2 components

multi-party synchronization: actions shared by several components
synchronization of two components, the others stutter
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Discrete transition systems Composition of Transition Systems

Example: Mutual Exclusion by Joint Actions

Two processes and a controller

Process Pi (i = 1, 2) Controller C

ncsi

waiti

csi

reqi enteri

exiti

idle busy

enter1

enter2

exit2

exit1

APi
= {reqi , enteri , exiti} AC = {enter1, enter2, exit1, exit2}

reqi : local to process Pi

enteri , exiti : shared between process Pi and controller
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Discrete transition systems Composition of Transition Systems

Synchronized Product (reachable states)

ncs1
ncs2
idle

wait1
ncs2
idle

ncs1
wait2
idle

wait1
wait2
idle

cs1
ncs2
busy

ncs1
cs2
busy

cs1
wait2
busy

wait1
cs2
busy

req2

req1 req2

enter1

req1

enter2

enter2
enter1

req2

exit1

req1

exit2

exit1

exit2

Exercise 3

How many unreachable states are there?

22 M1 CSA � IES � MC Université de Toulouse/IRIT Year 2021/2022



Discrete transition systems Back to the Roots

Plan

1 Motivation

2 Discrete transition systems
Transition systems
Transition Systems with Variables
Composition of Transition Systems
Back to the Roots
Kripke structures

3 Linear Temporal Logic

4 Model checking algorithm

23 M1 CSA � IES � MC Université de Toulouse/IRIT Year 2021/2022



Discrete transition systems Back to the Roots

From simple to complicated and back

We have started from plain transition systems: very simple formalism,
but system descriptions will be huge and hard to read.

We enhanced the formalism to have more concise and readable system
descriptions:

�nite-domain variables with guards and updates;
labels (for composition).

We have also seen that in both cases, the enhancements an be
�compiled away�, i.e., one can translate an enhanced system into the
simple formalism.

Now that we know that this can be done, we want to get back to an
abstract, theoretical view and hence the initial simple formalism . . .
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Discrete transition systems Kripke structures

Kripke Structures

Add (Boolean) �observations� to the states of a transition system

Transition system + propositions K = (Q, I , δ,V, λ)

V set of elementary (�atomic�) propositions
λ : Q → 2V λ(q) indicates which propositions are true at q

Atomic propositions

�building blocks� for expressing system properties
evaluated at states: v is true at q if v ∈ λ(q), false otherwise
examples: � the door protected by the digicode is open

� the counter value is at least 3
� process 0 is at the critical section
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Discrete transition systems Kripke structures

Example of a Kripke Structure

Q = {Antarctica,Brazil , Iceland , Sudan}.
I = {Sudan}.
δ as pictured (think of it as �reachability
by direct �ight�).
V = {hot,wet}, λ as pictured.

Sud

{hot}

Bra

{hot,wet}

Ant

{}

Ice

{wet}

Every run q0q1 . . . corresponds to an ω-word λ(q0)λ(q1) . . . over the
alphabet 2V .
E.g. Sud Bra Ant Bra Sud Ice . . . corresponds to
{hot}{hot,wet}{}{hot,wet}{hot}{wet} . . ..

Exercise 4

Give another example.
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Linear Temporal Logic Formal language for temporal properties

Formal Description of Properties

Need a language for expressing properties of systems

system under veri�cation represented as a transition system
properties of systems should be expressed unambiguously

Natural language is ambiguous

Example

�Every student takes a computer science lecture.�

There is a CS lecture taken by all students.

For every student s there is a CS lecture that s takes.

No obvious interpretation a priori!

Mathematical logic allows formalizing such statements
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Linear Temporal Logic Formal language for temporal properties

Temporal Properties

Wish to express properties of system executions

After the emergency brake is pulled, the train will stop.
After subscribing to a phone service, users may receive calls.
When the window is broken, an alarm will sound until it is switched o�.
The lift does not move unless somebody previously requested it.

