Bootstrap for Log Wavelet Leaders Cumulant based Multifractal Analysis

Herwig Wendt, Stephane G. Roux, Patrice Abry

Physics Lab., CNRS UMR 5672 Ecole Normale Supérieure de Lyon, France

EUSIPCO 2006, Firenze, 07.09.2006

III NOR

Motivation

Motivation

- Multifractal Analysis (MFA)
 - Scaling in data: numerous applications of very different nature
 - Usually based on moments of wavelet coefficients
- Wavelet Leaders:

significant theoretical/practical qualities

• Log-cumulants based MFA:

emphasizes difference mono- & multi-fractal processes

Goal:

Practical procedure for obtaining accurate log-cumulant estimates and confidence intervals from one single realization of data

- \rightarrow Do Wavelet Leaders improve current estimation procedures?
- → Does Bootstrap provide reliable confidence intervals?

- ▲ 同 ▶ ▲ 目 ▶ - 三 日 = ♪ り Q (>

Motivation

Motivation

- Multifractal Analysis (MFA)
 - Scaling in data: numerous applications of very different nature
 - Usually based on moments of wavelet coefficients
- Wavelet Leaders:

significant theoretical/practical qualities

• Log-cumulants based MFA:

emphasizes difference mono- & multi-fractal processes

Goal:

Practical procedure for obtaining accurate log-cumulant estimates and confidence intervals from one single realization of data

- \rightarrow Do Wavelet Leaders improve current estimation procedures?
- → Does Bootstrap provide reliable confidence intervals?

- 4 母 ト 4 ヨ ト ヨ ヨ - シ へ ()

Motivation

Motivation

- Multifractal Analysis (MFA)
 - Scaling in data: numerous applications of very different nature
 - Usually based on moments of wavelet coefficients
- Wavelet Leaders:

significant theoretical/practical qualities

• Log-cumulants based MFA:

emphasizes difference mono- & multi-fractal processes

Goal:

Practical procedure for obtaining accurate log-cumulant estimates and confidence intervals from one single realization of data

- \rightarrow Do Wavelet Leaders improve current estimation procedures?
- → Does **Bootstrap** provide reliable confidence intervals?

- 4 母 ト 4 ヨ ト ヨ ヨ - シ へ ()

Motivation

Motivation

- Multifractal Analysis (MFA)
 - Scaling in data: numerous applications of very different nature
 - Usually based on moments of wavelet coefficients
- Wavelet Leaders:

significant theoretical/practical qualities

• Log-cumulants based MFA:

emphasizes difference mono- & multi-fractal processes

Goal:

Practical procedure for obtaining accurate log-cumulant estimates and confidence intervals from one single realization of data

- \rightarrow Do Wavelet Leaders improve current estimation procedures?
- → Does Bootstrap provide reliable confidence intervals?

- ▲ 同 ▶ ▲ 目 ▶ - 三 日 = ♪ り Q (>

Motivation

Motivation

- Multifractal Analysis (MFA)
 - Scaling in data: numerous applications of very different nature
 - Usually based on moments of wavelet coefficients
- Wavelet Leaders:

significant theoretical/practical qualities

• Log-cumulants based MFA:

emphasizes difference mono- & multi-fractal processes

Goal:

Practical procedure for obtaining accurate log-cumulant estimates and confidence intervals from one single realization of data

- \rightarrow Do Wavelet Leaders improve current estimation procedures?
- \rightarrow Does Bootstrap provide reliable confidence intervals?

- ▲ 同 ▶ ▲ 目 ▶ - 三 日 = ♪ り Q (>

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Wavelet Coefficients and Wavelet Leaders

• Discrete Wavelet Coefficients

$$\psi_{j,k}(t) = 2^{-j}\psi_0(2^{-j}t-k)$$
 dyadic grid
 $d_X(j,k) = \langle \psi_{j,k}|X
angle$

• Wavelet Leaders $L_X(j, k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d_{\lambda'}|$ $\lambda_{j,k} = [k2^j, (k+1)2^j), \qquad 3\lambda_{j,k} = \lambda_{j,k-1} \cup \lambda_{j,k} \cup \lambda_{j,k+1}$

> Supremum: taken on $d_X(j, k)$, in time neighborhood $3\lambda_{j,k}$, over all finer scales $2^{j'} < 2^{j}$

> > ◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Wavelet Coefficients and Wavelet Leaders

• Discrete Wavelet Coefficients

$$\psi_{j,k}(t) = 2^{-j}\psi_0(2^{-j}t-k)$$
 dyadic grid
 $d_X(j,k) = \langle \psi_{j,k}|X
angle$

