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ABSTRACT

Scale invariance and multifractal analysis are nowadays widely used
in applications. For modeling scale invariance in data, two classes
of processes are classically in competition: self-similar processes
and multiplicative cascades. They imply fundamentally different un-
derlying (additive or multiplicative) mechanisms, hence the crucial
practical need for data driven model selection. Such identification
relies on properties often associated with the former: self-similarity,
monofractality, linear scaling function, null c2 parameter. By per-
forming a wavelet leader based analysis of the multifractal proper-
ties of a large variety of self-similar processes, the present work con-
tributes to a better disentangling of these different properties, some-
times confused one with another. Also, it leads to the formulation
of conjectures regarding the scaling and multifractal properties of
self-similar processes.

Index Terms— self-similar; multifractal analysis; wavelet
leader; monofractal; scaling function

1. INTRODUCTION

Scale invariance. Scale invariance or scaling is a paradigm that
is nowadays widely and fruitfully used to analyze and model real-
world data in applications of very different natures (cf. e.g., [1, 2] for
a review). In essence, it amounts to assuming that data are not char-
acterized by well-defined scales (of time) playing dominant roles,
but instead that their dynamics involve all scales, which are hence
equally important. Analyzing such data should therefore not rely on
singling out specific scales but, instead, on identifying the mecha-
nisms relating scales ones to the others.
Scale invariance analysis. From a data analysis point of view,
multifractal analysis is now considered as the reference for scaling
analysis. A recent formulation is based on specific multiresolution
quantities, the wavelet leaders LX of the data X [3, 4]. It states that
the sums over time of the q-th power of LX(j, k) at fixed analysis
scale a = 2j behave as a power-law w.r.t. scale in the limit of small
scales, a→ 0: (1/nj)

∑
k L

q
X(j, k) = Fq2

jζ(q) (with nj the num-
ber of LX actually computed at scale 2j). The ζ(q) are termed scal-
ing exponents or scaling function and are by construction a concave
function of q [3]. By taking the Legendre transform of ζ(q), one ob-
tains (an upper bound of) the multifractal spectrum D(h). Together,
the functions ζ(q) and D(h) convey rich information on the scaling
properties and the local regularity fluctuations of X (cf. e.g., [5, 4]).
Wavelet leader multifractal analysis is detailed in Section 2.
Scale invariance modeling. For data modeling, two categories
of stochastic processes are most prominent and in competition to
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model scale invariance. The first, multiplicative cascade (or martin-
gale) constructions (hereafter referred to as MC), have the following
scaling properties: for some range of orders q which includes q = 0
and for which E|X(1)|q < +∞

E|X(t+ τ)−X(t)|q = λMC
q |τ |η(q), (1)

where η(q) is a strictly concave function that is specified by the q-th
order moments of the positive random variables entering the con-
struction (cf. [6, 7, 8, 9] for details). Second, self-similar processes
with stationary increments (below referred to asH-sssi) have scaling
properties conveyed by the fact that ∀q for which E|X(1)|q < +∞

E|X(t+ τ)−X(t)|q = λSSq |τ |qH , (2)

where H > 0 is the so-called self-similarity parameter of X (cf.
e.g., [10] for a review). It is often considered to be of crucial im-
portance to decide whether data are better modeled by one process
class or the other: Indeed, H-sssi relies on the single parameter H
for describing scaling properties and is deeply related with random
walks (hence, with additive structure), while MC involve the entire
non-linear function η(q) to describe scaling and are tied to a multi-
plicative structure. The investigation of this fundamental issue has
often been based on the case example of fractional Brownian motion
(fBm), the only jointly GaussianH-sssi process. Its scaling function
ζ(q), measured from the wavelet leaders, has been shown to take a
particularly simple form, ∀q ∈ R : ζ(q) = qH [3]. Equivalently, its
multifractal spectrum reduces to a single point, D(h = H) = 1 and
D(h 6= H) = −∞, and fBm is hence referred to as monofractal.
Because fBm is considered a (if not the) canonical process to model
scale invariance and is widely used in applications, discrimination
between H-sssi and MC has often been based on heuristically iden-
tifying the former with being monofractal with ζ(q) linear in q, and
the latter with being multifractal with strictly concave ζ(q). This
heuristic does not hold in general, as the known counter-example of
Levy-stable processes shows: These are theoretically shown to be
exactly H-sssi but are not monofractal [11] (i.e., their D(h) does
not collapse on a single point). Furthermore, for a large variety of
H-sssi processes, the multifractal properties (i.e., ζ(q) and D(h))
remain to be studied theoretically.
Contributions. In this context, the present work aims at con-
tributing to the multifractal analysis of H-sssi processes by disen-
tangling the three properties H-sssi, monofractal and linear scaling
function ζ(q), as well as clarifying their possibly intertwined rela-
tions. To that end, multifractal analysis and the wavelet leader mul-
tifractal formalism (detailed in Section 2) is applied to large classes
ofH-sssi processes (defined in Section 3). Results, discussed in Sec-
tion 4, enable us to shed new and interesting lights on the multifractal
properties of H-sssi processes.



