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SUMMARY

Wave propagation, downward continuation, and imaging can
be expressed in terms of members of a certain class of Fourier
integral operators (FIOs). We present an expansion and dis-
cretization of such operators following a multi-scale approach,
making use of wave packets or “curvelets”. The discretization
leads to an algorithm exploiting compression of the “data”, via
approximation by sums of wave packets, to which the operator
is applied. We demonstrate the accuracy of our approach in a
couple of basic, numerical examples.

INTRODUCTION

Wave propagation, downward continuation, and imaging can
be expressed in terms of members of a certain class of Fourier
integral operators (FIOs). In the case of imaging, in the pres-
ence of caustics, an extension needs to be constructed (Stolk
and de Hoop (2002, 2005, 2006)) to arrive at a description in
this class. The action of an FIO F in this class on a function u
is given by *

(Fu)(y) = / a(n &) expliS.ENaE)dE, (1)

where the amplitude function a(y,£) and the generating func-
tion S(y,&) are determined by the ray geometry of the back-
ground medium, and where the latter describes the propaga-
tion of singularities by the operator according to de Hoop et al.

(2009)
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we denote this map by x. The operator F' has a sparse ma-
trix representation with respect to the frame of curvelets Smith
(1998). We will refer to curvelets (Candes et al. (2006) and
references therein) by their original name “wave packets”.

Recently, De Hoop et al. (de Hoop et al. (2009)) proposed an
approximation of the action of operator F' on a single wave
packet, with error & (2”‘/ 2) for a wave packet at frequency
scale 2% (cf. (5) below). The work presented here elaborates
on this result and proposes a numerical procedure for evalu-
ating it in practice: First, a numerical procedure for obtaining
the tensor product representation of the complex exponential
involved in the approximation is proposed. Then, we develop a
strategy for obtaining a efficient parallel computational scheme
for approximating the action of the operator F' on input func-
tions composed of wave packets. We show numerical results
both for propagation, in particular the formation of caustics,
and imaging.

*We denote the Fourier transform of a function by %, and by & the Fourier (frequency)
variables.

OPERATOR EXPANSION AND APPROXIMATION

We briefly summarize a result in de Hoop et al. (2009). We
let py(x), Y= (j,V,k), denote a wave packet with central posi-

tion x}”k and orientation V at scale k, that is central wave vector

2Ky, An example of a discrete, almost symmetric wave packet,
which have the necessary properties to provide the approxima-
tion with estimates given below, is shown in Fig. 1.

Figure 1: A discrete, almost symmetric wave packet (Duchkov
et al. (2009)).

We have

(Fon0) =, [ an&)explitS8)~ (§.xaval e,

@)
where ¢ (§) = p;l/zjvﬁk(é)exp[—i(g ,X )] is the Fourier trans-
form of . The matrix representation, [F], of F is defined as
[Flyy = (@y,F @y). The strategy of de Hoop et al. (2009) for
obtaining an approximation of (F@y)(y) is to replace S by a
sufficient number of terms of its Taylor expansion in & on the
frequency support of the wave packet @y.

‘We introduce the “coordinate transform”,

as
y—’Tv,k(}’):%()@V)v 3)

which describes the propagation of the wave packet ¢y along a
ray according to geometrical optics, without altering the sup-
port or shape of the wave packet. Refining the approximation
by including the leading term of the second-order Taylor ex-
pansion of S on the support of @y, and neglecting higher order
terms yields the result (de Hoop et al., 2009 Theorem 4.1):
With functions Ty x(y) defined by (3), Ocr vi(y) and Ocr vi(6)
defined by:

) Zarvk rvk(§)7 (4)

where & = (&1,&,) with & representing the coordinate in the
v direction, one may express with R ~ k/log(k):

F(P?’ Zarvk ( rvk*(py) (Tvﬁk(y))+27k/2fyv
(&)
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where fy is a “curvelet”-like function centered at (7).

Thus (F¢y)(y) can be approximated, to order & (27%/2), by a
sum over R modified wave packets @ry(x) = (arz_v‘k * @y)(x)
with amplitude corrections (xr',wk(y), followed by a coordi-
nate transform Ty ;(y). The functions Ty x(y), arl.v «(v) and
&3;‘/1 (&) do not depend on the position x; of the wave packet

@y, but only on the scale k and orientation v, and are hence the
same for all wave packets with given orientation v at scale k.

We develop an algorithm for the evaluation of (5) at discrete
frequency and output points &, and y,,, respectively’. We write

R
(Fop) () = ok, (1) 008
r=1 &
a2, (E)py(E)+2742f,. (6)

COMPUTATIONAL APPROACH

Tensor product representation

The functions arl;v.k(y) and &rz;v7k(§) in the separated repre-
sentation (4) need to be found for each orientation v and scale
k. Obviously, the representation should have small separation
rank R, and should be obtainable with low computational com-
plexity. The amplitude term a(y, v) on the left hand side of (4)
does not depend on &, can hence always be trivially accounted

for in the final separation.

