

Jacobi Algorithm For Nonnegative Matrix Factorization With Transform Learning

Herwig WENDT, Dylan FAGOT, Cédric FEVOTTE

CNRS, IRIT, University of Toulouse, France, firstname.lastname@irit.fr

Abstract — Nonnegative matrix factorization (NMF) can be used to decompose a spectrogram $\mathbf{V} \in \mathbb{R}^{M imes N}$ into two nonnegative latent factors $\mathbf{W} \in \mathbb{R}^{M \times K}$ and $\mathbf{H} \in \mathbb{R}^{K \times N}$ which respectively encode spectral patterns (dictionary) and how these are mixed (activation). The results depend strongly on the time-frequency transform used for computing V. Can we *learn* a transform Φ so that V can be well approximated using NMF?

NMF and transform learning

Baseline: IS-NMF

Audio data $\mathbf{Y} \in \mathbb{R}^{M \times N}$: matrix that contains N adjacent and overlapping short-time frames of width M of the sound sample y

Jacobi update for one axis (p,q)

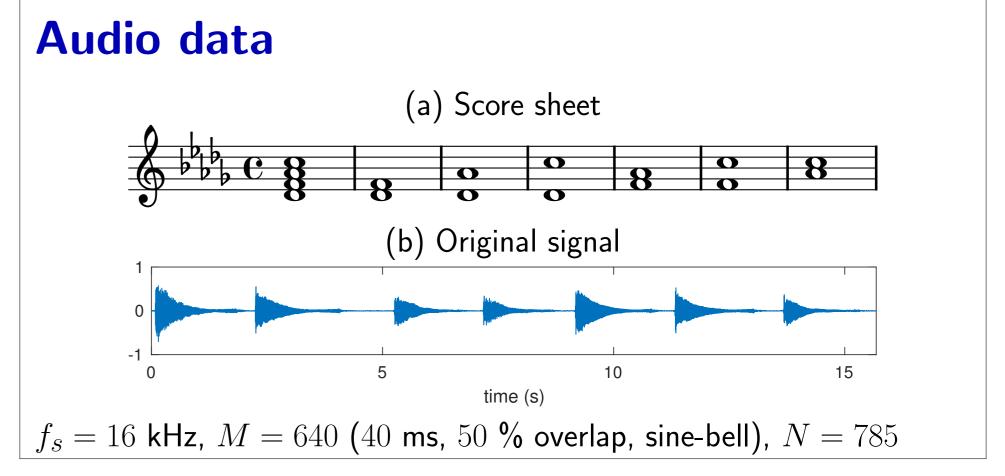
$$J_{pq}(\theta) = \sum_{n} \left[\frac{(\cos \theta x_{pn}^{(i)} - \sin \theta x_{qn}^{(i)})^2}{\hat{v}_{pn}} + \frac{(\sin \theta x_{pn}^{(i)} + \cos \theta x_{qn}^{(i)})^2}{\hat{v}_{qn}} - 2 \log \left[(\cos \theta x_{pn}^{(i)} - \sin \theta x_{qn}^{(i)}) (\sin \theta x_{pn}^{(i)} + \cos \theta x_{qn}^{(i)}) \right] \right] + cst \qquad (7)$$
where $\hat{v}_{mn} \stackrel{\text{def}}{=} [\mathbf{W}\mathbf{H}]_{mn}$

$$\longrightarrow \text{ non-convex, non-smooth, N poles for } \theta \in (-\frac{\pi}{4}, \frac{\pi}{4}]$$