2. MULTIFRACTAL ANALYSIS

Local Regularity and Hölder Exponent. Let X(t) denote the
bounded function to analyze. Its local regularity at time t0 is mea-
sured by the Hölder exponent h(t0), defined as the largest α > 0
such that there exist a constant C > 0 and a polynomial Pt0 of
degree less than α such that |X(t) − Pt0(t)| ≤ C|t − t0|α in a
neighborhood of t0.

Multifractal Spectrum. Although based on a local regularity
measure, multifractal analysis provides a global description of the
variability of the local regularity of the data: It characterizes the ge-
ometrical structure of the subsets Eh of points ti on the real line
where h(ti) = h. Because such geometrical structures are inher-
ited from the time evolution of the data, multifractal analysis hence
measures globally the local dynamics (or variability) of the regular-
ity of X . This measure is based on the Haussdorf dimension of Eh,
denoted by D(h), and is referred to as the multifractal spectrum.

Wavelet Leader Multifractal Formalism. The spectrum D(h)
can in practice not be measured directly from a given time series X .
Instead, one has to resort to a multifractal formalism. Use is made
here of the recently proposed formalism based on wavelet leaders [5,
4]. Letψ denote a mother wavelet andψj,k(t) = 2−jψ(2−jt−k) its
dilated and translated versions. Let dX(j, k) be the (L1-normalized)
discrete wavelet transform coefficients of X , where j refers to the
analysis scale (a = 2j) and k to time (t = 2jk). Wavelet lead-
ers LX(j, k) are defined (for locally bounded processes only) as the
local supremum of wavelet coefficients taken within a spatial neigh-
borhood over all finer scales [4]: LX(j, k)=supλ′⊂3λj,k

|dX(λ′)|,
where λj,k=[k2j , (k+1)2j) and 3λj,k=

⋃
m∈{−1,0,1} λj,k+m. The

scaling function ζ(q) is defined as

ζ(q) = lim inf
2j→0

log2 S(2j , q)/ log2 2j , (3)

where S(2j , q) = 1
nj

∑
k LX(j, k)q . Its Legendre transform

L(h) = minq(1 + qh− ζ(q)) ≥ D(h) (4)

provides an upper bound for the multifractal spectrum D(h). For
further theoretical details on multifractal analysis, multifractal for-
malism and wavelet leaders, the reader is referred to, e.g., [5, 4].

Cumulant expansion. It has been proposed to re-express
the scaling function as a polynomial expansion [12]: ζ(q) =∑
p≥1 cpq

p/p!. For the range of orders q for which the time av-
erages S(2j , q) converge to the finite ensemble averages ELX(j, ·),
simple calculations involving the second characteristic function of
the random variable lnLX(j, ·) show that the coefficients cp in this
expansion are deeply tied to the scaling properties of X via the
behavior across scales of the cumulants Cp(2j) of orders p ∈ N∗ of
lnLX(j, ·)

Cp(2
j) = c0p + cp ln 2j . (5)

Furthermore, the polynomial expansion above shows that c1 and c2
measure the first and second derivatives of ζ(q) at q = 0. This im-
plies that when ζ(q) = qH , as is the case for fBm (cf. Section 3),
c1 ≡ H and c2 ≡ 0. An open question, addressed in this contribu-
tion, is whether this holds for all H-sssi processes or not.