Properties on succession of states / events

something holds { before / after / between } some other event(s)
no references to absolute time (for the moment)
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Linear Temporal Logic Formal language for temporal properties

Temporal Properties in First-Order Logic

Add explicit time parameter

propositions can be true or false at di�erent time points t
relate di�erent time points (e.g., t + 1, t ′ ≥ t, . . . )

Example

After the emergency brake is pulled, the train will stop.

∀t : Brake(t)⇒ ∃t ′ : t ′ ≥ t ∧ Stop(t ′)
When the window is broken, an alarm will sound until it is switched o�.

∀t : Break(t)⇒ ∃t ′ ≥ t : O� (t ′) ∧ ∀t ′′ : t ≤ t ′′ < t ′ ⇒ Alarm(t ′′)

Possible, but somewhat clumsy

especially for properties that contain several temporal references
moreover, reasoning in �rst-order logic is undecidable in general
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Linear-Time Temporal Logic: Informally (1)

Eliminate explicit time parameter

formulas are evaluated over in�nite state sequences σ
they can be true or false at di�erent time points
atomic formulas: elementary properties evaluated at states

σ, i |= Break proposition Break is true at state i of σ
if σ = q0q1 . . . is a run of a Kripke structure K = (Q, I , δ,V, λ):

σ, i |= v determined by λ(qi ), for v ∈ V

Standard Boolean connectives ∧,∨,¬,⇒,⇔
applied to arbitrary formulas, with standard interpretation
σ, j |= Alarm ∧ ¬O� Alarm true, but O� false at state j
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Linear-Time Temporal Logic: Informally (2)

Temporal connectives for temporal references

change �point of evaluation� of (sub-)formulas
always ϕ ϕ true at all su�xes Gϕ (�ϕ)
eventually ϕ ϕ true at some su�x Fϕ (♦ϕ)
next ϕ ϕ true at immediate su�x Xϕ ( ϕ)
ϕ until ψ ϕ remains true until ψ becomes true ϕ U ψ

Examples

G(Brake ⇒ F Stop)
G(Break ⇒ (Alarm U O� ))
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Formal Syntax of LTL

LTL: compact syntax for properties of runs

formulas evaluated over in�nite state sequences
system satis�es ϕ if ϕ holds of every run

Inductive de�nition of LTL formulas

ϕ ::= v ∈ V atomic formulas

| ¬ϕ,ϕ ∨ ϕ Boolean connectives

| Xϕ next state ( ϕ)

| ϕ U ϕ until (ω until ψ)

Exercise 5

How is this notation called?

Abbreviations

∧,⇒,⇔, true, false as in propositional logic
Fϕ ≡ true U ϕ eventually ϕ (�nally, ♦ϕ)
Gϕ ≡ ¬F¬ϕ always ϕ (globally, �ϕ)
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Formal Semantics of LTL

Formulas ϕ evaluated over in�nite sequences of states

atomic formulas interpreted by labelling λ : Q → 2V

notations: for σ = q0q1 . . ., we denote by σ[n..] the su�x qnqn+1 . . ..

Inductive de�nition of σ |= ϕ

σ |= v i� v ∈ λ(σ0)

σ |= ¬ϕ i� σ 6|= ϕ

σ |= ϕ ∨ ψ i� σ |= ϕ or σ |= ψ

σ |= Xϕ i� σ[1..] |= ϕ

σ |= ϕ U ψ i� there is k ∈ N such that σ[k..] |= ψ

and σ[i ..] |= ϕ for all 0 ≤ i < k

Semantics of derived temporal connectives

σ |= Fϕ i� σ[k..] |= ϕ for some k ∈ N
σ |= Gϕ i� σ[k..] |= ϕ for all k ∈ N
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Example: Interpretation of LTL Formulas

Exercise 6

Which of the following formulas are true? (true = 1, false = 0)

hot 0 0 1 1 0 1 1 0 1 . . . (always 1)

wet 1 1 0 0 0 0 1 1 0 . . . (always 0)

G(¬hot ⇒ wet)

F(hot ∧ ¬wet)

¬hot U ¬wet

G(¬hot ⇒ (¬hot U ¬wet))

