
Jacobi Algorithm For Nonnegative Matrix Factorization
With Transform Learning
Herwig WENDT, Dylan FAGOT, Cédric FEVOTTE

CNRS, IRIT, University of Toulouse, France, firstname.lastname@irit.fr

Abstract — Nonnegative matrix factorization (NMF) can be used to
decompose a spectrogram V ∈ RM×N into two nonnegative latent fac-
tors W ∈ RM×K and H ∈ RK×N which respectively encode spectral
patterns (dictionary) and how these are mixed (activation). The results
depend strongly on the time-frequency transform used for computing V.
Can we learn a transform Φ so that V can be well approx-
imated using NMF?

NMF and transform learning

Baseline: IS-NMF
Audio data
Y ∈ RM×N : matrix that contains N adjacent and overlapping
. short-time frames of width M of the sound sample y

IS-NMF with sparsity

Minimize D(|ΦDCTY|◦2|WH) + λ
M

K
||H||1

s.t. W ≥ 0,H ≥ 0, ∀k, ||wk||1 = 1 (1)

D(A|B) =
∑
ij(aij/bij − log(aij/bij)− 1) Itakura-Saito divergence

Factorization rank K

Transform learning: TL-NMF
Minimize C(Φ,W,H)

def
= D(|ΦY|◦2|WH) + λ

M

K
||H||1

s.t. W ≥ 0,H ≥ 0, ∀k, ||wk||1 = 1,ΦTΦ = IM (2)

. (inspired from [1])

Orthogonality constraint: Φ ∈ OM
• Mimics commonly used Fourier or DCT transform ΦDCT
• Avoids blow-up & trivial solutions such as (Φ,W,H) = (0,0,0)

≈

time

original temporal signal y

windowed segments Y W Hadaptive transform Φ o2

Block-descent algorithm

Algorithm 1: TL-NMF-Jacobi
Input : Y, ⌧ , K , �
Output: �, W, H

Initialize � = �(0), W = W(0), H = H(0) and set l = 1
while ✏ > ⌧ do

H(l) Update H as in [2] (U1)
W(l) Update W as in [2] (U2)
�(l) Update � using Algorithm 2 (U3)
Normalize � to remove sign ambiguity
✏ = C(�(l�1),W(l�1),H(l�1))�C(�(l),W(l),H(l))

|C(�(l),W(l),H(l))|
l l + 1

end

that any orthogonal matrix in OM may be represented as a
product of Givens matrices Rpq(✓) 2 OM defined by

Rpq(✓) =

0
BBBBBBB@

p q

I 0 0

p 0 cos ✓ 0 � sin ✓
...

... 0 I 0
...

q
... sin ✓ 0 cos ✓ 0
0 0 I

1
CCCCCCCA

. (4)

The couple (p, q) 2 {1, . . . , M} ⇥ {1, . . . , M} defines an
axis of rotation while ✓ 2 [0, 2⇡[represents the angle of the
rotation. Given a current estimate �(i) and a couple (p, q), the
Jacobi update is given by

�(i+1) = Rpq(✓̂)�
(i) (5)

✓̂ = arg min
✓

Jpq(✓)
def
= D(|Rpq(✓)X

(i)|�2|WH), (6)

and X(i) = �(i)Y is the current transformed data. In this basic
scenario, every iteration i involves the choice of a rotation
axis (p, q). Every orthogonal matrix can be decomposed as a
sequence product of Givens rotations, but the correct ordered
sequence of rotation axes is unfortunately unknown. As such,
the sequence pattern in which the axes are selected in Jacobi
methods can have a dramatic impact on convergence and this
has been the subject of many works for eigenvalue problems
(see [9] and reference therein). The optimization of Jpq(✓)
given (p, q) on the one hand and the sequential choice of axes
(p, q) on the other hand are discussed in the next sections.

B. Optimization of Jpq(✓) for one axis (p, q)

By construction of Givens rotations, Rpq(✓)X
(i) is every-

where equal to X(i) except for rows p and q. It follows that

−

π

8
θ

π

8

M = 10, N = 100, K = 5

Fig. 1. Illustration of Jpq(✓) evaluated for 106 equally spaced points ✓ 2
(�⇡

4
, ⇡

4
] for randomly selected X and V̂.