The argument of the complex exponential in (4) is separated
in y and &, and the left-hand side can hence be arranged as a
matrix [I'], say, with row and column indices m and n point-
ing at the discrete sets y,, and &,, respectively. Hence, a dis-
crete tensor product representation as in (4) can always be ob-
tained by truncating the singular value decomposition of [I']:
[[] = [B1][B2] with [B] = [U], [B2] = [A][V]*, where the left
and right singular vectors in [U] and [V] correspond with sin-
gular values collected in [A] that lie above a certain threshold
that determines the precision of the truncated decomposition.
This generic approach is computationally expensive, since it
requires the computation of the full SVD of [I'], while only a
small number, R, of singular vector — singular value pairs will
yield a significant contribution to the final expansion. Candes
et al. (Candes et al. (2007)) proposed to exploit the structure
(i.e. low rank) of a complex exponential matrix in a similar
problem by an algorithm based on random subsets of its rows
and columns, which in average reduces the size of the SVD
problem. Their algorithm is based on work by Kapur et al.
(Kapur and Long (1997)) *.

Here, we follow an approach that does not rely on a SVD and is
tailored to directly match the specific form of (4). We exploit
the fact that the leading-order term of the above mentioned
Taylor expansion yielding (3) captures the highly oscillatory
part of exp[iS(y,£)] on the support of ¢y. We first construct

TWith slight abuse of notation, we will continue to write & and y for these discrete sets.

See e.g. Golub and Loan (1994) for an overview of deterministic methods for reducing
the complexity of the SVD for matrices with certain specific structures

a computationally inexpensive, but potentially high rank, ex-
pansion of the complex exponential using orthogonal polyno-
mials, and then use a fast alternative least square (ALS) algo-
rithm with low complexity (Beylkin and Mohlenkamp (2005))
to find a representation with ~ k/log(k) terms.
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Figure 2: Image regions corresponding to data wave packets.

Coordinate transform

The sum over £ in (6) corresponds to a non-equispaced (in-
verse) Fourier transform from the discrete set & to space points
which are, for each k and v, determined by the coordinate
transform Ty, 4 ().

We start with a decomposition of u into wave packets,

u(x) = ch(py(x) = Z(‘P%“WV(X)
Y Y
=3NS aE) 2 &)
E vk

‘We obtain

R
Fu)0) =D oty i)

vk r=1

DDk (E)A(E) R+ O ), ®)
¢

where the non-equispaced Fourier transform (3_¢[ - ]) can be

taken per box V,k, since neither the functions (xr{;t?k}
coordinate transform Ty ;(y) depend on the index j. Hence,
from a computational point of view, approximating the action
of F on the function u(x) by wave packets induces the follow-
ing differences with respect to (7) (i.e., the recomposition of

the function u(x) from its constituting wave packets):

nor the

1. An additional sum over the elements of the tensor prod-
uct representation, which increases the computational
complexity by a factor R. The sum over r can be taken
either inside or outside of the sum 3, ;.

2. Due to the (v,k)-dependence of the coordinate trans-
form Ty 4(y) and the amplitudes arl;v7k(y) in (8), the
non-equidistant Fourier transform 3 [ - | can not be
calculated over the entire &-domain at once, but needs
to be calculated for each (v,k) separately. The sum
over £ has to be calculated only for & points within the
support of the wave packets at (v, k), yet still needs to
be evaluated for each y. This increases the computa-
tional complexity by a factor proportional to the num-
ber of (v, k)-pairs, i.e., in 2D, approximately by v/N.
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A - Initialization fix numerical precision and define regu-
lar discrete grid on image domain y

B - Action per v,k For each orientation v with non-zero
coefficient cy at scale k:

1. Fix image region y corresponding to data domain x of
interest
9’s

2. Evaluate 3%(% v) and Téf(y’v)

3. Obtain tensor product representation (4) with rank re-
duction

4. Evaluate } ¢ [ - ] in (8) for each tensor product term r

5. Evaluate ), in (8)

C - Action (Fu)(y) Evaluate -, ; in (8)

Table 1: Outline of a parallel numerical scheme for evaluating

(8).

Table 1 summarizes the main steps of our scheme for evaluat-
ing (8). All of the computationally costly operations are per-
formed in step B, independently for each v, k, and can hence be
performed using massive parallelization. Step A merely con-
sists in setting up a discrete target grid in the image domain by
fixing a reference point yy and target resolution, such that the
final image can be obtained as a simple sum of the contribu-
tions from different v,k in step C.

Since wave packets with different orientation v do not prop-
agate to the same image region, in step B1, the image region
corresponding to data wave packets at v, k is determined in or-
der to decrease the size of the y domain to be considered for
each orientation. This can be performed either by an iterative
search for y points for which T, ;(y) lies on the boundaries of
the data domain x, or by inversion of T, x(y), and by consider-
ing the decay properties of wave packets and the compression
obtained in the image domain, as we illustrate in Fig. 2.
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Figure 3: Common offset synthetic data: (a) bandlimited delta
function, (b) a single constituent wave packet.

IMAGING - COMMON-OFFSET MIGRATION

We demonstrate the algorithm by imaging a bandlimited delta
function at (x = 0,vr/2 = 2100) (units are meters). We imag-
ine this function to be obtained by a superposition of wave
packets, with orientations or slopes, p,, within a certain range

[Pu — Ap,pu+Ap). To simplify the computation of a and S,
we use a constant velocity model Douma and de Hoop (2007).
Let i denote the offset; we take h/z =~ 0.05. In Fig. 3 we show
the synthetic data and one of its wave packet constituents. We
have taken (in degrees from horizontal) [p, — A, py +Ap] =
[63°,117°]. The data consists of 256 x 256 samples yielding
kmax = 5 available scales. The numerical precision for the ten-
sor product expansion is set to 2- 10~ and, on average over
scales and orientations, to R = 12. In Fig. 4, we show im-
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Figure 4: Images using a single wave packet at scale k = 3 as
the data (cf. Fig. 3(b)): (a) approximation with error &' (20), (b)
approximation (8), with error ¢(27%/2), (c) amplitude profile
of (a) measured along the associated isochron, (d) amplitude
profile of (b) measured along the associated isochron.

ages using a single wave packet at scale k = 3 (cf. Fig 3(b)) as
the data. The coordinate transform Ty, ; propagates the wave
packet to the correct position in the image (Figs. 4(a) and 4(c)).
With approximation (6), the wave packet is properly spreading,
bending and shearing (Figs. 4(b) and 4(d)). In Fig. 5, we show
images using the bandlimited delta function in Fig. 3(a) as the
data. The image in Fig. 5(a) has gaps along the isochrone, re-
sulting from the fact that it is obtained purely by propagation of
wave packets along rays according to geometrical optics: The
image of a singularity at large time / depth eventually breaks
apart into its constituting wave packets; this was also observed



Propagator and GRT compression

in Douma and de Hoop (2007). In contrast, approximation
(6) produces a satisfactory image (Fig. 5(b)): The contributing
wave packets are spreading, bending and shearing such that
they remain connected.
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Figure 5: Images using the bandlimited delta function in
Fig. 3(a) as the data: (a) approximation with error & (20) , (b)
approximation (8), with error & (2*"/ 2).

WAVE PROPAGATION - CAUSTICS

In the case of wave propagation, we write (y,7) for y and (&, 7)
for £ to make the evolution in time explicit. We let T'(y,x)
denote the travel time. Then

S(y,t,g,’[) = (Tt_TT(yvx)+<§7x>)|x:x(y,§)7 )

where x(y,£) is the solution to a%fc’y) =1~ 1&. The represen-

tation is valid in points (y,€) where det ‘3277; li=x(y.) # O

In Fig. 6, we show the propagation of an elliptic wave front
with multi-pathing in constant velocity medium from data ap-
proximated by a sum wave packets. The presence of caustics
does not affect our method and approximation (6).

In the case of downward continuation, we encounter the so-
called thin-slab double-square-root (DSR) propagators. The
evolution parameter, here, is depth. We have y = (s,r,7) and
& = (&,&, ). At depth z, the symbol of the single-square-
root operator is given by

b(z,5,&,0) = 0lc(z,5) 2 — 0 2|& ] + Lot

and similarly for b(z,r, &, ®). The FIO becomes F(z — A, z),
which acts on u = u(z,.). We geta(z,y,&) = 1and S(z,y,§) =
—AD(z,5, 65, @) +b(2,1, 6, @)].

Limited smoothness, full wave
We can construct also full wave solutions using wave packets

0

Figure 6: Elliptic wave front, corresponding rays and forma-
tion of caustics (top left), corresponding wave packet data (top
right), and result of wave propagation (bottom).

Andersson et al. (2008). Let z denote the evolution parameter;
the solution operator is then written as F(z,zg) if the initial
values are specified at z = zo. We assume, roughly, that the
velocity model is in C* (with Holder regularity s > 2). In the
full-wave solution, the propagation of singularities following
ray theory is replaced by the following concentration property:
Forall o < s

S;PZ 22Kl (mink k) Gy, 3. o, (7)) IF (2,20 ]y [ < €
Y

where d(y;y) =2 mn*kK) L g(x, v;X V) if y= (x,v,k), Y =
(', v/ k'), in which

d(x,vix' V) = |(v,x =)+ (Vv ,x—x)]|
min|lx =, =2} + v = V|12

The matrix representations of the FIOs discussed above (fol-
lowing the asymptotic viewpoint), with s — oo, satisfy this es-
timate implying that they are sparse.

CONCLUSIONS

We introduced a multi-scale, numerical scheme for the appli-
cation of operators representing wave propagation, downward
continuation, and imaging in smoothly varying velocity mod-
els, following the analysis developed in de Hoop et al. (2009).
The scheme exploits the compression of the data to which
the operator is applied. In the case of imaging, the velocity-
dependent “diffraction stack” is replaced by the velocity-inde-
pendent wave packet transform, while a method of partial re-
construction emerges. In the case of downward continuation,
we have obtained a wave packet or “curvelet” propagator rem-
iniscent of the generalized screen propagator.
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