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Motivation

Multifractal Analysis (MFA)
Scaling in data: numerous applications of very different nature
Usually based on moments of wavelet coefficients

Wavelet Leaders:
significant theoretical/practical qualities

Log-cumulants based MFA:
emphasizes difference mono- & multi-fractal processes

Goal:
Practical procedure for obtaining accurate log-cumulant estimates

and confidence intervals from one single realization of data

→ Do Wavelet Leaders improve current estimation procedures?

→ Does Bootstrap provide reliable confidence intervals?
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Wavelet Coefficients and Wavelet Leaders

Discrete Wavelet Coefficients

ψj ,k(t) = 2−jψ0(2
−j t − k) dyadic grid

dX (j , k) = 〈ψj ,k |X 〉

Wavelet Leaders LX (j , k) = supλ′⊂3λj,k
|dλ′ |

λj,k = [k2j , (k + 1)2j), 3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1

...
5

6

7
8
9

k

j

dX(j, k)LX(j, k) = supλ‘⊂3λ|dX,λ‘|

λ‘ ⊂ 3λ

Supremum:
taken on dX (j , k),
in time neighborhood 3λj,k ,

over all finer scales 2j′ < 2j
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Scaling and Multifractal

Scale Invariance:

1

nj

nj∑
k=1

LX (j , k)q = Fq|a|ζ(q) (1)

for a ∈ [am, aM ], aM/am >> 1 (a = 2j)

Multifractal Analysis:

ζ(q) −→ singularity spectrum D(h)

Scaling exponent ζ(q):

ζ(q) = qH linear → X monofractal
ζ(q) 6= qH non linear → X multifractal
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Log-Cumulants

Some classes of processes:

Eq. (1) −→ ELX (j , ·)q = Fq|2j |ζ(q) (2)

ln Eeq ln LX (j ,·) =
∑∞

p=1 C j
p

qp

p!

C j
p - cumulants of random variable ln LX (j , ·)

C j
p = c0

p + cp ln 2j , ∀p ≥ 1 (3)

Eqs. (2) + (3):

⇒ ζ(q) =
∞∑

p=1

cp
qp

p!
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Log-Cumulants

Measurement of ζ(q) replaced by those of log-cumulants cp:

ζ(q) = c1q + c2
q2

2
+ c3

q3

6
+ · · ·

X monofractal: ζ(q) linear
⇒ ∀p > 1 : cp ≡ 0

X multifractal: ζ(q) non linear
⇒ ∃p > 1 : cp 6= 0

Estimation of cp ?
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Estimating the log-cumulants cp

1 At each scale j :

a - compute nj Leaders LX (j , k)

b - estimate cumulants Ĉ j
p of ln LX (j , ·)

2 ĉp: C j
p = c0

p + cp ln 2j → linear regressions Ĉ j
p vs. ln 2j

ĉp = log2 e

j2∑
j=j1

wj Ĉ
j
p

Weights wj : reflect confidence granted to each Ĉ j
p

here wj = 1/nj

Equivalent procedures for coefficients: LX (j , k) → |dX (j , k)|
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Recall Goals

1 Accurate log-cumulant estimates: Coefficients or Leaders ?

2 Confidence intervals from single realization ?
−→ Non parametric bootstrap
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Resampling
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Resampling and Bootstrap Estimates

Non parametric Bootstrap:

Statistical properties of estimate from single realization by
repeated resampling from available data

At each scale j : Lj = {LX (j , 1), · · · , LX (j , nj)}
Lj → estimates Ĉ j

p, ĉp

Lj → R bootstrap resamples L∗(1)j , · · · ,L∗(R)
j :

L∗j = {L∗X (j , 1), · · · , L∗X (j , nj)}
drawn blockwise, with replacement from Lj .

L∗j → R bootstrap estimates Ĉ j∗
p , ĉ∗p : empirical distributions
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p, ĉp
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Bootstrap Confidence Intervals
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∗(r2)
2

Histogram of ĉ
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100(1− α)% confidence intervals for cps:

CIp =
(
Qp

(α
2

)
,Qp

(
1− α

2

))
=

(
ĉ
∗(r1)
p , ĉ

∗(r2)
p

)
Qp(α) - α-th quantile of empirical distribution ĉ∗p :

r1 = bRα
2 c and r2 = R − r1 + 1

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA



Introduction
Definitions
Bootstrap

Results
Conclusions and Perspectives

Numerical Validation
Statistical Performance
Confidence Intervals
Empirical MF Analysis

Monte Carlo Simulation

We have now: ĉp, CI → Performance ?

Apply procedures to large number NMC of realizations of
synthetic multifractal processes with known scaling properties.

Scaling Processes with stationary increments:

Fractional Brownian Motion (FBM):
only Gaussian exactly selfsimilar process
ζ(q) = qH, c1 = H, p ≥ 1 : cp ≡ 0 ← monofractal
Multifractal Random Walk (MRW):
simple multifractal (hence non Gaussian) process
c1 6= 0, c2 6= 0, p ≥ 2 : cp ≡ 0

Herwig Wendt, Stephane G. Roux, Patrice Abry Bootstrap for Log Wavelet Leaders Cumulant based MFA



Introduction
Definitions
Bootstrap

Results
Conclusions and Perspectives

Numerical Validation
Statistical Performance
Confidence Intervals
Empirical MF Analysis

Monte Carlo Simulation
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Statistical Performance: MSE

MSE =
√

VarMC{ĉp}+ (cp − EMC{ĉp})2

MSE×103 FBM

c1 c2 c3 c4 c5

Coefficients 15.5 37.3 187.7 1251 9803

Leaders 10.8 4.1 1.8 1.0 0.7

MSE×103 MRW

c1 c2 c3 c4 c5

Coefficients 35.3 42.8 200.7 1366 11068

Leaders 32.8 17.5 18.4 30.0 50.1

−→ Leaders significantly outperform coefficients
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Statistical Performance continued

Monte Carlo empirical distributions of estimates:
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Confidence Intervals by Bootstrap

Nominal Coverage: 95%

Empirical Coverage =
#(cp∈CIp)

NMC
(bias corrected)

Empirical Coverage FBM

(in %) c1 c2 c3 c4 c5

Coefficients 92.1 92.3 91.3 87.8 87.7

Leaders 83.4 90.3 94.7 97.2 98.0

Empirical Coverage MRW

(in %) c1 c2 c3 c4 c5

Coefficients 98.6 95.5 92.6 90.3 90.8

Leaders 98.8 97.0 96.4 95.4 96.6

−→ Bootstrap CI: nominal coverage reproduced satisfactorily
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Practical Procedure

Coefficients Leaders C j
p = c0

p + cp ln 2j
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Log Scale Diagram: Coefficients
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Log Scale Diagram: Leaders
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Multifractal Analysis

Multifractal Analysis:

Local regularity of X at t: Hölder exponent h(t)
X is Cα(t0) if ∃C , α > 0; Pt0(t); deg(Pt0) < α :

|X (t)− Pt0(t)| < C |t − t0|α
→ h(t0) = supα{α : X ∈ Cα(t0)}
Singularity spectrum D(h):
Haussdorf dimensions of {ti |h(ti ) = h}

Empirical Multifractal Analysis:
D(h) obtained as Legendre transform of estimates of ζ(q)
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