Jpq(✓) can be expressed as

Jpq(✓) =

X

n

(cos ✓x

(i)
pn � sin ✓x

(i)
qn)2

v̂pn
+

(sin ✓x
(i)
pn + cos ✓x

(i)
qn)2

v̂qn

� 2 log
⇥
(cos ✓x(i)

pn � sin ✓x(i)
qn)(sin ✓x(i)

pn + cos ✓x(i)
qn)

⇤�
+ cst

(7)

where v̂mn
def
= [WH]mn and cst is a constant w.r.t. ✓. Jpq(✓)

is ⇡
2 periodic and we may address its minimization over

the domain ✓ 2 (�⇡
4 , ⇡

4] only. Unfortunately Jpq(✓) does
not appear to have a closed-form minimizer. Furthermore,
Jpq(✓) is highly non-convex w.r.t to ✓. Moreover, one can
show that (7) is not everywhere smooth because it has N
poles for ✓ 2 (�⇡

4 , ⇡
4], see Fig. 1 for an illustration. For

these reasons combined, gradient-descent based minimization
proves, at best, highly inefficient.

To circumvent these difficulties, we propose to resort to
an original randomized grid search procedure described next.
The strategy consists in drawing at random Nprop proposals
✓̃ 2 (�↵⇡

4 , ↵⇡
4], ↵ 2 (0, 1], which are used to approximate

(6) as ✓̂ ⇡ arg min
✓2{✓̃i}

Nprop
i=1

Jpq(✓). If the update of � in (5)
does not improve the objective function, the procedure could
be repeated until a value for ✓̂ is found for which the update
yields an improvement. Here, we will instead move on to a
different axis (p, q), see Section (II-C). If the update with ✓̂
yields an improvement, then the approximation can be refined
by repeating the procedure for smaller and smaller values of ↵.
We will intertwine such refinements with sweeps over random
couples of rows (p, q), as described next.

C. Updating �: selection of the rotation axes (p, q)

The Givens matrices (4) act on a total number of M(M �
1)/2 different rotation axes, defined by couples (p, q). To
perform the transform update step (U3) in Algorithm 1, we
propose to compute Jacobi updates (5-6), as described in the
previous paragraph, for a total of R couples (p, q) that are
selected at random from the M(M � 1)/2 possible ones.
For computational efficiency, we make use of the fact that
the rotation for a given (p, q) affects the rows p and q only.
Therefore, M

2 mutually independent random couples (p, q), a
so-called rotation set [9], can be updated in parallel. It is easy
to see that a rotation set can be generated by drawing, without
replacement, the values for p and q at random from the set
(1, . . . , M). This update for � is summarized in Algorithm 2.

– In [2]: projected Gradient Descent for (U3)

– Here: new Jacobi-like iterative approach for update of Φ

Jacobi algorithm

Principle

Orthogonal matrix in OM −→ product of Givens matrices Rpq(θ) ∈ OM

Rpq(θ) =

p q

I 0 0
p 0 cos θ 0 − sin θ ...

... 0 I 0 ...
q ... sin θ 0 cos θ 0

0 0 I

. (3)

M(M−1)/2 distinct axes of rotation (p, q) ∈ {1, . . . ,M}×{1, . . . ,M},
rotation angle θ ∈ [0, 2π[

Jacobi update: given Φ(i) and (p, q), with X(i) = Φ(i)Y,

Φ(i+1) = Rpq(θ̂)Φ
(i) (4)

θ̂ = arg minθ Jpq(θ) (5)

Jpq(θ)
def
= D(|Rpq(θ)X

(i)|◦2|WH) (6)

References
[1] S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,” IEEE T. Signal

Process., 2013.

[2] D. Fagot, H. Wendt, and C. Févotte,“Nonnegative matrix factorization with trans-
form learning,” ICASSP 2018.

[3] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization with the
β-divergence,” Neural Comput., 2011.

[4] J. H. Manton, “Optimization algorithms exploiting unitary constraints,” IEEE T.
Signal Process., 2002.

Jacobi update for one axis (p, q)

Jpq(θ) =
∑

n

[
(cos θx

(i)
pn − sin θx

(i)
qn)

2

v̂pn
+
(sin θx

(i)
pn + cos θx

(i)
qn)

2

v̂qn

− 2 log
[
(cos θx

(i)
pn − sin θx

(i)
qn)(sin θx

(i)
pn + cos θx

(i)
qn)
]]

+ cst (7)

where v̂mn
def
= [WH]mn

−→ non-convex, non-smooth, N poles for θ ∈ (−π4 , π4]

−

π

8
θ

π

8

M = 10, N = 100, K = 5

Randomized grid search

– draw Nprop random proposals θ̃ ∈ (−απ4 απ
4]

. with α ∈ (0, 1]

– approximate (5) as θ̂ ≈ arg min
θ∈{θ̃i}Npropi=1

Jpq(θ)