Minimal Regularity and Fractional Integration. Multifractal
analysis is theoretically defined for bounded functions only, i.e., es-
sentially for functions with positive minimal regularity, defined as

hm = lim inf
2j→0

ln supk |dX(j, k)|
ln 2j

. (6)

To overcome this limitation, it has been proposed to first measure
hm according to Eq. (6), and second, if hm < 0, to fractionally
integrate the data with an integration order γ > −hm [4]. Per-
forming fractional integration can in practice be avoided by apply-
ing the wavelet leader formalism to the pseudo-wavelet coefficients
dγX(j, k) = 2jγdX(j, k) [4]. Then, one uses the relations

L(h) = Lγ(h−γ), ζ(q) = ζγ(q)−γq, c1 = cγ1−γ, c2 = cγ2 (7)

as long as γ > max (0,−hm). Note that these relations are known
not to hold for all processes (cf. [1, 2] and references therein).
They were proven to be valid for fBm, and it remains an open is-
sue whether they hold for all H-sssi processes.

Practical Estimation Procedures. Eqs. (3-6) above indicate that
the practical estimation of ζ(q), L(h), cp and hm can be performed
using linear regressions. This has been detailed elsewhere and is not
recalled here [4]. MATLAB routines implementing the estimation
procedures are available upon request. They are complemented by a
non-parametric time-scale bootstrap procedure, enabling in addition
the construction of confidence intervals and hypothesis tests [4].

3. SELF SIMILAR PROCESSES

Fractional Brownian motion. Fractional Brownian motion
(fBm) [13, 10] constitutes the canonical reference for scale in-
variance modeling. It is the only Gaussian H-sssi process, with
parameter 0 < H < 1, and is defined as a fractional integra-
tion of white Gaussian noise dB(s): BH(t) =

∫
R f(t, s)dB(s).

The integration kernel is specified as f(t, s) = KH,2(t, s), with
KH,α(t, s) = (t − s)

H−1/α
+ − (−s)H−1/α

+ , and (t)+ = t if
t ≥ 0 and 0 elsewhere. For fBm, one has: ∀q > −1, E|BH(t +
τ) − X(t)|q = E|BH(1)|q|τ |qH . It has recently been shown that
∀q ∈ R: ζ(q) = qH [3] and D(h = H) = 1, D(h 6= H) = −∞.
fBm is hence H-sssi, monofractal and has a strictly linear scaling
function ζ(q) = qH over all q ∈ R, hence c2 ≡ 0.

There exist two ways to depart from the reference H-sssi fBm
(and hence from Gaussian) while remaining in the class of H-sssi
processes: Hermite processes, preserving finite variance (and finite
moments of all orders q > −1); and stable processes, whose defini-
tion involves an extra parameter – the stability exponent α ∈ (0, 2)
– and whose moments are finite only within the range −1 < q < α.

Stable processes. There exists a large variety of different sta-
ble H-sssi processes (cf. e.g., [10]). Here, we focus on the so-
called Levy-stable process (Lα) and the linear fractional stable mo-
tion (Lα,H ) as representative and well documented examples.

LetM(ds) denote a symmetric α-stable measure (with scale pa-
rameter σ; also denoted SαS(σ)) [10]. Lα are defined as Lα(t) =∫
R f(t, s)M(ds), with f(t, s) = 1(t−s > 0)−1(−s > 0), and are
H-sssi, with H = 1/α. It was shown that Lα are not monofractal
[11], as their multifractal spectrum reads

D(h) =

{
hα if 0 ≤ h ≤ 1/α,
−∞ elsewhere. (8)

Lα,H are defined asLα,H(t) =
∫
R f(t, s)M(ds), with f(t, s) =

KH,α(t, s), H ∈ (0, 1), α ∈ (1/2, 2) [10]. They are H-sssi
with self-similarity parameter H and satisfy −1 < q < α:
E|Lα,H(t + τ) − Lα,H(t)|q = E|Lα,H(1)|q|τ |qH . Their mul-
tifractal properties have yet not been studied theoretically.



Process γ c1 ĉγ1 − γ c2 ĉγ2
fBmH=0.7 0 0.7 0.690± 0.017 0 0.004± 0.005

Hp,H=(2,0.7) 0 0.7 0.689± 0.042 0 −0.001± 0.015
Hp,H=(3,0.7) 0 0.7 0.695± 0.055 0 −0.011± 0.032
Hp,H=(4,0.7) 0 0.7 0.687± 0.074 0 −0.005± 0.043

Lα=1.25 0 0.8 0.820± 0.090 0 0.002± 0.192
Lα=0.8 0 1.25 1.293± 0.156 0 −0.026± 0.462