GF(wet)

FG(¬hot ⇒ wet)
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

In�nitely Often and Persistence

GFϕ

for every su�x there is a subsequent su�x satisfying ϕ
ϕ is in�nitely often true

FGϕ

there is a su�x such that all subsequent su�xes satisfy ϕ
ϕ is false only �nitely often, ϕ is persistent

FGϕ is strictly stronger than GFϕ

v v v v¬v ¬v ¬v ¬v · · ·

|= GF v

6|= FG v

Combinations

G(req ⇒ F get) every request will be satis�ed
G(G req ⇒ F get) every persistent request will be satis�ed
G(GF req ⇒ F get) every repeated request will be satis�ed
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Exercise: Properties of Binary Consensus

Consider a system of N processes P1, . . . ,PN where the state of Pi is given by a
Boolean variable vi , indicating its local value, and di , indicating if Pi has decided
(initially false). The Consensus problem consists in arriving at a state where every
process has decided and where the local values of all processes are identical. This
is expressed by the four following properties.

1 Validity. At any state, any value vi must equal the initial value of some vj
(i.e., no values other than those initially present are introduced).

2 Irrevocability. Once Pi decides (i.e., sets its variable di to true), the
variables vi and di never change again.

3 Agreement. Any two processes Pi and Pj that have decided agree on the
values of vi and vj .

4 Termination. Every process Pi decides eventually.

Exercise 7

Express these four properties by LTL formulas.
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Typical Properties in LTL

invariants G p

G¬(crit1 ∧ crit2) mutual exclusion

G(pre1 ∨ . . . ∨ pren) deadlock freedom

reply, recurrence G(p ⇒ F q)

G(try1 ⇒ F crit1) guaranteed access to critical section

G( F¬crit1) �nite stay in critical section

reactivity GF p ⇒ GF q

GF(try1 ∧ ¬crit2)⇒ GF crit1 (strong) fairness

precedence p1 U . . . U pn

G(try1 ∧ try2 ⇒ ¬crit2 U crit2 U ¬crit2 U crit1) 1-bounded overtaking
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Fairness Conditions

Interleaving of parallel processes modelled by non-determinism

example: choice between execution of two processes

algorithm Stopwatch {
variables x = 0, y = 0;
process (w = �watch�) {
α : while (y = 0) { β : x := x + 1; }

}

process (s = �stop�) {
γ : y := 1

}
}

the transition system has a run where γ never happens
Arguably, such a run may be considered �unrealistic� and be excluded
�by assumption�.

Fairness hypothesis exclude �unfair� runs

if an action is possible often enough, it will eventually happen
restriction on in�nite runs, not on local choice
di�erent interpretations of �often enough�
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Linear Temporal Logic Linear-Time Temporal Logic (LTL)

Fairness in LTL

Weak fairness

if the action is always enabled, it will eventually happen
WF(A) ≡ G(G enabledA ⇒ F takenA)

Strong fairness

if the action is enabled in�nitely often, it will eventually happen
SF(A) ≡ G(GF enabledA ⇒ F takenA)

System veri�cation under fairness hypotheses

include hypothesis in the formula expressing the property
example: WF(Exit2) ∧ SF(Enter1)⇒ G(try1 ⇒ F crit1)

It is like saying: a coin tossed in�nitely often will eventually show �heads�.

Exercise 8

How would you program a coin tossing simulator giving an in�nite sequence
such that

for any n, the �rst n tosses will be �tails�, with probability > 0;

Eventually a toss will be �heads�?
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Model checking algorithm LTL model checking: overall idea

K-Validity
Given a Kripke structure K, we write K |= ϕ i� for every run q0q1 . . . of K,
we have q0q1 . . . |= ϕ.

Exercise: Consider the following Kripke structure K.

q2 q1 q0 q3 q4

{} {} {v ,w} {v} {w}

Exercise 9

Determine if K |= ϕi holds for the following formulas ϕi . Brie�y justify your
answers.