→ no decrease of (2): move on to a different axis (p, q)

→ decrease of (2): repeat for smaller value of α

Update for Φ (U3)

– Can find M
2 mutually independent random couples (p, q) (rotation set)

−→ update in parallel

– Repeat K(= b2R/Mc) times for each update (U3)

– α sequentially updated as

α = α(k, l) = l−a1k−a2

where l is outer loop iteration (Algo. 1) and k = 1, . . . , K

→ plays role similar to a step size parameter

Algorithm 2: Jacobi update of � at iteration l

Input : �,X = �Y, V̂ = WH, Nprop, R, l
Output: �

for k = 1, . . . , b2R/Mc do
Generate a random permutation of (1, ..., M) in u
for j = 1, . . . , M/2 do

(p, q) = (uj ,uj+ M
2

)

for s = 1, . . . , Nprop do
Draw at random ✓̃ 2 (�↵(k,l)⇡

4 , ↵(k,l)⇡
4]

Evaluate Jpq(✓̃) = D(|Rpq(✓̃)X|�2
��V̂)

end
✓̂ arg min✓̃ Jpq(✓̃)

if D(|Rpq(✓̂)X|�2
��V̂) < D(|X|�2

��V̂) then
Update transform � Rpq(✓̂)�

end
end

end

Further, the refinement factor ↵ in the optimization of
Jpq(✓), which plays a role similar to a step size, is sequentially
updated as

↵ = ↵(k, l) = l�a1k�a2 , (8)

where l is the number of the outer iteration for updating W,H
and � (see Algorithm 1) and k is the inner iteration over the
number of blocks of M

2 mutually independent random couples
(p, q) in the update of �. The Jacobi algorithm for updating
� is summarized in Algorithm 2.

III. EXPERIMENTS

A. Transform learning experiment with synthetic data

We begin with studying the performance of the proposed
randomized Jacobi algorithm for finding a transform � given
V̂ (i.e., for update step (U3) in Algorithm 1). To this end,
we let Y 2 RM⇥N and �⇤ 2 OM be two randomly
generated matrices, and let V⇤ = |�⇤Y|�2, and we study
the minimization of

F (�) = D(|�Y|�2
��V⇤) s.t. � 2 OM , (9)

i.e., Algorithm 1 with V̂ = V⇤ and update steps (U1)
and (U2) removed. The minimum of F (�) is here 0 by
construction. We compare the Jacobi approach for minimizing
(9) proposed in this paper with the gradient-descent approach
described in [2], which consists of Algorithm 1 with step
(U3) replaced by a gradient-descent step with Armijo step
size selection. The algorithms are run with ⌧ = 10�10, and
(a1, a2) = (0.75, 0) for this experiment. We initialize the
algorithms with � = �(0) in the vicinity of the ground-truth
solution �⇤. To measure the closeness of the initialization to
the ground-truth solution we define the Initialization Proximity
Ratio (IPR) as

IPR = 10 log10

||�⇤||2F
||�(0) ��⇤||2F

. (10)

log10 CPU time (s)
-2 0 2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
M = 10, N = 100

IPR = 0

Jacobi
Gradient

log10 CPU time (s)
-2 0 2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
M = 10, N = 100

IPR = 10

log10 CPU time (s)
-2 0 2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
M = 10, N = 100

IPR = 20

log10 CPU time (s)
-2 0 2

-1

0

1

2

3
M = 20, N = 100

IPR = 0

log10 CPU time (s)
-2 0 2

-1

0

1

2

3
M = 20, N = 100

IPR = 10

log10 CPU time (s)
-2 0 2

-1

0

1

2

3
M = 20, N = 100

IPR = 20

log10 CPU time (s)
-2 0 2

-2

-1

0

1

2

3 M = 10, N = 1000
IPR = 0

log10 CPU time (s)
-2 0 2

-2

-1

0

1

2

3 M = 10, N = 1000
IPR = 10

log10 CPU time (s)
-2 0 2

-2

-1

0

1

2

3 M = 10, N = 1000
IPR = 20

Fig. 2. Finding � for fixed V̂. Objective function values log10(F (�)) as
a function of CPU time for different values M, N (from top to bottom) and
initializations for � (increasingly close to the ground-truth �⇤, from left to
right): Jacobi (blue) and Gradient (black) algorithm, respectively.

A large IPR value means �(0) and �⇤ are close; �(0) is
generated as �(0) = projOM (�⇤+�B) where projOM denotes
the projection onto OM [8], B is a standard normal random
matrix and � > 0 is set to meet the desired IPR value.