• Wavelet Leaders $L_X(j,k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d_{\lambda'}|$ $\lambda_{i,k} = [k2^j, (k+1)2^j), \qquad 3\lambda_{i,k} = \lambda_{i,k-1} \cup \lambda_{i,k} \cup \lambda_{i,k+1}$

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Scaling and Multifractal

Scale Invariance:

$$\frac{1}{n_j} \sum_{k=1}^{n_j} L_X(j,k)^q = F_q |a|^{\zeta(q)}$$
(1)

for
$$a \in [a_m, a_M]$$
, $a_M/a_m >> 1$ $(a = 2^j)$

Multifractal Analysis:

 $\zeta(q) \longrightarrow \text{singularity spectrum } D(h)$

• Scaling exponent $\zeta(q)$:

 $\zeta(q) = qH$ linear o X monofractal $\zeta(q) \neq qH$ non linear o X multifractal

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Scaling and Multifractal

Scale Invariance:

$$\frac{1}{n_j} \sum_{k=1}^{n_j} L_X(j,k)^q = F_q |a|^{\zeta(q)}$$
(1)

for
$$a \in [a_m, a_M]$$
, $a_M/a_m >> 1$ $(a = 2^j)$

• Multifractal Analysis:

 $\zeta(q) \longrightarrow \text{singularity spectrum } D(h)$

• Scaling exponent $\zeta(q)$:

 $\zeta(q) = qH$ linear o X monofractal $\zeta(q) \neq qH$ non linear o X multifractal

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Scaling and Multifractal

Scale Invariance:

$$\frac{1}{n_j} \sum_{k=1}^{n_j} L_X(j,k)^q = F_q |a|^{\zeta(q)}$$
(1)

for
$$a \in [a_m, a_M]$$
, $a_M/a_m >> 1$ $(a = 2^j)$

• Multifractal Analysis:

 $\zeta(q) \longrightarrow \text{singularity spectrum } D(h)$

• Scaling exponent $\zeta(q)$:

 $\zeta(q) = qH$ linear $\rightarrow X$ monofractal $\zeta(q) \neq qH$ non linear $\rightarrow X$ multifractal

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Log-Cumulants

Some classes of processes:

• Eq. (1)
$$\longrightarrow \mathbb{E}L_{X}(j,\cdot)^{q} = F_{q}|2^{j}|^{\zeta(q)}$$
 (2)
• $\ln \mathbb{E}e^{q \ln L_{X}(j,\cdot)} = \sum_{p=1}^{\infty} C_{p}^{j} \frac{q^{p}}{p!}$
 C_{p}^{j} - cumulants of random variable $\ln L_{X}(j,\cdot)$
 $C_{p}^{j} = c_{p}^{0} + c_{p} \ln 2^{j}, \quad \forall p \geq 1$ (3)

• Eqs. (2) + (3):
$$\Rightarrow \zeta(q) = \sum_{p=1}^{\infty} c_p \frac{q^p}{p!}$$

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Log-Cumulants

Some classes of processes:

• Eq. (1)
$$\longrightarrow \mathbb{E}L_X(j,\cdot)^q = F_q |2^j|^{\zeta(q)}$$
 (2)
• $\ln \mathbb{E}e^{q\ln L_X(j,\cdot)} = \sum_{p=1}^{\infty} C_p^{j} \frac{q^p}{p!}$
 $C_p^j - \text{cumulants of random variable } \ln L_X(j,\cdot)$
 $C_p^j = c_p^0 + c_p \ln 2^j, \quad \forall p \ge 1$ (3)

• Eqs. (2) + (3):

$$\Rightarrow \zeta(q) = \sum_{p=1}^{\infty} c_p \frac{q^p}{p!}$$

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Log-Cumulants

Some classes of processes:

• Eq. (1)
$$\longrightarrow \mathbb{E}L_X(j,\cdot)^q = F_q |2^j|^{\zeta(q)}$$
 (2)
• $\ln \mathbb{E}e^{q \ln L_X(j,\cdot)} = \sum_{p=1}^{\infty} C_p^j \frac{q^p}{p!}$
 $C_p^j - \text{cumulants of random variable } \ln L_X(j,\cdot)$
 $C_p^j = c_p^0 + c_p \ln 2^j, \quad \forall p \ge 1$ (3)

• Eqs. (2) + (3):
$$\Rightarrow \zeta(q) = \sum_{p=1}^{\infty} c_p \frac{q^p}{p!}$$

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Log-Cumulants

• Measurement of $\zeta(q)$ replaced by those of log-cumulants c_p :

$$\zeta(q) = c_1 q + c_2 \frac{q^2}{2} + c_3 \frac{q^3}{6} + \cdots$$

• X monofractal: $\zeta(q)$ linear $\Rightarrow \forall p > 1 : c_p \equiv 0$ • X multifractal: $\zeta(q)$ non linear $\Rightarrow \exists p > 1 : c_p \neq 0$

• Estimation of c_p ?