ϕ1 = G(v ⇒ w ∨ Xw)

ϕ2 = ¬w ⇒ (¬w U w)

ϕ3 = G(¬w ⇒ (¬w U w))

ϕ4 = GF v

ϕ5 = GF(v ∧ w)

ϕ6 = GFw

ϕ7 = GF¬v
ϕ8 = GF¬w
ϕ9 = (GF v)⇒ (GFw)

ϕ10 = (GF(v ∧ w))⇒ (GF(v ∧ ¬w))
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Model checking algorithm LTL model checking: overall idea

Example: Verifying a Persistence Property

Consider the problem of verifying K |= FG v .

The property is violated i� there exists a run
σ = q0q1 . . . qi0 . . . qi1 . . . qi2 . . . such that v /∈ λ(qij ) for all j ∈ N.
Since K is �nite-state, we must have qij = qik for some k > j .

The pre�x of σ given by q0 ⇒∗ qij ⇒+ qik is e�ectively a �lasso�
through a state where v is false

To search for a lasso, we inspect graph G of reachable states of K:

compute strongly connected components of G (can be done by
Tarjan's algorithm: linear in size of G ).

for each component, check if it contains some q with v /∈ λ(q). If you
�nd such a component, you have found a lasso. Hence K 6|= FG v .
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Model checking algorithm LTL model checking: overall idea

Example: Verifying FG p

¬p

¬p

K 6|= FG p : component C3 contains state where p is false.

Exercise 10

Why is the occurrence of ¬p in C3 decisive, why does the other occurrence
not matter?

But it is not obvious how to generalize this idea to arbitrary LTL properties.
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Model checking algorithm LTL model checking: overall idea

Principle of LTL Model Checking

Make use of automata theory

view sequence σ of states as ω-word over alphabet 2V

view LTL formula ϕ as describing a language L(ϕ)
construct automaton Aϕ with L(Aϕ) = L(ϕ)
view K as generating a language L(K)

K |= ϕ

i�

L(K) ⊆ L(ϕ)

i�

L(K) ∩ L(¬ϕ) = ∅
i�

L(K ×A¬ϕ) = ∅

Must solve two main problems (for an appropriate class of automata)

translation of formulas ψ  Aψ (see next . . . )

decide emptiness problem L(A)
?
= ∅ (see Sec. 5.3)
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Model checking algorithm Büchi automata
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Model checking algorithm Büchi automata

Büchi Automata (General De�nition)

Finite automata operating over ω-words over any alphabet Σ
B = (S , I , δ,F )

S �nite set of states
I ⊆ S initial states
δ ⊆ S × Σ× S transition relation
F ⊆ S accepting states

 just like ordinary nondeter-
ministic �nite automaton

Run ρ = s0s1s2 . . . of B over word σ0σ1σ2 . . . ∈ Σω

initialization s0 ∈ I

succession (si , σi , si+1) ∈ δ for all i ∈ N
acceptance si ∈ F for in�nitely many i ∈ N

Languages

L(B): language of automaton B = set of words for which there exists
an accepting run
ω-regular languages = languages de�nable by Büchi automata

51 M1 CSA � IES � MC Université de Toulouse/IRIT Year 2021/2022



Model checking algorithm Büchi automata

Büchi Automata for Model Checking

For model checking, we work with an unusual alphabet: Σ = 2V .
Run ρ = s0s1s2 . . . of B over word L0L1L2 . . . ∈ (2V)ω

initialization s0 ∈ I

succession (si , Li , si+1) ∈ δ for all i ∈ N
acceptance si ∈ F for in�nitely many i ∈ N
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Model checking algorithm Büchi automata

Displaying Büchi Automata

Let V = {v}. For example, consider the automaton

s0 s1

{v}

∅

∅ {v}

It may also be displayed conveniently using some logical notation:

s0 s1

v

¬v

¬v v

We will use such notation in the sequel.

Exercise 11

Explain in a couple of words the language of this automaton.
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Model checking algorithm Büchi automata

Examples of Büchi Automata
(with Semi-formal Language Description)

s0 s1

v

¬v

¬v v

in�nitely often v

s0 s1

v

¬v

true

in�nitely often �v ∧ X¬v �

s0 s1

v

true v eventually always v (cannot be expressed
by deterministic Büchi automaton)

Exercise 12

Why not?