The objective function values F (�) obtained for the two
algorithms are plotted in Fig. 2 for several values of M , N
and IPR, as a function of CPU time. As expected, larger
IPR values lead overall to solutions with smaller objective
function value. A comparison of the two algorithms yields the
following conclusions. First, with the proposed randomized
Jacobi algorithm, a transform � is obtained that corresponds
with a local minimum of (9) that has a smaller objective
function value than that returned by gradient descent. Sec-
ond, the proposed algorithm is in general faster in finding a
transform � with objective function below a given value, as
indicated by the fact that in most of the cases plotted in Fig. 2,
the blue curve (Jacobi) is consistently below the black curve
(Gradient). Overall, these findings clearly demonstrate the
practical benefits of the proposed randomized Jacobi algorithm
for updating �.

B. NMF with transform learning for audio data

We now study the full TL-NMF problem (2-3) with un-
knowns (�,W,H) for the decomposition of the toy piano
sequence used in [5]. The audio sequence consists of four
notes played all at once in the first measure and then by pairs
in all possible combinations in the subsequent measures, see
Fig. 3 (a) and (b). The audio signal was recorded live on a

Numerical experiments

Synthetic data — Update (U3) only
– Minimize F (Φ) = D(|ΦY|◦2

∣∣V∗) s.t. Φ ∈ OM

. where V∗ = |Φ∗Y|◦2

Random data Y ∈ RM×N and random transform Φ∗ ∈ OM ,

Random initialization Φ = Φ(0) in vicinity of ground-truth Φ∗:
IPR = 10 log10

||Φ∗||2F
||Φ(0)−Φ∗||2F

log
10

 CPU time (s)
-2 0 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
M = 10, N = 100

IPR = 0

Jacobi
Gradient

log
10

 CPU time (s)
-2 0 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
M = 10, N = 100

IPR = 10

log
10

 CPU time (s)
-2 0 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
M = 10, N = 100

IPR = 20

log
10

 CPU time (s)
-2 0 2

-1

0

1

2

3
M = 20, N = 100

IPR = 0

log
10

 CPU time (s)
-2 0 2

-1

0

1

2

3
M = 20, N = 100

IPR = 10

log
10

 CPU time (s)
-2 0 2

-1

0

1

2

3
M = 20, N = 100

IPR = 20

log
10

 CPU time (s)
-2 0 2

-2

-1

0

1

2

3 M = 10, N = 1000
IPR = 0

log
10

 CPU time (s)
-2 0 2

-2

-1

0

1

2

3 M = 10, N = 1000
IPR = 10

log
10

 CPU time (s)
-2 0 2

-2

-1

0

1

2

3 M = 10, N = 1000
IPR = 20

→ smaller objective function value than gradient descent

→ faster decrease of objective function value

Audio data
(a) Score sheet!!!! !!!! !!!! !!!!" ##### $

(b) Original signal

0 5 10 15

time (s)

-1

0

1

fs = 16 kHz, M = 640 (40 ms, 50 % overlap, sine-bell), N = 785

TL-NMF Objective function

CPU time (s)
101 103 105

107

106

objective function

IS-NMF
TL-NMF Grad
TL-NMF Jacobi

CPU time (s)
101 103 105

107

106

fit

CPU time (s)
101 103 105

107

106

L1 penalty

K = 8, τ = 10−10 (IS-NMF) & τ ≈ 4 · 10−7 (TL-NMF)
Nprop = 100, R = 6 and (a1, a2) = (0.3, 0.7), identical random init’s
−→ IS-NMF fastest (since Φ fixed), TL-NMF-Jacobi smallest objective

Decomposition

5 10 15

Component 1
IS-NMF

5 10 15

Component 2

5 10 15

Component 3

5 10 15

Component 4

5 10 15

Component 5

5 10 15

Component 6

5 10 15

Component 7

5 10 15

Component 8

time (s)

5 10 15

Component 1
TL-NMF Jacobi

5 10 15

Component 2

5 10 15

Component 3

5 10 15

Component 4

5 10 15

Component 5

5 10 15

Component 6

5 10 15

Component 7

5 10 15

Component 8

time (s)

reconstruction using standard Wiener filtering approach (cf., [1])

→ set of components for IS-NMF & TL-NMF comparable

Learnt atoms
φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

φ13

φ14

φ15

φ16

φ17

φ18

φ19

φ20

φ21

φ22

φ23

φ24

φ25

φ26

φ27

φ28

φ29

φ30

φ31

φ32

φ33

→ quadrature pairs

→ variety of oscillatory patterns

EUSIPCO 2018 – Rome – Italy

