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SUMMARY

Wave propagation, downward continuation, and imaging of
seismic reflection data can be formulated in terms of a certain
class of Fourier integral operators (FIOs). We present a proce-
dure for the approximation and discretization of such operators
following a multi-scale approach, viewing data through wave
packets. Our algorithm is valid for the general class of FIOs
associated with canonical graphs, allowing for anisotropy, and
the formation of caustics. The key ingredient is the construc-
tion of a universal oscillatory integral representation via the
introduction of singularity resolving diffeomorphisms, and the
associated pseudo-differential partition of unity. As an exam-
ple, we detail our approach for parametrices of evolution equa-
tions. We obtain a one-step algorithm for structured multi-
scale wave-equation imaging and inverse scattering, time and
depth extrapolation, velocity continuation, and extended imag-
ing in general smoothly varying velocity models.

INTRODUCTION

Wave propagation, downward continuation and imaging can
be formulated in terms of Fourier integral operators (FIOs) F
associated with canonical graphs. In the absence of caustics,
the action of F on a function u is given by ∗

(Fu)(y) =
Z

a(y,ξ )exp(iS(y,ξ ))û(ξ )dξ . (1)

The amplitude function a(y,ξ ) and the generating function
S(y,ξ ) = P(y,ξ )− 〈ξ ,y〉 are determined by the ray geome-
try of the background medium. The latter describes the prop-
agation of singularities according to de Hoop et al. (2009)
χ :

“
∂S
∂ξ

,ξ
”
→

“
y, ∂S

∂y

”
. F has a sparse matrix representa-

tion with respect to the (co-)frame of “wave packets” (Smith
(1998); Candès et al. (2006)). Where caustics occur, an ex-
tension needs to be constructed, in which locally (y,ξ ) are
standardly replaced by coordinate forms (y,xI ,ξJ) (cf. (3) be-
low). Here, we develop a universal algorithm for applying
these FIOs using wave packets, allowing for anisotropy. To
arrive at such an algorithm, we construct a universal oscilla-
tory representation of their kernels using universal (y, ξ̃ ) coor-
dinates, by introducing singularity resolving diffeomorphisms
where caustics occur (cf. (4) below). The universal represen-
tation is of the form such that the ”box-algorithm” recently de-
veloped by the authors, based on the dyadic parabolic decom-
position of phase space, applies (Wendt et al. (2010)). This al-
gorithm relies on the multi-scale expansion of low phase space
separation rank of F in terms of geometric attributes, inte-
grating wave packets and prolate spheroidal wave functions.
Via its use, we arrive at an algorithm for the efficient discrete
evaluation of the action of general operators in the universal

∗We denote by ·̂ the Fourier transform of a function, and by ξ the Fourier (frequency)
variables.

representation we develop here, within accuracy O(2−k/2) at
frequency scale 2k. As an example of the FIO in the class con-
sidered here, we detail our construction and discrete approxi-
mation for solution operators F of evolution equations:

[∂t + iP(t,x,Dx)]u = 0, u|t=t0 = u0, (2)

on X ⊂ Rn and the interval t ∈ [t0,T ] with symbol P (in the
case of the half wave equation, P = P(x,ξ ) =

p
c(x)2||ξ ||2).

These operators generate extended imaging, include time and
depth extrapolation (or downward continuation), wave-equation
imaging and inverse scattering, and velocity continuation.

UNIVERSAL OPERATOR REPRESENTATION

Let ϕγ (x), γ = ( j,ν ,k), denote a wave packet with central po-
sition xν ,k

j and central wave vector 2kν , that is orientation ν at
scale k. We consider Fourier integral operators, F , associated
with canonical graphs. We allow the formation of caustics.
Fourier integral operators and caustics
Let (y,xIi ,ξJi) be local coordinates on the canonical relation, Λ

say, of F , and Si the corresponding generating function. Then
xJi = ∂Si

∂ξJi
, ξIi = − ∂Si

∂xIi
, η = ∂Si

∂y . The coordinates are stan-
dardly defined on (overlapping) open sets Oi in Λ, i = 1, . . . ,N,
where (y,xIi ,ξJi)→ r(y,xIi ,ξJi) is a diffeomorphism. We writePN

i=1 Γi(r) = 1, r ∈Λ for the corresponding partition of unity,
and, in local coordinates, Γ̄i(y,xIi ,ξJi) = Γi(r(y,xIi ,ξJi)). Then
(Fϕγ )(y) =