Semi-formal = resembling LTL
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Model checking algorithm Büchi automata

Exercise

Exercise 13

De�ne Büchi automata that accept precisely the structures satisfying the
following LTL formulas. A graphical representation of the automata is
su�cient.

You may de�ne the automata in an ad-hoc way.

FG v ∧ FGw

GF v ∧ GF¬v

55 M1 CSA � IES � MC Université de Toulouse/IRIT Year 2021/2022



Model checking algorithm Büchi automata

Büchi Automata vs. Kripke Structures

Kripke structures and Büchi automata are similar concepts. Both have runs
one can associate with ω-words on 2V . But there is one di�erence:

In Kripke structures, each state is labelled with a property set;

in Büchi automata, each transition is labelled with a property set.

This is a technical complication making it non-obvious to de�ne K ×A¬ϕ,
but it is doable. We do not give details here.
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Model checking algorithm From LTL to Büchi automata

From LTL to Büchi automata

We have seen on some simple examples how a Büchi automaton for an
LTL formula is constructed.
Now we look at the general construction.

Idea of construction of generalized (see later) Büchi automaton:

automaton states: sets of sub-formulas �promised to be true�
decompose every formula in one part to be satis�ed now and another
part to be satis�ed from successor state onwards
accepting states determined by subformulas ϕ U ψ

Size of automaton: 2O(|ϕ|) (|ϕ|: length of ϕ)

in the following: suboptimal construction that is easy to de�ne
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Model checking algorithm From LTL to Büchi automata

Automaton States

Suppose that ϕ is in positive form

negation only applied to atomic formulas
transformation possible using dual operators

¬(ϕ ∧ ψ)⇔ ¬ϕ ∨ ¬ψ ¬Gϕ⇔ F¬ϕ etc.

States of automaton Aϕ

A state is identi�ed by a set of subformulas of ϕ, i.e., every s ⊆ sf (ϕ)
is (potentially) a state
coherent promise w.r.t. current state

false /∈ s

not (v ∈ s and ¬v ∈ s) for v ∈ V
(ψ1 ∧ ψ2) ∈ s i� ψ1 ∈ s and ψ2 ∈ s for ψ1 ∧ ψ2 ∈ sf (ϕ)
(ψ1 ∨ ψ2) ∈ s i� ψ1 ∈ s or ψ2 ∈ s for ψ1 ∨ ψ2 ∈ sf (ϕ)
(ψ1 U ψ2) ∈ s implies ψ1 ∈ s or ψ2 ∈ s

Gψ ∈ s implies ψ ∈ s

initial states: states containing ϕ
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Model checking algorithm From LTL to Büchi automata

Transitions of Aϕ

Verify satisfaction of atomic formulas

Labels of successor states compatible with �recursion laws�

Gϕ ⇔ ϕ ∧ XGϕ, Fϕ ⇔ ϕ ∨ XFϕ, ϕ U ψ ⇔ ψ ∨ (ϕ ∧ X(ϕ U ψ))

Formal de�nition (s, L, s ′) ∈ δ i�

L = s ∩ V (L satis�es promise of s w.r.t. atomic formulas)
Xψ ∈ s implies ψ ∈ s ′

Gψ ∈ s implies Gψ ∈ s ′

Fψ ∈ s and ψ /∈ s implies Fψ ∈ s ′

ψ1 U ψ2 ∈ s and ψ2 /∈ s implies ψ1 U ψ2 ∈ s ′

Exercise 14

Explain each of these points in some words.
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Model checking algorithm From LTL to Büchi automata

Example: Automaton for FG v

Subformulas sf (FG v) = {v ,G v ,FG v}
Coherence condition G v ∈ s implies v ∈ s

states respecting coherence conditions

∅, {v}, {FG v}, {v ,FG v}, {v ,G v}, {v ,G v ,FG v}

Exercise 15

What are the potential states that are excluded for incoherence, and why?

initial states: {FG v}, {v ,FG v}, {v ,G v ,FG v}
Resulting automaton (reachable part)

FG v v ,G v

v ,FG v
v ,G v ,

FG v

¬v

¬v ¬v

v

v

v

v
v

v
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Model checking algorithm From LTL to Büchi automata

Footnote: Generalized Büchi Automata

Multiple acceptance sets: B = (S , I , δ,F)

S , I , δ: as before
F = {F1, . . . ,Fm}: several sets of accepting states
run accepting if it visits in�nitely often every Fi

Encoding into ordinary Büchi automaton B′ = (S ′, I ′, δ′,F ′): see
Section 5.2.
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Model checking algorithm From LTL to Büchi automata

Acceptance Conditions

Objective: exclude loops that do not keep temporal promises

relevant subformulas: ϕ U ψ (in particular, Fψ)
must ensure that ψ will eventually be satis�ed

Generalized Büchi condition

one acceptance set per subformula ϕ U ψ
FϕUψ = {s : (ϕ U ψ) /∈ s or ψ ∈ s}
in particular: FFψ = {s : Fψ /∈ s or ψ ∈ s}

Example automaton: one acceptance set for FG v

FG v v ,G v

v ,FG v
v ,G v ,

FG v

¬v

¬v ¬v

v

v

v

v
v

v
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Model checking algorithm LTL Model Checking Summarised

LTL Model Checking Summarised

Decide K
?

|= ϕ

view K as a �Büchi automaton� with trivial acceptance condition
K |= ϕ i� L(K) ∩ L(B¬ϕ) = ∅ i� L(K × B¬ϕ) = ∅
σ ∈ L(K × B¬ϕ) : counter-example
complexity: O(|K| · |B¬ϕ|) (linear in |K|, exponential in |ϕ|)

In practice

|K| is often the critical factor: |ϕ| is often small
K × B¬ϕ can be constructed �on the �y�
avoid full computation of product (and its storage in memory)

Complexity is a big issue . . .
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Appendix: More Details on Model Checking Closure Properties of ω-Regular Languages

Set-Theoretic Closure of ω-Regular Languages

As for the theory of regular languages (�nite automata), one has an
important property: ω-regular languages are closed under set-theoretic
operations ∪, ∩, complement.
But these are di�cult results.
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Appendix: More Details on Model Checking Closure Properties of ω-Regular Languages

Set-Theoretic Closure of ω-Regular Languages

1 Given Büchi automata Bi = (Si , Ii , δi ,Fi ) (i = 1, 2, where S1 ∩ S2 = ∅),
construct a Büchi automaton that accepts the language L(B1) ∪ L(B2).

2 Consider Büchi automata B1 that accepts if v is true in�nitely often and B2
that accepts if v is false in�nitely often. Show that the standard product
construction does not correspond to language intersection.

Modify the product construction appropriately. (Hint: introduce a �ag that
indicates which automaton should accept next.)

3 For a Büchi automaton B = (Q, I , δ,F ) de�ne B̃ = (Q, I , δ,Q \ F ).

Construct the automaton B̃ for the automaton
s0 s1

¬v v

v

¬v
Conclude that B̃ does not de�ne the complement language of a
deterministic Büchi automaton B.
The complement of an ω-regular language is ω-regular: di�cult result

[Büchi 1960, Safra 1988, Kupferman-Vardi 2001].
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Appendix: More Details on Model Checking Translation of Generalized Büchi Automata

Generalized Büchi Automata

Multiple acceptance sets: B = (S , I , δ,F)

S , I , δ: as before
F = {F1, . . . ,Fm}: several sets of accepting states
run accepting if it visits in�nitely often every Fi

Encoding into ordinary Büchi automaton B′ = (S ′, I ′, δ′,F ′)

use �counter� indicating which Fi to visit next:

S ′ = S × {1, . . .m}, I ′ = I × {1}
increment counter when designated acceptance set is visited(