Lα,H=(1.75,0.85) 0 0.85 0.801± 0.044 0 −0.003± 0.060
Lα,H=(1.75,0.85) 1.0 0.85 0.824± 0.039 0 −0.005± 0.050
Lα,H=(1.50,0.85) 0 0.85 0.823± 0.069 0 −0.016± 0.114
Lα,H=(1.50,0.85) 1.0 0.85 0.839± 0.060 0 −0.016± 0.098
Lα,H=(1.50,0.70) 0 0.7 0.712± 0.067 0 −0.013± 0.109
Lα,H=(1.50,0.70) 1.0 0.7 0.708± 0.061 0 −0.014± 0.116
Lα,H=(1.25,0.60) 0.5 0.6 0.635± 0.084 0 −0.028± 0.151
Lα,H=(1.25,0.60) 1.5 0.6 0.634± 0.079 0 −0.032± 0.158

Table 1. Estimates (with 95% confidence intervals) ĉγ1 − γ and
ĉγ2 and theoretical values c1, c2 for fBm (top), Hp,H (second row
block), Lα (third row block) and Lα,H (bottom rows), for different
choices of process parameters and integration parameter γ.

Hermite processes. Hermite processes Hp,H(t), with H ∈
(1/2, 1) and p ∈ N∗, are defined asHp,H(t) =∫ +∞

−∞
dB(v1)

∫ v1

−∞
dB(v2) . . .

∫ vp−1

−∞
dB(vp)

∫ t

0

Πp
k=1(u−vk)

(H−1
p
− 1

2
)

+ , (9)

where the . . . , dB(vk), . . . are independent realizations of Gaussian
white noise. As soon as p ≥ 2, they are non Gaussian H-sssi,
with self-similarity parameter H and finite moments above ∀q >
−1, hence satisfying ∀q > −1, E|Hp,H(t + τ) − Hp,H(t)|q =
E|Hp,H(1)|q|τ |qH . The case p = 1 exactly reduces to fBm, while
p = 2 is commonly referred to as Rosenblatt process. For p ≥ 2,
their multifractal properties have not yet been studied theoretically.

Simulation procedures. Sample paths of all H-sssi processes
described above were numerically simulated by MATLAB routines
implemented by ourselves, available upon request.

4. RESULTS

Numerical simulations. For each of the above H-sssi processes,
we apply the wavelet leader multifractal formalism to 1000 realiza-
tions with 215 samples each, using Daubechies’ wavelet with Nψ =
3 vanishing moments and weighted regressions from scale 23 to the
coarsest available scale 212. Estimated means over realizations and
95% confidence intervals for ζ(q),L(h), c1 and c2 are plotted in Fig.
1. Estimated c1 and c2 for a larger selection of process parameters
are reported In Tab. 1. Further results are available on request.

fBm. For sample paths of fBm, the estimates (Fig. 1 and Tab. 1,
top rows) are found to be in excellent agreement with theory. This
validates that the wavelet leader multifractal formalism is practically
operational and effective and shows its excellent practical accuracy
[3, 4]. If these properties were not already known theoretically, the
numerical results would unambiguously suggest that fBm is char-
acterized by a perfectly linear scaling function ζ(q), ∀q ∈ R, by
c1 = H and c2 = 0, and by a multifractal spectrum that collapses
to a point (and is, therefore, monofractal). From such observations,
it could hence be conjectured that the properties H-sssi, linear ζ(q),
c2 ≡ 0, and monofractal are equivalent and that linear ζ(q) and
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Fig. 1. Multifractal analysis of fBm (top row), H2,H (2nd row), Lα
(center row) and Lα,H (bottom rows): ζ(q) (left column) and L(h)
(right column). Blue dashed line: theoretical values; Black solid
dotted line: estimates with 95% confidence intervals.

c2 ≡ 0 are discriminative against MC. We will, however, see in the
next paragraphs that this is not in general the case.

Hermite processes. Numerical estimates for ζ(q), L(h) esti-
mated from sample path of Hp=2,H=0.7 (Rosenblatt process) are
reported in Fig. 1, second row, and for cp in Tab. 1. They show
that for this finite variance non Gaussian H-sssi process the scaling
function ζ(q) clearly displays a linear behavior ∀q ∈ R, that c2 = 0,
that the spectrumL(h) collapses to the single point (h = H,D = 1)
and that the process is hence monofractal. Plots forHp,H with p > 2
are not reported here for space reasons, estimates ĉp are however re-
ported in Tab. 1 for processes of orders p = {2, 3, 4}. They clearly
suggest that, systematically and independently of p, ĉ1 equals H ,
and ĉ2 is identically zero. Therefore, similar to fBm, this process
class is jointly characterized by the properties H-sssi and c2 ≡ 0.

Stable processes. Let us begin withLα, for which the multifractal
properties are theoretically known [11]. The multifractal parameters



estimated with the wavelet leader multifractal formalism (cf. Fig. 1
and Tab. 1 (center rows) ) are found to be in excellent agreement
with theory: L(h) (providing a convex upper bound for the multi-
fractal spectrum D(h), cf. Eq. (4)) tightly envelopes the theoretical
line segment of D(h), in agreement with Eq. (8). Again, this illus-
trates the practical accuracy of the wavelet leader based estimation
procedure, even when applied to infinite variance processes. The fact
that the estimated spectrum does not collapse on a single h clearly
confirms that Lα is multifractal. Nevertheless, and in contradiction
to common fBm-based heuristics associating multifractal with non-
zero c2, we observe that ĉγ2 ≡ 0. Estimates of the scaling function
confirm this observation: ζ(q) is linear in a neighborhood including
q = 0, but not for all q, instead it is found to be piece-wise linear:
ζ(q) is linear with slope c1 = H = 1/α for q < α, and ζ(q) = 1
for q > α.
Let us now turn our attention to Lα,H , whose sample paths are mul-
tifractal, though their exact multifractal spectrum has not yet been
established theoretically. However, results reported in Fig. 1 and
Tab. 1 (bottom rows) enable us to propose the following conjecture
for the multifractal spectrum of Lα,H

D(h) =

{
1 + α(h−H) if H − 1/α ≤ h ≤ H,
−∞ elsewhere. (10)

This conjecture is theoretically sound as long asH ≥ 1/α, since the
definition of the Hölder exponent implies h ≥ 0, and receives the
following interpretation: The fact that the multifractal spectrum of
Lα,H matches that of Lα up to a horizontal shift by H − 1/α stems
from Lα,H being obtained as a fractional integration (derivation)
of order H − 1/α of Lα (compare the integration kernels f(t, s)
in Section 3). This conjecture confirms that Lα,H is multifractal,
However, as is the case for Lα, the ζ(q) are found to be clearly
linear in q around 0, and c2 are estimated to 0, again showing that
c2 = 0 does not necessarily imply monofractality. The ζ(q) are
found to be piecewise linear (above and below q = α). We also
note that there is no different linear behavior below q < −1 despite
infinite moments of Lα,H .

Fractional integration. In contrast to Lα, the minimum regular-
ity (cf. Eq. (6)) of Lα,H can be negative, hm < 0 when H < 1

α
,

as sample paths are then not locally bounded. Consequently, data
may need to be fractionally integrated (of order γ > 1

α
−H) before

performing multifractal analysis. Results reported in Fig. 1 and Tab.
1 (bottom rows) suggest that the relations Eq. (7) hold: estimates of
ζ(q), L(h) and cp obtained for different values of γ are consistent.
Results obtained for fBm,Hp,H and Lα (omitted here for space rea-
sons) suggest the validity of Eq. (7) for all of these H-sssi process.

Conclusions. The experimental investigations of the multifractal
properties of a large variety of H-sssi processes (Gaussian and non
Gaussian, with and without finite variance) conducted in this contri-
bution enable us to clearly validate that H-sssi does, in contrast to
widely used heuristics, neither imply monofractality, nor a scaling
function that is linear in q for all qs. Note that in practice, c2 ≡ 0
has often been considered as the signature of monofractality and of a
scaling function that is linear for all qs. Results reported here demon-
strate that this is incorrect: As it is designed for, c2 only measures
the second derivative of ζ(q) around q = 0 (hence, a local behavior
of ζ(q)) which excludes neither multifractality nor departure from
linearity of ζ(q). Furthermore, the results obtained here suggest the
following conjectures for H-sssi processes:

i) The scaling function is piecewise linear in q and is neces-
sarily controlled by H in a (possibly narrow) neighborhood
including q = 0, ζ(q) = qH . As a consequence, c2 ≡ 0.

ii) Furthermore, Eq. (7) holds.
This second conjecture contributes to suggesting that oscillating sin-
gularities are very unlikely to be present in the H-sssi processes
studied here (cf. [14]). This contribution paves the way towards a
theoretical study of the multifractal properties of non-Gaussian H-
sssi processes. These tracks are under current investigations.
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