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Summary

Problem Multifractal Analysis: Commonly used in real-life data analyses, involved in standard signal processing

tasks such as detection, identification or classification. In a number of situations, in particular in Image

Processing, the data available for the analyses severely quantized.

Goal Analyzing robustness of standard multifractal estimation procedures against quantization.

Results •Immunity against quantization: restricting range of scales involved in multifractal param-

eter estimation to the largest ones.

•Wavelets bring robustness against quantization when increments do not.

Example 1: Image

•High acquisition rate for video capture =⇒ low image resolution

•Fracture: Analysis of roughness of boundaries

Image 256 × 256 =⇒ Quantization (8 bit) in amplitude

50 100 150 200 250

50

100

150

200

250

ImageData

Example 2: Signal

Sampling in Amplitude Analyzed signal −→ quantized
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MULTIFRACTAL ANALYSIS

Multifractal Analysis and Multiresolution Quantities
Scale Invariance

1
na

∑na
k=1 |TX(a, ka)|q ≃ cq|a|ζ(q)

for statistical orders q ∈ [q−∗ , q
+
∗ ]

for scales a = 2j ∈ [am, aM ], aM/am >> 1

X(t), t ∈ [0, n) - Process under analysis

TX(a, ka) - Multiresultion quantities of X

jointly depend on analysis scale a and time position t

ζ(q) - Scaling exponents.

Empirical Multifractal Analysis

• ζ(q) closely tied to theoretical multifractal spectrum D(h) of X

•Goal: Obtain ζ(q) from single realization of X

Multiresolution Quantities

Increment of order 1

T
(I1)
X (2j, t) = X(t + 2jτ0) −X(t)

Increment of order 2

T
(I2)
X (2j, t) = X(t + 2 · 2jτ0) − 2X(t + 2jτ0) +X(t)

Wavelet Coefficients

T
(W )
X (2j, t) = dX(j, k) = 〈ψj,k|X〉

Wavelet Leaders

T
(L)
X (2j, t) = LX(j, k) = supλ′∈3λj,k |dλ′|
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Definition of Wavelet Leaders

Log-Cumulants and Estimation

Log-Cumulants

ζ(q) =
∑∞

p=1 cp
qp

p! polynomial expansion

-∀p ≥ 1 : Cj
p = c0p + cp ln 2j

Cj
p: p-th cumulant of ln |TX(2j, ·)|

-Measurements of ζ(q) (and D(h)):

−→ measurements of log-cumulants cp

Estimation Procedures

1. Scale j: calculate nj coefficients TX(2j, k · 2j)
2.Discard |TX| below threshold (10−10)

3.Calculate Ĉj
p: standard estimate of p-th cumulant of ln |TX(2j, ·)|

4. Linear regressions: ĉp = log2 e
∑j2

j=j1
wjĈ

j
p

QUANTIZATION AND NUMERICAL STUDY

Processes

Multifractal Random Walk (MRW)

X(k) =
∑n

k=1GH(k)eω(k)

-Non Gaussian processes with stationary increments

-Multifractal properties mimic Mandelbrot’s multiplicative LN cas-

cades

- ζ(q) = (H + λ2)q − λ2q2/2 for q ∈
[
−

√
2/λ2,

√
2/λ2

]

c1 = (H + λ2), c2 = −λ2

GH(k) : increments of FBM with parameter H .

ω : independent of GH, Gaussian, with non trivial covariance:

cov(ω(k1), ω(k2)) = λ2 ln
(

L
|k1−k2|+1

)
for |k1 − k2| < L

FBM: Fractional Brownian Motion: Only Gaussian self-similar

process with stationary increments

X(t)
fdd
= aHX(t/a) for all a > 0

Quantization and Monte Carlo Simulation

Quantization

X∆(n) = [X(n)/∆] · ∆, b = − log2 ∆

X(n), n = 1, · · · , N - Realization of process X

[·] - Rounding operation

∆ - Quantization interval width

b - quantization level (in bits)

−→ unit interval [0, 1] has 2b quantization levels

Performance Assessment and Simulation Setup

Apply estimation procedure to large number NMC of realizations of

MRW at different quantization levels

MSE =

√(
Êĉp − cp

)2

+ V̂arĉp

Ê, V̂ar - sample mean/variance over NMC realizations

Wavelets: Daubechies2 NMC = 1000

MRW: (H, λ) = (0.72,
√

0.08) n = 214

(c1, c2) = (0.8,−0.08)

QUANTIZATION IMPACTS

Distributions of ln |TX(2j, ·)| (b = 12 bits quantization j = 3)

Increments:

-Quantized data: Distributions of ln |T (I1)
X (2j, ·)| and ln |T (I2)

X (2j, ·)|:
lattice, severely different from non-quantized data.

Coefficients and Leaders:

-Quantization has no visible effect on distributions of ln |T (W )
X (2j, ·)|

and ln |T (L)
X (2j, ·)|.
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Increments:

- Strong impact at coarse scales as b decreases.

-No meaningful regression for b ≤ 7 (ĉ1) and b ≤ 12 (ĉ2)

Coefficients and Leaders:

- Impact at coarse scales less dramatic as b decreases.

-Meaningful regression for b ≥ 5 (ĉ1) and b ≥ 8 (ĉ2)
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⇒ Impact on Ĉj
p from fine to coarse scales as ∆ increases. ⇒ Much more dramatic for Increments than for Coefficients and Leaders

⇒Frequency resolution of the mother wavelets. ⇒ Narrow regression range

Frequency Resolution
Fourier transforms of mother wavelets. Increments: poor frequency resolution, Wavelets: high frequency resolution
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Optimal Regression Range
Decreasing b forces j1 to increase =⇒ Confines regression range to coarser and coarser scales
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Statistical Performance
Non Quantized Signal: Increments and Coefficients comparable, Leaders significantly better

Quantized Signal - Fixed regression range (j1 = 5, j2 = 11):

- Increments: degrade dramatically fast as b < 14

-Coefficients, Leaders: performant still at b = 8

Optimal regression range: Estimation improved

- Increments: improvement small, confined to b > 14

-Coefficients, Leaders: relevant estimates still at b = 5
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