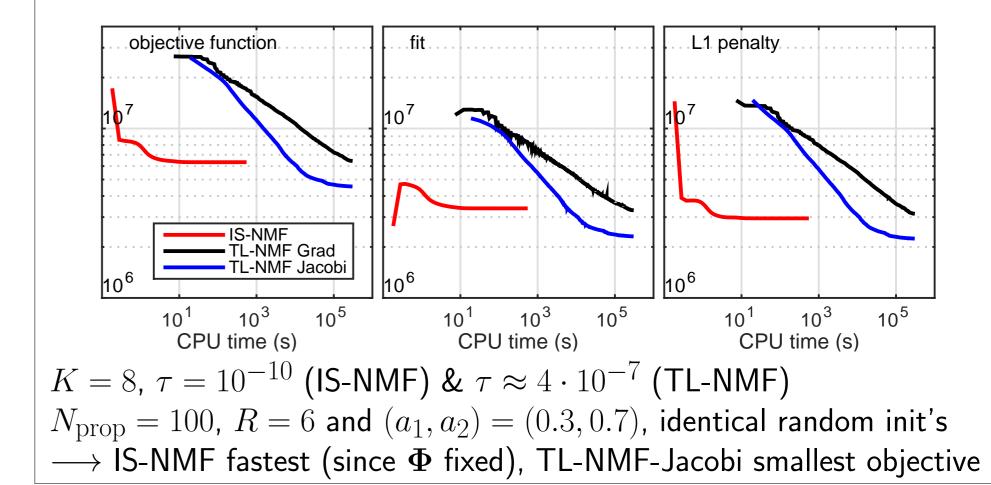
$$M = 10, N = 100, K = 5$$

Randomized grid search

(1)



TL-NMF Objective function



IS-NMF with sparsity

Minimize
$$D(|\mathbf{\Phi}_{\mathsf{DCT}}\mathbf{Y}|^{\circ 2}|\mathbf{W}\mathbf{H}) + \lambda \frac{M}{K}||\mathbf{H}||_1$$

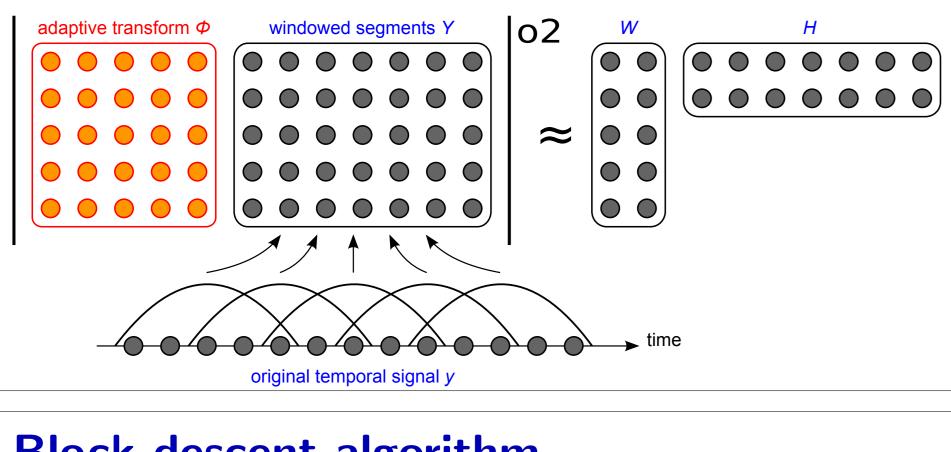
s.t. $\mathbf{W} \ge 0, \mathbf{H} \ge 0, \forall k, ||\mathbf{w}_k||_1 = 1$

 $D(\mathbf{A}|\mathbf{B}) = \sum_{ij} (a_{ij}/b_{ij} - \log(a_{ij}/b_{ij}) - 1)$ Itakura-Saito divergence Factorization rank K

Transform learning: TL-NMF $C(\mathbf{\Phi}, \mathbf{W}, \mathbf{H}) \stackrel{\mathsf{def}}{=} D(|\mathbf{\Phi}\mathbf{Y}|^{\circ 2} |\mathbf{W}\mathbf{H}) + \lambda \frac{M}{K} ||\mathbf{H}||_1$ Minimize s.t. $\mathbf{W} \ge 0, \mathbf{H} \ge 0, \forall k, ||\mathbf{w}_k||_1 = 1, \mathbf{\Phi}^T \mathbf{\Phi} = \mathbf{I}_M$ (2)(inspired from [1])

Orthogonality constraint: $\mathbf{\Phi} \in \mathbb{O}^M$

- Mimics commonly used Fourier or DCT transform Φ_{DCT}
- Avoids blow-up & trivial solutions such as $(\mathbf{\Phi}, \mathbf{W}, \mathbf{H}) = (\mathbf{0}, \mathbf{0}, \mathbf{0})$



Block-descent algorithm

Algorithm 1: TL-NMF-Jacobi **Input** : **Y**, τ , K, λ Output: Φ , W, H Initialize $\Phi = \Phi^{(0)}$, $\mathbf{W} = \mathbf{W}^{(0)}$, $\mathbf{H} = \mathbf{H}^{(0)}$ and set l = 1while $\epsilon > \tau$ do $\mathbf{H}^{(l)} \leftarrow \text{Update } \mathbf{H} \text{ as in } [2]$ (U1) $\mathbf{W}^{(l)} \leftarrow \text{Update } \mathbf{W} \text{ as in } [2]$ (U2) $\Phi^{(l)} \leftarrow$ Update Φ using Algorithm 2 (U3) Normalize Φ to remove sign ambiguity $\epsilon = \frac{C(\Phi^{(l-1)}, \mathbf{W}^{(l-1)}, \mathbf{H}^{(l-1)}) - C(\Phi^{(l)}, \mathbf{W}^{(l)}, \mathbf{H}^{(l)})}{|C(\Phi^{(l)}, \mathbf{W}^{(l)}, \mathbf{H}^{(l)})|}$ $l \leftarrow l+1$ end

-draw N_{prop} random proposals $\theta \in \left(-\frac{\alpha \pi \alpha \pi}{4}\right)$ $\alpha \in (0,1]$ with - approximate (5) as $\hat{\theta} \approx \arg \min_{\theta \in \{\tilde{\theta}_i\}_{i=1}^{N_{\text{prop}}}} J_{pq}(\theta)$ \rightarrow no decrease of (2): move on to a different axis (p,q) \rightarrow decrease of (2): repeat for smaller value of α

Update for Φ (U3)

- Can find $\frac{M}{2}$ mutually independent random couples (p,q) (rotation set) \rightarrow update in parallel - Repeat $K (= \lfloor 2R/M \rfloor)$ times for each update (U3) $-\alpha$ sequentially updated as

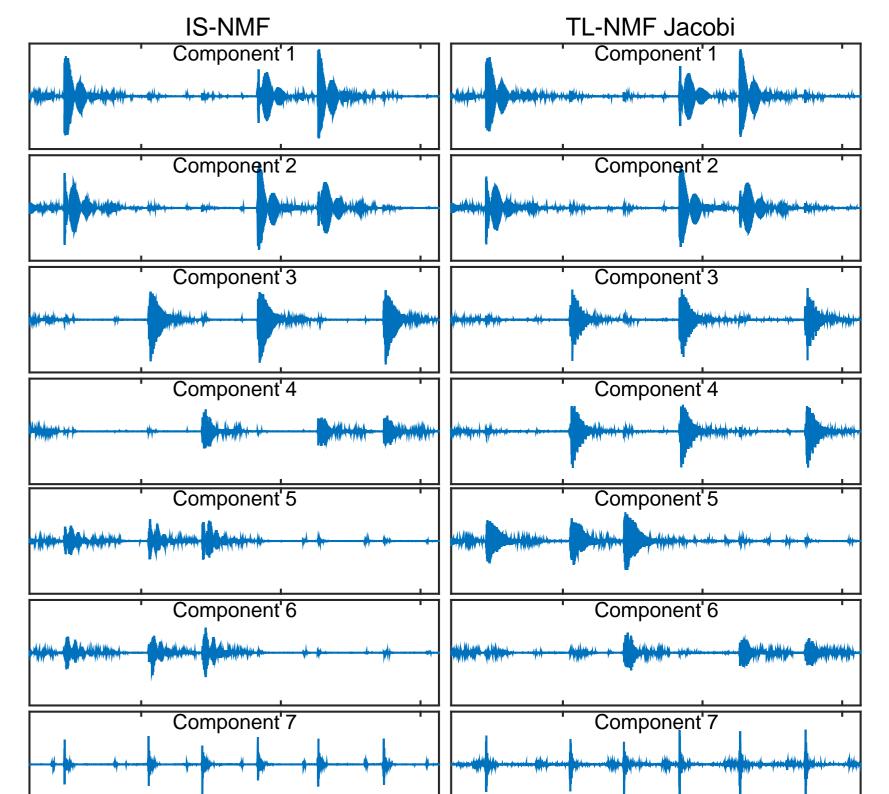
$$\alpha = \alpha(k, l) = l^{-a_1} k^{-a_2}$$