PN
i=1(Fiϕγ )(y) with

(Fiϕγ )(y) =
Z Z

Γ̄i(y,xIi ,ξJi)ai(y,xIi ,ξJi)

exp[i(Si(y,xIi ,ξJi)−〈ξJi ,xJi〉] ϕγ (x)dxdξJi . (3)

The complex amplitude ai accounts for the KMAH index. In
the case of solution operators F of evolution equations, let p
denote the principal symbol of P. Then, the bi-characteristics
(rays) (x,ξ )→ (y,η) of p define χ . The perturbations of (y,η)
w.r.t. initial conditions (x,ξ ) are collected in the propagator

matrix Π =
„

W1 W2
W3 W4

«
, and the rank-deficiencies of sub-

blocks of Π determine the local coordinates in the vicinity of
caustics: The sets Ii,Ji for admissible coordinate (y,xIi ,ξJi) are
directly determined by the null space of the matrix W1.
Singularity resolving diffeomorphism
We introduce local diffeomorphisms that enable us to express
the operators Fi in terms of universal coordinates (y, ξ̃ ), and
to apply the ”box-algorithm” to (3). We begin with determin-
ing the rank of the matrix W1 at the point y0 = y(x0,ξ0;T , t0)
and ξ = ξ0. If it does not have full rank here, we construct a
diffeomorphism which removes the rank deficiency in a neigh-
borhood of r0 = (y0,η0;x0,ξ0) ∈ Λ. To be specific, we rotate
coordinates, such that ξ0 = (1,0, . . . ,0) (upon normalization),
and assume that the row associated with the coordinate x2 gen-
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Figure 1: The canonical graph of F in our numerical example
(ξ fixed), projected onto coordinates (y,η2): caustic (red line),
its vicinity (blue dashed line), and its tip (cusp) (black dot).

erates the rank deficiency (there could be more than one coor-
dinate.) We then introduce the diffeomorphism,

Q : x 7→ x̃ = (x1−
α

2
(x2− (x0)2)2,x2, . . . ,xn); (4)

to preserve the symplectic form, we map ξ 7→ ξ̃ = (ξ1,ξ2 +
α(x2 − (x0)2)ξ1,ξ3, . . . ,ξn), yielding a canonical transforma-
tion CQ : (x,ξ ) 7→ (x̃, ξ̃ ). Q (and its inverse Q−1) can be
written in the form of an invertible Fourier integral operator
with canonical relation given as the graph of CQ (C−1

Q , respec-
tively). The corresponding propagator matrices ΠQ (ΠQ−1 ) are
obtained from their respective perturbations w.r.t. x (x̃). It

follows that the composition (x̃, ξ̃ )
C−1

Q7→ (x,ξ )
χ7→ (y,η) gener-

ates the graph of a canonical transformation, χ̌ say, which can
be parametrized by (y, ξ̃ ) locally on an open neighborhood of
(y0, ξ̃ (x0,ξ0)). We compose F with Q−1 as Fourier integral
operators: F̌ = FQ−1, with generating function Š = Š(y, ξ̃ )
and canonical relation the graph of χ̌ . The diagram in Fig. 2
illustrates the composition.
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ing propagator matrices are given by

ΠQ =

(
∂x̃
∂x

∂x̃
∂ξ

∂ξ̃
∂x

∂ξ̃
∂ξ

)
=





1 −α(x2 − x0,2) 0 · · · 0 0 0 · · ·
0 1 0 · · · 0 0 0 · · ·
0 0 1 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

. . .
0 0 0 · · · 1 0 0 · · ·
0 αξ1 0 · · · α(x2 − x0,2) 1 0 · · ·
0 0 0 · · · 0 0 1 · · ·
...

...
...

. . .
...

...
...

. . .





,(3.1)

Π−1
Q =

(
∂x
∂x̃

∂x
∂ξ̃

∂ξ
∂x̃

∂ξ
∂ξ̃

)
=





1 α(x̃2 − x0,2) 0 · · · 0 0 0 · · ·
0 1 0 · · · 0 0 0 · · ·
0 0 1 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

. . .
0 0 0 · · · 1 0 0 · · ·
0 −αξ̃1 0 · · · −α(x̃2 − x0,2) 1 0 · · ·
0 0 0 · · · 0 0 1 · · ·
...

...
...

. . .
...

...
...

. . .





,(3.2)

which are easily verified to be symplectic matrices.