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Log-Cumulants

• Measurement of $\zeta(q)$ replaced by those of log-cumulants c_p :

$$\zeta(q) = c_1 q + c_2 \frac{q^2}{2} + c_3 \frac{q^3}{6} + \cdots$$

• X monofractal: $\zeta(q)$ linear $\Rightarrow \forall p > 1 : c_p \equiv 0$ • X multifractal: $\zeta(q)$ non linear $\Rightarrow \exists p > 1 : c_p \neq 0$

• Estimation of c_p ?

- 4 母 ト 4 ヨ ト ヨ ヨ - シ へ ()

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Estimating the log-cumulants c_p

At each scale j:

a - compute n_j Leaders L_X(j, k)
b - estimate cumulants Ĉ^j_p of ln L_X(j, ·)

ĉ_p: C^j_p = c⁰_p + c_p ln 2^j → linear regressions Ĉ^j_p vs. ln 2^j

$$\hat{c}_{p} = \log_2 e \sum_{j=j_1}^{j_2} w_j \hat{C}_{p}^{j}$$

Weights w_j : reflect confidence granted to each \widehat{C}^j_p here $w_j = 1/n_j$

Equivalent procedures for coefficients: $L_X(j,k)
ightarrow |d_X(j,k)|$

- 4 母 ト 4 ヨ ト ヨ ヨ - シ へ ()

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Estimating the log-cumulants c_p

At each scale j:
a - compute n_j Leaders L_X(j, k)
b - estimate cumulants Ĉ^j_p of ln L_X(j, ·)
ĉ_p: C^j_p = c⁰_p + c_p ln 2^j → linear regressions Ĉ^j_p vs. ln 2^j
ĉ_p = log₂ e ∑^{j₂}_j w_j Ĉ^j_p

Weights w_j : reflect confidence granted to each \hat{C}^j_p here $w_j = 1/n_j$

Equivalent procedures for coefficients: $L_X(j,k)
ightarrow |d_X(j,k)|$

- 4 母 ト 4 ヨ ト 4 ヨ ト ショコ うくぐ

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Estimating the log-cumulants c_p

At each scale j:
a - compute n_j Leaders L_X(j, k)
b - estimate cumulants Ĉ^j_p of ln L_X(j, ·)
2 ĉ_p: C^j_p = c⁰_p + c_p ln 2^j → linear regressions Ĉ^j_p vs. ln 2^j
ĉ_p = log₂ e ∑^{j₂}_{i=i} w_j Ĉ^j_p

Weights w_j : reflect confidence granted to each \hat{C}^j_p here $w_j = 1/n_j$

Equivalent procedures for coefficients: $L_X(j,k) \rightarrow |d_X(j,k)|$

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

Accurate log-cumulant estimates: Coefficients or Leaders ?

② Confidence intervals from single realization ?

→ Non parametric bootstrap

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Wavelet Coefficients and Leaders Scaling and Multifractal Log-Cumulants Estimation Procedures

- Accurate log-cumulant estimates: Coefficients or Leaders ?
- Onfidence intervals from single realization ?
 - \longrightarrow Non parametric bootstrap

Resampling Bootstrap Confidence Intervals

Resampling and Bootstrap Estimates

Non parametric Bootstrap:

Statistical properties of estimate from single realization by repeated resampling from available data

At each scale $j: \mathcal{L}_j = \{L_X(j, 1), \cdots, L_X(j, n_j)\}$

- $\mathcal{L}_j \rightarrow \text{estimates } \hat{\mathcal{C}}_p^j, \, \hat{c}_p$
- $\mathcal{L}_j \to R$ bootstrap resamples $\mathcal{L}_j^{*(1)}, \cdots, \mathcal{L}_j^{*(R)}$:

 $\mathcal{L}_{j}^{*} = \{L_{X}^{*}(j, 1), \cdots, L_{X}^{*}(j, n_{j})\}$ drawn blockwise, with replacement from \mathcal{L}_{j} .