where l is outer loop iteration (Algo. 1) and $k = 1, \ldots, K$

 \rightarrow plays role similar to a step size parameter

Algorithm 2: Jacobi update of Φ at iteration lInput : Φ , $\mathbf{X} = \Phi \mathbf{Y}$, $\hat{\mathbf{V}} = \mathbf{W}\mathbf{H}$, N_{prop} , R, lOutput: Φ for k = 1, ..., |2R/M| do Generate a random permutation of (1, ..., M) in u for j = 1, ..., M/2 do $(p,q) = (\mathbf{u}_j, \mathbf{u}_{j+\frac{M}{2}})$ for $s = 1, ..., N_{prop}$ do Draw at random $\tilde{\theta} \in \left(-\frac{\alpha(k,l)\pi}{4}, \frac{\alpha(k,l)\pi}{4}\right]$ Evaluate $J_{pq}(\tilde{\theta}) = D(|\mathbf{R}_{pq}(\tilde{\theta})\mathbf{X}|^{\circ 2}|\hat{\mathbf{V}})$ end

Decomposition



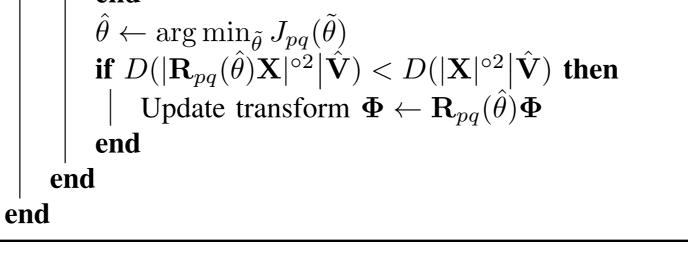
- In [2]: projected Gradient Descent for (U3) – Here: new Jacobi-like iterative approach for update of Φ

Jacobi algorithm

Principle

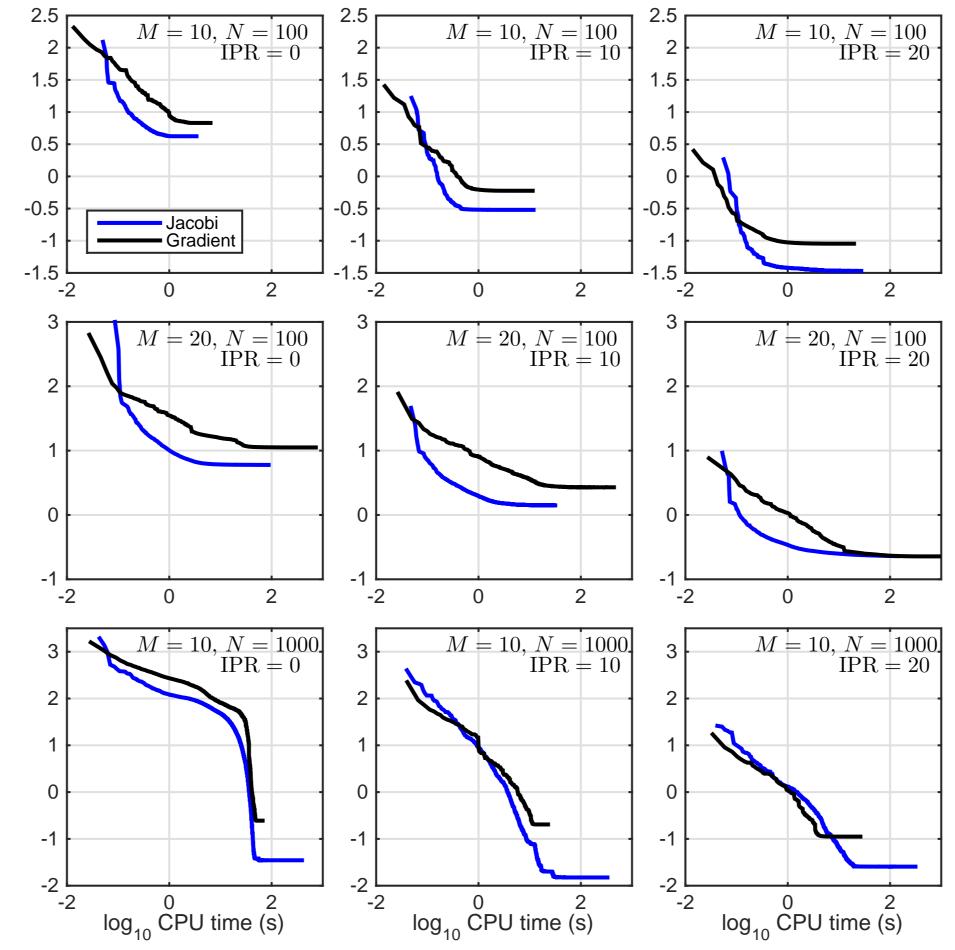
```
Orthogonal matrix in \mathbb{O}^M \longrightarrow product of Givens matrices \mathbf{R}_{pq}(\theta) \in \mathbb{O}^M
                                                    0 \cos \theta \ 0 \ -\sin \theta:
                           \mathbf{R}_{pq}(\theta) =
                                                                                                                  (3)
                                                   \sin \theta \ 0 \ \cos \theta \ 0
```

M(M-1)/2 distinct axes of rotation $(p,q) \in \{1,\ldots,M\} \times \{1,\ldots,M\}$, rotation angle $\theta \in [0, 2\pi[$

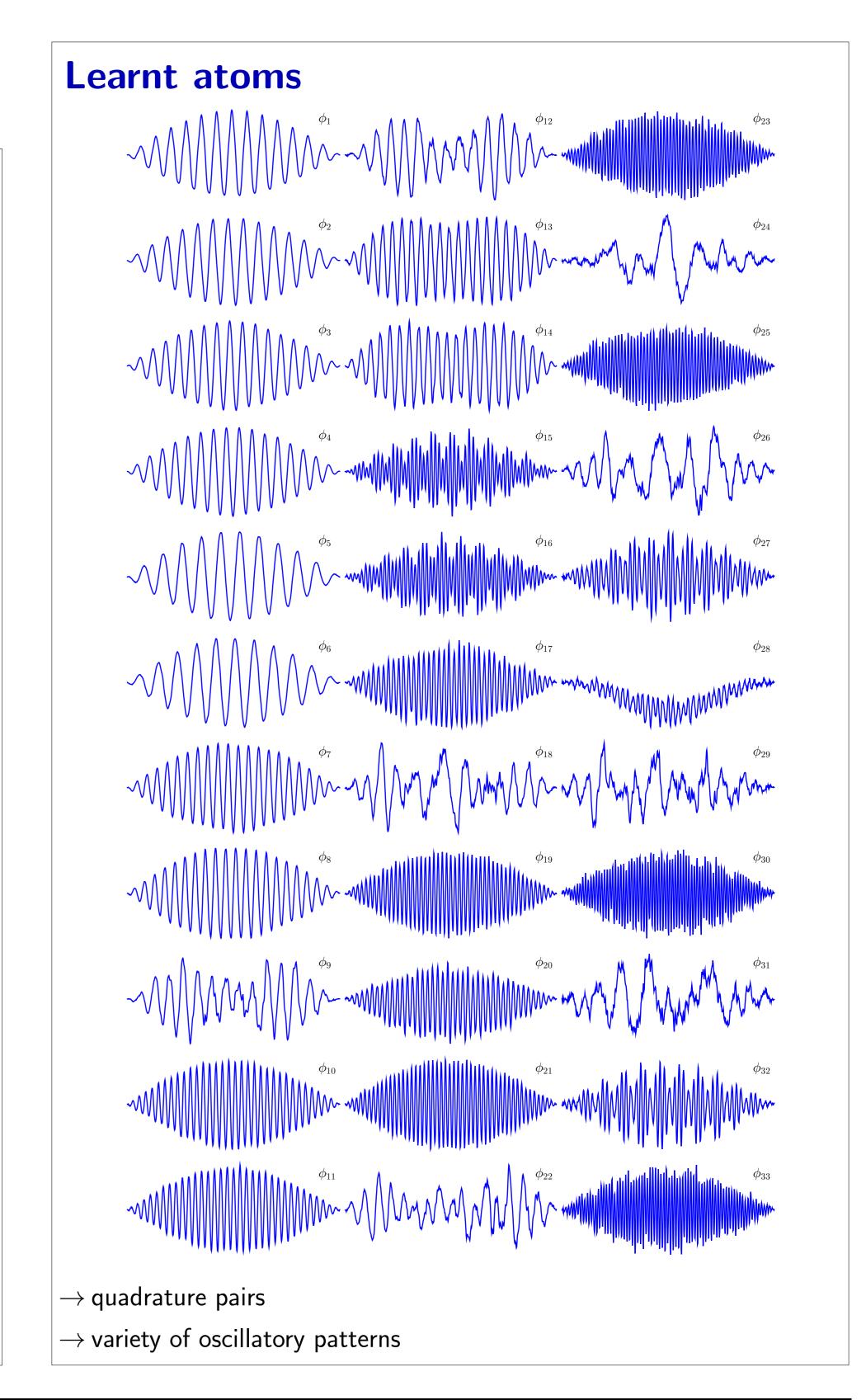


Numerical experiments

Synthetic data — Update (U3) only - Minimize $F(\mathbf{\Phi}) = D(|\mathbf{\Phi}\mathbf{Y}|^{\circ 2}|\mathbf{V}^*)$ s.t. $\mathbf{\Phi} \in \mathbb{O}^M$ where $\mathbf{V}^* = |\mathbf{\Phi}^* \mathbf{Y}|^{\circ 2}$ Random data $\mathbf{Y} \in \mathbb{R}^{M imes N}$ and random transform $\mathbf{\Phi}^* \in \mathbb{O}^M$, Random initialization $\mathbf{\Phi} = \mathbf{\Phi}^{(0)}$ in vicinity of ground-truth $\mathbf{\Phi}^*$: $\mathsf{IPR} = 10 \log_{10} \frac{||\mathbf{\Phi}^*||_F^2}{||\mathbf{\Phi}^{(0)} - \mathbf{\Phi}^*||}$



ponent'8		
Na di kana bilan una bina anta dia kakata dan arginan antakanika di dikunana kanakana kanakana di pulan kata Na mumumina antara di kana na 177 mangkana di kana di pula dara dara kana kana kana kana kana kana di pula pung		
ne (s) 10 15		
- 1		



Jacobi update: given $\Phi^{(i)}$ and (p,q), with $\mathbf{X}^{(i)} = \Phi^{(i)}\mathbf{Y}$,

$$\begin{aligned} \boldsymbol{\Phi}^{(i+1)} &= \mathbf{R}_{pq}(\hat{\theta}) \boldsymbol{\Phi}^{(i)} \\ \hat{\theta} &= \arg \min_{\theta} J_{pq}(\theta) \\ J_{pq}(\theta) \stackrel{\mathsf{def}}{=} D(|\mathbf{R}_{pq}(\theta) \mathbf{X}^{(i)}|^{\circ 2} |\mathbf{W}\mathbf{H}) \end{aligned}$$

(4)

(5)

(6)

References

- [1] S. Ravishankar and Y. Bresler, "Learning sparsifying transforms," IEEE T. Signal *Process.*, 2013.
- [2] D. Fagot, H. Wendt, and C. Févotte, "Nonnegative matrix factorization with transform learning," ICASSP 2018.
- [3] C. Févotte and J. Idier, "Algorithms for nonnegative matrix factorization with the β -divergence," Neural Comput., 2011.
- [4] J. H. Manton, "Optimization algorithms exploiting unitary constraints," IEEE T. Signal Process., 2002.

 \rightarrow smaller objective function value than gradient descent

 \rightarrow faster decrease of objective function value

EUSIPCO 2018 - Rome - Italy