It follows that the composition (x̃, ξ̃)
C−1

Q"→ (x, ξ) χ"→ (y, η) generates the graph of a canonical transfor-
mation, χ̌ say, which can be parametrized by (y, ξ̃) locally on an open neighborhood of (y0, ξ̃(x0, ξ0)). We
denote the corresponding generating function by Š = Š(y, ξ̃). We can compose F with Q−1 as Fourier
integral operators: F̌ = FQ−1. The canonical relation of F̌ is the graph of χ̌. In summary:

(x, ξ)

Q: CQ

!!

F : χ "" (y, η)

(x̃, ξ̃)

F̌=FQ−1: χ̌

##!!!!!!!!!!!!!!!!!!!!!!!!!!!

Q−1: CQ−1

$$

For given types of rank deficiency (here, in x2), we obtain a family of diffeomorphisms parametrized by
(x0, ξ0); we only need a discrete set to resolve the rank deficiencies everywhere. We make this precise next.

In general, we can construct a set of diffeomorphisms, {Qij}Ni
j=1, which resolve locally the rank defi-

ciency leading to coordinates (y, xIi , ξJi). We write

(y, xIi , ξJi)
κij−→ (y, ξ̃)

↑ ↑

Λ % r = (y, η;x, ξ)
CQij−→ (y, η; x̃, ξ̃) = ř ∈ Λ̌ij

We write Ǒi for the image of Oi under the diffeomorphism on the level of Lagrangians. Let the matrix ∂2Šij

∂y∂ξ̃

in the above be nonsingular on the open set Ǔij , and introduce Ǒij = Ǔij ∩ Ǒi ⊂ Λ̌ij . This set corresponds
with a set Oij ⊂ Λ. We subpartition Oi = ∪j=1,...,NiOij . The corresponding partition of unity now reads

(3.3)
N∑

i=1

Ni∑

j=1

Γij(r) = 1, while Γ̄ij(y, xIi , ξJi) = Γij(r(y, xIi , ξJi)), j = 1, . . . , Ni.

6

Figure 2: Relation between F , Q, Q−1 and F̌ .

The composition operator F̌ is now formulated in universal
coordinates (yξ̃ ) and is caustic-free in the neighborhood of
(y0,η0;x0,ξ0) where F has a caustic. We illustrate this in Fig.
3 for a caustic generated by a low velocity lens.
Universal operator representation
For given types of rank deficiency (here, in x2), we obtain a
family of diffeomorphisms parametrized by (x0,ξ0). We only
need a discrete set of diffeomorphisms {Qi j}Ni

j=1 to resolve the
rank deficiencies leading to coordinates (y,xIi ,ξJi) everywhere.

Figure 3: Caustic surfaces of F (dark grey) and F̌ (light grey)
for a low velocity lens: The surfaces do not intersect.

We begin with subpartition Oi = ∪ j=1,...,Ni Oi j and construct
the corresponding partition of unity

PN
i=1

PNi
j=1 Γi j(r)= 1 and

operator factors as in (3). After inserting the diffeomorphisms,
we have Γ̌i j(y, ξ̃ ) = Γi j(r(r̃(y, ξ̃ )), and we obtain (Fϕγ )(y) =PN

i=1
PNi

j=1(Fi jϕγ )(y) with operator factors

(Fi jϕγ )(y) =
Z

Ǎi j(y, ξ̃ ) exp[iŠi j(y, ξ̃ )] Q̂∗
i jϕγ (ξ̃ ) dξ̃ , (5)

with universal coordinates (y, ξ̃ ) as in (1). Here, Ǎi j(y, ξ̃ ) =
Γ̌i j(y, ξ̃ )ǎi j(y, ξ̃ ). To leading order, the amplitude ǎi j follows
from the propagator matrix Π̌i j = Π Π

−1
Qi j

.

UNIVERSAL FIO ALGORITHM

We develop a discrete approximate procedure for evaluating
(5) for general input function u.
Partition of unity. We determine the sets Oi by monitoring
the null space of the matrix W1, and subpartition into sets on
which the upper left sub-block of Π̌i j has full rank. Then we
construct the corresponding partition functions Γ̌i j(y, ξ̃ ) using
double-exponential cutoffs of the form ∼ exp(−exp(d(y, ξ̃ )),
where the function d(y, ξ̃ ) measures the distance from the bound-
ary ∂ Ǒi j. The partition of unity is formed by properly weight-
ing the partition functions on the overlaps of the sets Oi j

†.
Diffeomorphism and re-decomposition. We begin with
decomposing the data u(x) into discrete almost symmetric wave
packets (Duchkov et al. (2010)), enabling the fast evaluation
of the Fourier transform of the data at sets of frequency points
within the box Bν ,k. From these, we obtain Q∗ϕγ (x̃) via evalu-
ation of adjoint unequally spaced FFT (Dutt and Rokhlin (1993,
1995)) at points x(x̃). Then, we re-decompose into wave pack-
ets ϕ̃γ̃ (x̃) according to frequency boxes Bν̃ ,k(ξ̃ ). We denote
the data component corresponding to the box Bν̃ ,k by ũν̃ ,k(x̃).

†In the following, we drop the subscript i j .
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Expansion of cutoff functions. The cutoff Γ̌(y, ξ̃ ) in (5)
is homogeneous of degree zero in ξ̃ and is a classical smooth
symbol (of order 0). We “subdivide” the integration over ξ̃ ,
involving a (low-rank) separated representation of Γ̌(y, ξ̃ ) on
the support of each relevant box in ξ̃ (Bao and Symes (1996);
Beylkin et al. (2008)),

Γ̌(y, ξ̃ ) =
Jν ,kX
β=1

Γ̌
β

1 (y)Γ̌β

2 (ξ̃ ), ξ̃ ∈ Bν ,k. (6)

One can view Γ
β

2 (ξ̃ )χ̂ν ,k(ξ̃ ) as a subdivision of the box Bν ,k

into subsets (cones) of ξ̃ . We know that |Jν ,k| → 1 as k → ∞

since the cone of directions in Bν ,k shrinks as a function of
√

k.
Hence, for large k this does not involve any action.
Application of ”box-algorithm”. We compute (5) with the
box algorithm (Wendt et al. (2010); Andersson et al. (2011)),
realizing the approximation to accuracy O(2−k/2) and discretiza-
tion of the action of F on wave packets ϕγ (x) in a common
frequency box Bν ,k. The approximation arises from the Taylor
series expansion of S(y,ξ ) near the microlocal support of ϕγ .
We illustrate its accuracy in Fig. 4. We obtain

Figure 4: Evolution of a wave packet for (2) with c(x) = c =
2km/s (central cross-sections): ray solution (blue dashed), fi-
nite difference (black dots), box-algorithm (red solid)

(Fϕγ )(y)≈
X

ν̃

Jν ,kX
β=1

Γ̌
β

1 (y)ǎ(y, ν̃)
RX

r=1

α
(r)
ν̃ ,k(y)X

ξ∈Bν̃ ,k

Γ̌
β

2 (ξ̃ )ei〈Tν̃ ,k(y),ξ 〉 ˆ̃uν̃ ,k(x̃)| ˆ̃χν ,k(ξ̃ )|2ϑ̂
(r)
ν̃ ,k(ξ̃ ). (7)

Here, Tν̃ ,k(y) accounts for the propagation of singularities, and

the expansion functions α
(r)
ν̃ ,k and ϑ̂

(r)
ν̃ ,k, obtained by coupling

dyadic parabolic decomposition with prolate spheroidal wave
functions Xiao et al. (2001), reproduce the second-order ac-
tions of F̌ (spreading, bending, dilation, shear, phase rotation
along rays). We develop the expansion of Š relative to the cen-
tral ξ̃ direction in the support of Γ̌

β

2 (ξ̃ ) ˆ̃χν ,k(ξ̃ ). This reduces
the number of expansion terms R and effectively balances the
cost for the terms Jν ,k from the cutoffs.

P
ν̃

includes the boxes

necessary for reproducing ϕγ under Q−1. We can restrict to a
small number of terms, while monitoring the energy loss and
re-normalizing amplitudes. The computation of the first three
sums in (7) is embarrassingly parallel.

Figure 5: Iso-amplitude plots of Γi(y,ξ ) (i = 1,3, to left)
Γ21(y,ξ ) (center left), boundaries of the sets Oi (dashed) and
O21 (solid) (left bottom). Right column: ξ -slices of cutoffs
Γ(y,ξ = ξ0) for i = 1,3 (top), and for i j = 21 before (center)
and after (bottom) weighting to form the partition of unity.