• $\mathcal{L}_{j}^{*} \rightarrow R$ bootstrap estimates $\hat{C}_{p}^{j*}, \, \hat{c}_{p}^{*}$: empirical distributions

Resampling Bootstrap Confidence Intervals

Resampling and Bootstrap Estimates

Non parametric Bootstrap:

Statistical properties of estimate from single realization by repeated resampling from available data

At each scale j: $\mathcal{L}_j = \{L_X(j, 1), \cdots, L_X(j, n_j)\}$

•
$$\mathcal{L}_{j}
ightarrow$$
 estimates $\hat{\mathcal{C}}_{p}^{j}, \, \hat{c}_{p}$

• $\mathcal{L}_j \to R$ bootstrap resamples $\mathcal{L}_j^{*(1)}, \cdots, \mathcal{L}_j^{*(R)}$: $\mathcal{L}_i^* = \{I_i^*, (i, 1), \cdots, I_i^*, (i, n_i)\}$

drawn blockwise, with replacement from \mathcal{L}_j .

• $\mathcal{L}_{j}^{*} \rightarrow R$ bootstrap estimates $\hat{C}_{p}^{j*}, \, \hat{c}_{p}^{*}$: empirical distributions

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ■ ● ● ●

Resampling Bootstrap Confidence Intervals

Resampling and Bootstrap Estimates

Non parametric Bootstrap:

Statistical properties of estimate from single realization by repeated resampling from available data

At each scale j: $\mathcal{L}_j = \{L_X(j, 1), \cdots, L_X(j, n_j)\}$

•
$$\mathcal{L}_{j}
ightarrow$$
 estimates $\hat{\mathcal{C}}_{p}^{j}, \, \hat{c}_{p}$

• $\mathcal{L}_{j} \rightarrow R$ bootstrap resamples $\mathcal{L}_{j}^{*(1)}, \cdots, \mathcal{L}_{j}^{*(R)}$: $\mathcal{L}_{j}^{*} = \{L_{X}^{*}(j, 1), \cdots, L_{X}^{*}(j, n_{j})\}$ drawn blockwise, with replacement from \mathcal{L}_{j} .

• $\mathcal{L}_{i}^{*} \rightarrow R$ bootstrap estimates $\hat{C}_{p}^{j*}, \hat{c}_{p}^{*}$: empirical distributions

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ■ ● ● ●

Resampling Bootstrap Confidence Intervals

Resampling and Bootstrap Estimates

Non parametric Bootstrap:

Statistical properties of estimate from single realization by repeated resampling from available data

At each scale j: $\mathcal{L}_j = \{L_X(j, 1), \cdots, L_X(j, n_j)\}$

•
$$\mathcal{L}_{j}
ightarrow$$
 estimates $\hat{\mathcal{C}}_{p}^{j}, \, \hat{c}_{p}$

• $\mathcal{L}_j \to R$ bootstrap resamples $\mathcal{L}_j^{*(1)}, \cdots, \mathcal{L}_j^{*(R)}$: $\mathcal{L}_j^* = \{L_X^*(j, 1), \cdots, L_X^*(j, n_j)\}$ drawn blockwise, with replacement from \mathcal{L}_j .

• $\mathcal{L}_{j}^{*} \rightarrow R$ bootstrap estimates $\hat{\mathcal{C}}_{p}^{j*}, \, \hat{\mathcal{c}}_{p}^{*}$: empirical distributions

◆□▶ ◆帰▶ ◆ミ▶ ◆ミ▶ ヨミ のの⊙

Resampling Bootstrap Confidence Intervals

Bootstrap Confidence Intervals

• $100(1 - \alpha)\%$ confidence intervals for c_p s:

$$\mathsf{Cl}_{p} = \left(Q_{p}\left(\frac{\alpha}{2}\right), Q_{p}\left(1-\frac{\alpha}{2}\right)\right) = \left(\hat{c}_{p}^{*(r_{1})}, \hat{c}_{p}^{*(r_{2})}\right)$$

• $Q_p(\alpha)$ - α -th quantile of empirical distribution \hat{c}_p^* : $r_1 = \lfloor \frac{R\alpha}{2} \rfloor$ and $r_2 = R - r_1 + 1$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ■ ● ● ●

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Monte Carlo Simulation

• We have now: \hat{c}_p , $CI \rightarrow$ Performance ?