(s, k), L, (s ′, k ′)
)
∈ δ′ ⇔ (s, L, s ′) ∈ δ and

k ′ = k if s /∈ Fk ,
k ′ = (k mod m) + 1 otherwise

acceptance states: states in F1 with counter value 1

F ′ = F1 × {1}
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Appendix: More Details on Model Checking Translation of Generalized Büchi Automata

Example: Generalized Büchi Automaton

Recognizing structures satisfying GF v ∧ GF¬v

q0

q1

q2

v

¬v

v

¬vv

¬v

GBA with F =
{
{q1}, {q2}

}

(q0, 1)

(q1, 1)

(q2, 1)

(q1, 2)

(q2, 2)

v

¬v

v

¬v

v

¬vv

¬v

v

¬v

corresponding ordinary Büchi automaton
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Appendix: More Details on Model Checking Deciding Emptiness
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Appendix: More Details on Model Checking Deciding Emptiness

Deciding Emptiness

Theorem

For B = (S , I , δ,F ), its language L(B) is non-empty i� there are

s ∈ I , s ′ ∈ F such that s ⇒∗ s ′ and s ′ ⇒+ s ′.

Proof (idea).
⇐: easy

⇒: Assume σ = L0L1 . . . ∈ L(B), by accepting run ρ = s0s1 . . . of B over σ.

Obviously: s0 ∈ I

Moreover: some s ∈ F appears in�nitely often in ρ.

Let k < l with sk = sl ∈ F : we have s0 ⇒∗ sk and sk ⇒+ sk . q.e.d.

Implementation:

enumerate strongly connected components of automaton graph

determine if some component contains an accepting state

complexity linear in the size of B : Tarjan's algorithm
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Appendix: More Details on Model Checking Optimisations

Plan

5 Appendix: More Details on Model Checking
Closure Properties of ω-Regular Languages
Translation of Generalized Büchi Automata
Deciding Emptiness
Optimisations

75 M1 CSA � IES � MC Université de Toulouse/IRIT Year 2021/2022



Appendix: More Details on Model Checking Optimisations

On-The-Fly Model Checking Algorithm

Construct the reachable part of K × B¬ϕ

Construct pairs (q, s) of states of K and of B¬ϕ
initialization initial states for both components
succession respect both transition relations

(q, q′) ∈ δK and (s, λ(q), s ′) ∈ δB
acceptance pairs (q, s) where s is an accepting state in B¬ϕ

Exploration algorithm: search for acceptance cycles

search for accepting pair that is reachable from itself
stack of search history can be used to produce counter-example
store set of already visited pairs (per search mode)

C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis: Memory-e�cient algorithms for the

veri�cation of temporal properties. Formal Methods in System Design 1:275�288 (1992)
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Appendix: More Details on Model Checking Optimisations

Pseudo-Code

void check_ltl(KripkeStructure ks, Buchi aut) {
Stack stack = new Stack(); Set visited = new Set(); Pair seed = null;

void dfs(boolean cycle_mode) {
Pair p = stack.top();
if (cycle_mode && (p == seed)) { report acceptance cycle and exit }
if (! visited .contains(p, cycle_mode) {

visited .add(p, cycle_mode);
foreach (Pair q in p.successors(ks, aut)) {

stack.push(q);
dfs(cycle_mode);
if (! cycle_mode && aut.isAccepting(q)) {

seed = q; dfs(true);
} } }
stack.pop();

}
// initialization
foreach (Pair p in makeInitialPairs(ks, aut)) {

stack.push(p); dfs(false);
} }
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Appendix: More Details on Model Checking Optimisations

Optimizations

Problem: state explosion

size of state space exponential in size of system description
main memory will be exhausted beyond ∼ 107 states
disk storage is orders of magnitude slower than main memory

Compression (of set visited)

store signature instead of full state  hash con�icts
store only some states (at least one per loop), recompute others

Reduction (of state space)

exploit symmetries: identify states up to equivalence relation
identify executions that di�er only in order of independent transitions

Abstraction (of transition system)

omit parts of state description that is �irrelevant�
automatically identify irrelevant system parts for given property
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