PARAMETRIX OF EVOLUTION EQUATION

We illustrate the principle of the universal operator represen-
tation and associated algorithm for propagation under the half
wave equation. We choose a heterogeneous velocity model
c(x) = c0 + κ exp(−|x− x0|2/σ2), containing a low velocity
lens, with parameters c0 = 2km/s, κ = −0.4km/s, σ = 3km,
and x0 = (0,14)km. As the initial data, we choose horizon-
tal wave packets at frequency scale k = 3, respectively, in the
vicinity of the point x′ = (0,5)km. We fix the evolution time
to T = 7s. With this choice of parameters, most of the energy
of the solution is concentrated near a cusp-type caustic.

We partition into three sets Oi, i = {1,2,3}. The sets i = {1,3}
are separated by the caustic. For these sets, we can choose co-
ordinates (y,ξ ), hence Qi = I. The set i = 2 contains the caus-
tic. We plot these sets and the corresponding cutoff functions
Γi in Fig. 5. For illustration purposes, in the factorization Fi j
of Fi for i = 2, we choose to compute the operator j = 1, which
resolves the singularity in an open neighborhood of the point
indicated by a black dot on the canonical graph plotted in Fig.
1. This neighborhood contains the cusp of the caustic. We set
Jν ,k = 1 and restrict

P
ν̃

to 11 boxes neighboring the central
orientation of the initial wave packet.
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Figure 6: Action of F ≈ F1 +F3 +F21 in (5) on a single wave
packet, evaluated using (7): F1 + F3 (top left), F21 (top right),
F1 +F3 +F21 (bottom left); finite difference computation (bot-
tom right).
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Figure 7: Multi-product computation of a wave front initiated
by a band-limited delta-function through a caustic (left col-
umn): Initial data (top row), sequence of recompositions ini-
tializing the following operator in the multi-product (from row
2 to 4). Finite difference reference (right column).

In Fig. 6, we plot the different contributions obtained in our al-
gorithm, and compare to a time domain finite difference com-
putation (bottom right plot). The position of the caustic is in-
dicated by the dashed line. We observe that our procedure has
effectively removed the singularity. The phase of our compu-
tation matches the phase of the finite difference reference. This
includes the KMAH index. For these initial data, most of the
energy is contributed by F21 and concentrated in the vicinity
of the open neighborhood in the vicinity of the tip of the cusp
for which we have introduced the diffeomorphism Q21. The
amplitude produced by our algorithm is slightly weaker than
the true amplitude, which reflects the fact that they have not
been re-normalized in the re-decomposition step.

Multi-products of operators. For isotropic media, we can
compute the action of F corresponding to the parametrix of an
evolution equation for the interval (t0,T ) as the action of a
multi-product of operators, FT ,t0 = FT ,ti ◦Fti,ti−1 ◦ · · · ◦Ft1,t0 .
Here, the partitioning ti of the interval (t0,T ) is chosen such
that the operators Fti,ti−1 are caustic-free, amounting to dis-
cretizing the evolution parameter into a sequence of (large)
steps. Then, we can apply our algorithm for subsequently
computing the action of the operators Fti,ti−1 with diffeomor-
phisms Q set to identity. The computation of each operator in
the multi-product is followed by a re-decomposition step, in-
ducing a re-parametrization of the canonical relation that prac-
tically resolves the singularity, and initializing the following
operator in the multi-product.

We illustrate this procedure in Fig. 7 for the above described
velocity model. Here, the initial data consist of a delta-function,
band-limited to a frequency cone with opening angle ±40◦,
and to frequency scale k = 3. In the re-decomposition steps, we
restrict to the subset of boxes at frequency scales k = 2,3,4 and
with orientation ±40◦ about vertical, yielding the most signif-
icant contribution. We observe that our wave packet driven
computation to accuracy O(2−k/2) reproduces the finite dif-
ference reference computation very well, despite the sequence
of band-limiting re-decomposition steps involved.

CONCLUSIONS

We introduced a universal algorithm, based on wave packets
as the quanta for representing seismic data, for imaging and
inverse scattering of seismic reflection data. The algorithm al-
lows for anisotropy and the formation of caustics. The method
follows a multi-scale geometric approach and enables us to
compress, de-noise and regularize the data, and to order and
partition the information contained in them. As a key ingre-
dient in the procedure, we have obtained a universal operator
representation via the introduction of locally singularity dif-
feomorphisms. We can then apply an efficient and effective
wave packet driven algorithm, integrating prolate spheroidal
wave functions with the dyadic parabolic decomposition, which
has been developed previously by the authors. Our modeling
and imaging algorithm is valid for general dimension. This ap-
proach can be tied to a construction and iteration leading to the
full wave solution in velocity models with limited smoothness
(Andersson et al. (2008)).
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