- Apply procedures to large number N_{MC} of realizations of synthetic multifractal processes with known scaling properties.
- Scaling Processes with stationary increments:
 - Fractional Brownian Motion (FBM): only Gaussian exactly selfsimilar process ζ(q) = qH, c₁ = H, p ≥ 1 : c_p ≡ 0 ← monofractal
 - Multifractal Random Walk (MRW): simple multifractal (hence non Gaussian) process $c_1 \neq 0, c_2 \neq 0, p \ge 2: c_p \equiv 0$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Monte Carlo Simulation

- We have now: \hat{c}_p , $CI \rightarrow$ Performance ?
- Apply procedures to large number N_{MC} of realizations of synthetic multifractal processes with known scaling properties.
- Scaling Processes with stationary increments:
 - Fractional Brownian Motion (FBM): only Gaussian exactly selfsimilar process ζ(q) = qH, c₁ = H, p ≥ 1 : c_p ≡ 0 ← monofractal
 Multifractal Random Walk (MRW): simple multifractal (hence non Gaussian) process

 $c_1 \neq 0$, $c_2 \neq 0$, $p \geq 2$: $c_p \equiv 0$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ■ ● ● ●

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Monte Carlo Simulation

- We have now: \hat{c}_p , $CI \rightarrow$ Performance ?
- Apply procedures to large number N_{MC} of realizations of synthetic multifractal processes with known scaling properties.
- Scaling Processes with stationary increments:
 - Fractional Brownian Motion (FBM): only Gaussian exactly selfsimilar process ζ(q) = qH, c₁ = H, p ≥ 1 : c_p ≡ 0 ← monofractal
 Multifractal Random Walk (MRW):

simple multifractal (hence non Gaussian) process $c_1 \neq 0, c_2 \neq 0, p > 2; c_n \equiv 0$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ■ ● ● ●

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Monte Carlo Simulation

- We have now: \hat{c}_p , $CI \rightarrow$ Performance ?
- Apply procedures to large number N_{MC} of realizations of synthetic multifractal processes with known scaling properties.
- Scaling Processes with stationary increments:
 - Fractional Brownian Motion (FBM): only Gaussian exactly selfsimilar process ζ(q) = qH, c₁ = H, p ≥ 1 : c_p ≡ 0 ← monofractal Multifue atel Brandem Mally (MDM);
 - Multifractal Random Walk (MRW): simple multifractal (hence non Gaussian) process $c_1 \neq 0, c_2 \neq 0, p \ge 2: c_p \equiv 0$

◆□▶ ◆帰▶ ◆ミ▶ ◆ミ▶ ヨミ のの⊙

Introduction Definitions Bootstrap **Results**

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Statistical Performance: MSE

$$\mathsf{MSE} = \sqrt{\mathsf{Var}_{\mathsf{MC}}\{\hat{c}_p\} + (c_p - \mathbb{E}_{\mathsf{MC}}\{\hat{c}_p\})^2}$$

MSE×10 ³	FBM								
	<i>c</i> ₁	C ₁ C ₂ C ₃ C ₄ C ₅							
Coefficients	15.5	37.3	187.7	1251	9803				
Leaders	10.8	4.1	1.8	1.0	0.7				

$MSE \times 10^3$	MRW							
	<i>c</i> ₁	<i>c</i> ₁ <i>c</i> ₂ <i>c</i> ₃ <i>c</i> ₄ <i>c</i> ₅						
Coefficients	35.3	42.8	200.7	1366	11068			
Leaders	32.8	17.5	18.4	30.0	50.1			

Leaders significantly outperform coefficients

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA

Introduction Definitions Bootstrap **Results**

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Statistical Performance: MSE

$$\mathsf{MSE} = \sqrt{\mathsf{Var}_{\mathsf{MC}}\{\hat{c}_p\} + (c_p - \mathbb{E}_{\mathsf{MC}}\{\hat{c}_p\})^2}$$

MSE×10 ³	FBM								
	<i>c</i> ₁	c_1 c_2 c_3 c_4 c_5							
Coefficients	15.5	37.3	187.7	1251	9803				
Leaders	10.8	4.1	1.8	1.0	0.7				

$MSE \times 10^3$	MRW							
	<i>c</i> ₁	C ₁ C ₂ C ₃ C ₄ C ₅						
Coefficients	35.3	42.8	200.7	1366	11068			
Leaders	32.8	17.5	18.4	30.0	50.1			

 $\longrightarrow \quad \text{Leaders significantly outperform coefficients}$

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Statistical Performance continued

Monte Carlo empirical distributions of estimates:

- 4 同 2 4 回 2 4 回 2 4

ELE OQO

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Confidence Intervals by Bootstrap

Empirical Coverage	FBM					
(in %)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
Coefficients	92.1	92.3	91.3	87.8	87.7	
Leaders	83.4	90.3	94.7	97.2	98.0	

Empirical Coverage	MRW					
(in %)	$\begin{array}{ c c c c c }\hline c_1 & c_2 & c_3 & c_4 & c_4 \\ \hline \end{array}$					
Coefficients	98.6	95.5	92.6	90.3	90.8	
Leaders	98.8	97.0	96.4	95.4	96.6	

Bootstrap CI: nominal coverage reproduced satisfactorily

Herwig Wendt, Stephane G. Roux, Patrice Abry

Bootstrap for Log Wavelet Leaders Cumulant based MFA

Numerical Validation Statistical Performance Confidence Intervals Empirical MF Analysis

Confidence Intervals by Bootstrap

Empirical Coverage	FBM					
(in %)	C_1 C_2 C_3 C_4 C_5					
Coefficients	92.1	92.3	91.3	87.8	87.7	
Leaders	83.4	90.3	94.7	97.2	98.0	

Empirical Coverage	MRW				
(in %)	$\begin{array}{ c c c c c }\hline c_1 & c_2 & c_3 & c_4 & c_5 \\ \hline \end{array}$				
Coefficients	98.6	95.5	92.6	90.3	90.8
Leaders	98.8	97.0	96.4	95.4	96.6

 \rightarrow Bootstrap CI: nominal coverage reproduced satisfactorily

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA

< □ > < Ξ > < Ξ > Ξ = の < ⊙

Definitions Bootstrap Results

Empirical MF Analysis

Practical Procedure

$$C_p^j = c_p^0 + c_p \ln 2^j$$

From single realization:

- Estimates \hat{c}_n
- Bootstrap CI for c_p ۲
- Bootstrap CI for C_p^j : \rightarrow regression range

A B M A B M

ELE DOG

Conclusions and Perspectives

- Leaders based estimation procedure significantly outperforms Coefficients based one
- Bootstrap provides highly relevant confidence intervals for log-cumulants c_p
- Practical procedure that can be applied to a single, finite sample of empirical data
- Perspectives:
 - Advanced bootstrap techniques (pivoting, adjusted limits, ...)
 - Bootstrap hypothesis tests on c_p: testing mono-vs. multifractal

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ り へ ()

Conclusions and Perspectives

- Leaders based estimation procedure significantly outperforms Coefficients based one
- Bootstrap provides highly relevant confidence intervals for log-cumulants c_p
- Practical procedure that can be applied to a single, finite sample of empirical data
- Perspectives:
 - Advanced bootstrap techniques (pivoting, adjusted limits, ...)
 - Bootstrap hypothesis tests on c_p: testing mono-vs. multifractal

Conclusions and Perspectives

- Leaders based estimation procedure significantly outperforms Coefficients based one
- Bootstrap provides highly relevant confidence intervals for log-cumulants c_p
- Practical procedure that can be applied to a single, finite sample of empirical data
- Perspectives:
 - Advanced bootstrap techniques (pivoting, adjusted limits, ...)
 - Bootstrap hypothesis tests on c_p: testing mono-vs. multifractal

- ▲ 同 ▶ ▲ 目 ▶ - 三 日 = ♪ り Q (>

Conclusions and Perspectives

- Leaders based estimation procedure significantly outperforms Coefficients based one
- Bootstrap provides highly relevant confidence intervals for log-cumulants c_p
- Practical procedure that can be applied to a single, finite sample of empirical data
- Perspectives:
 - Advanced bootstrap techniques (pivoting, adjusted limits, ...)
 - Bootstrap hypothesis tests on c_p: testing mono-vs. multifractal

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ り へ ()

Multifractal Analysis

Multifractal Analysis:

• Local regularity of X at t: Hölder exponent h(t)X is $C^{\alpha}(t_0)$ if $\exists C, \alpha > 0; P_{t_0}(t); deg(P_{t_0}) < \alpha :$ $|X(t) - P_{t_0}(t)| < C|t - t_0|^{\alpha}$ $\rightarrow h(t_0) = \sup_{\alpha} \{ \alpha : X \in C^{\alpha}(t_0) \}$

 Singularity spectrum D(h): Haussdorf dimensions of {t_i|h(t_i) = h}

Empirical Multifractal Analysis:

D(h) obtained as Legendre transform of estimates of $\zeta(q)$

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA