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DISCRETE GRT COMPRESSION USING WAVE PACKETS

HERWIG WENDT∗, FREDRIK ANDERSSON† , AND MAARTEN V. DE HOOP‡

Abstract. Recently, approximate expressions of the action of GRT operators on a single wave packet have been
obtained. In this note, the potential use of this result in practically useable numerical schemes is investigated, and
numerical key elements for efficient practical implementations are proposed. Notably, a novel procedure for obtaining
the tensor product representation of a complex exponential, involved in such approximations, is obtained. It is based
on orthogonal polynomial expansion and does not involve any computationally costly singular value decomposition
step. The procedure is illustrated on a synthetic CO imaging problem for homogeneous medium. Finally, the practical
use of approximations per single wave packet for evaluating the approximate action of GRT operators on functions
composed of wave packets is discussed, and a potential numerical scheme for this problem is outlined.
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1. Introduction. A large class of seismic imaging and inverse scattering techniques can be
formulated in terms of a Generalized Radon Transform (GRT) and its extension (cf. e.g. [12] and
references therein). The GRT (scattering or imaging) operator F can microlocally be brought in
the form of a Fourier integral operator (FIO)1:

(1.1) (Fu)(y) =
∫
a(y, ξ) exp(iS(y, ξ))û(ξ)dξ,

where the amplitude function a(y, ξ) and the generating function S(y, ξ) are determined by the ray-
geometry of the background medium, and where the latter describe the propagation of singularities
by the operator2 [4]. Under appropriate conditions, the operator F has sparse representation in the
curvelet frame [11]. In the remainder of this report, we refer to curvelets (e.g. [2] and references
therein) by their original name ”wave packets”.
Recently, Hoop et al. [4] proposed a simple approximation of the action of the operator F on a
single wave packet, with error 2−k/2 for a wave packet at frequency scale 2k (cf. (2.5) below). The
result is summarized in Section 2 for convenience. The work presented in this report elaborates
on this result and proposes a numerical procedure for evaluating it in practice: First, a numerical
procedure for obtaining the tensor product representation of the complex exponential involved in
approximation (2.5) is proposed (cf. Section 3). Then, this procedure is used to numerically illustrate
the effectiveness of the approximation (2.5) (cf. Section 4). Finally, in Section 5 a potential strategy
for obtaining a efficient parallel numerical scheme for approximating the action of the operator F
on input functions composed of wave packets is outlined.

2. GRT Approximation. For convenience, this section briefly recalls the result in [4] that
will be elaborated on throughout the remainder of this report. It approximates the action of the
operator F on a single wave packet ϕγ(x), γ = (j, ν, k), with central position xj and orientation ν
at scale k:

(2.1) (Fϕγ)(y) = ρ
−1/2
k

∫
a(y, ξ) exp[i(S(y, ξ)− 〈ξ, xj〉)]χ̂ν,k(ξ)dξ,

where ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈ξ, xj〉] is the Fourier transform of ϕγ . The strategy of [4] for

obtaining an approximation of (Fϕγ)(y) up to error of order 2−k/2 is to replace S by a sufficient
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1We denote the Fourier transform of a function by ·̂, and by ξ the Fourier (frequency) variables.
2In this report, we will not discuss how S and a is obtained in practice, and consider it to be given.
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number of terms of its Taylor expansion in ξ on the frequency support of the wave packet ϕγ . Using
the first order Taylor term only, and neglecting higher order terms, (2.1) becomes:

(2.2) (Fϕγ)(y) = a(y, ν)ϕγ(Tν,k(y)) + O(0),

where the function Tν,k is defined by:

(2.3) y −→ Tν,k(y) =
∂S

∂ξ
(y, ν)

and corresponds to a coordinate transform. Essentially, approximation (2.2) describes the prop-
agation of the wave packet ϕγ along a ray according to geometrical optics, without altering the
support or shape of the wave packet. Refining the approximation by including the leading term of
the second order Taylor expansion of S on the support of ϕγ , and neglecting higher order terms and
terms leading to smoother errors, gives the desired result, with error of order 2−k/2 (Theorem 4.1
in [4]):

Theorem 2.1 (Theorem 4.1 in [4]). With functions Tν,k(y) defined by (2.3), α1
r;ν,k(y) and

α̂2
r;ν,k(ξ) defined by:

(2.4) a(y, ν)exp
(
i
1
2
ξ22
ξ1

∂2S

∂ξ22
(y, ν)

)
≈

R∑
r=1

α1
r;ν,k(y)α̂2

r;ν,k(ξ),

one may express:

(2.5) (Fϕγ)(y) =
R∑

r=1

α1
r;ν,k(y)

(
α2

r;ν,k ∗ ϕγ

)
(Tν,k(y)) + 2−k/2fγ ,

where R ∼ k/ log(k), and fγ is a curvelet-like function centered at χ(γ).
Theorem 2.1 states that (Fϕγ)(y) can be approximated, to order O(2−k/2), by a sum over R

modified wave packets ϕ̃r;γ(x) = (α2
r;ν,k ∗ ϕγ)(x) with amplitude corrections α1

r;ν,k(y), followed by
a coordinate transform Tν,k(y). The functions Tν,k(y), α1

r;ν,k(y) and α̂2
r;ν,k(ξ) do not depend on the

position xj of the wave packet ϕγ , but only on the scale k and orientation ν, and are hence the
same for all wave packets with a certain orientation ν at a given scale k.
Discrete Implementation. The goal of this work is to propose an efficient numerical scheme for
the evaluation of (2.5) at discrete frequency and output points ξn and ym, respectively3. Eventually,
this result will be used for the computation of the approximate action of F on a general function.
The convolution in (2.5) can be accounted for in the ξ domain, and hence:

(2.6) (Fϕγ)(y) =
R∑

r=1

α1
r;ν,k(y)

∑
ξ

ei〈Tν,k(y),ξ〉α̂2
r;ν,k(ξ)ϕ̂γ(ξ) + O(2−k/2).

Then, evaluating (2.6) involves addressing the following two key issues:
1. Tensor product representation of a complex exponential. The functions α1

r;ν,k(y)
and α̂2

r;ν,k(ξ) in the separated representation (2.4) need to be found for each orientation
ν and scale k. Obviously, the representation should have small separation rank R, and
should be obtainable with low computational complexity. A fast numerical procedure for
addressing this issue is proposed in the following Section 3.

2. Evaluation of coordinate transform. The sum over ξ in (2.6) corresponds to a non-
equispaced (inverse) Fourier transform from the discrete set ξ to space points which are, for

3With slight abuse of notation, we will continue to write ξ and y for these discrete sets.
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each k and ν, determined by the coordinate transform Tν,k(y).
Currently, this is implemented in a straight forward ”brute force” manner by interpolation
in the input domain: First, regular input and output grids x and y are defined. Then,
Tν,k is replaced by x in (2.6), such that the sum over ξ can be obtained as an inverse wave
packet transform using standard algorithms. Finally, by interpolating and resampling on
the irregular sample points determined by x̃ = Tν,k(y), one obtains the image. This proce-
dure is computationally expensive, and the interpolation scheme currently used introduces
numerical artifacts (cf. Section 4).
In Section 5, a strategy for resolving this issue in the context of computing the approximate
action of F on a function composed of wave packets will be proposed, which is at present
not implemented.

3. Approximate Action on a Wave Packet: Tensor Product Representation. The
amplitude term a(y, ν) on the left hand side of (2.4) does not depend on ξ, can hence always be
trivially accounted for in the final separation and will not further discuss it in this section.
The argument of the complex exponential in (2.4) is separated in y and ξ, and the left hand side
can hence be arranged as a 2D matrix [Γ] with row and column indices m and n pointing at the
discrete sets ym and ξn, respectively. Hence, a discrete tensor product representation as in (2.4) can
always be obtained by truncation of the singular value decomposition (SVD) of [Γ],

[Γ] = [U ][Λ][V ]∗ = [B1][B2], [B1] = [U ], [B2] = [Λ][V ]∗,

to the eigenvectors in [U ] and [V ] that correspond to the eigenvalues above a certain threshold that
determines the precision of the truncated decomposition. This generic approach is computationally
expensive, since it requires the computation of the full SVD of [Γ], while only a small number R of
eigenvector-eigenvalue-couples will have significant contribution to the final expansion: Heuristically,
the highly oscillatory parts of exp(iS(y, ξ)) are captured by the first order term of the Taylor
expansion of S (i.e., by Tν,k(y)), such that the remainder (2.4) in the approximation is not oscillatory
and highly structure.
In the context of FIO approximation, Candès et al. [3] proposed to exploit the structure (i.e. low
rank) of a complex exponential matrix in a similar problem by an algorithm based on random subsets
of its rows and columns, which in average reduces the size of the SVD problem. Their algorithm is
based on work by Kapur et al. [10]4.
Here, we propose an alternative to SVD based approaches that is tailored to directly match the
specific form of (2.4). The strategy consists in first constructing a computationally inexpensive,
but potentially large rank, expansion of the complex exponential using orthogonal polynomials,
which is then used in a fast alternative least square (ALS) algorithm with low complexity, recently
introduced in the literature [1], for finding a representation with fewer terms.

Separate Representation using Hermite Polynomials. The left hand side of (2.4) is of the
form ef(ξ)·g(y), with f(y) = ∂2S

∂ξ2
2
(y, ν) and g(ξ) = i 12

ξ2
2

ξ1
. By Mehler’s Hermite polynomial formula

(e.g. [13]):

∞∑
s=0

Hs(x)Hs(y)
s!

(w
2

)s

= (1− w2)−1/2 exp
(

2xyw − (x2 + y2)w2

1− w2

)
,

4See e.g. [9] for an overview of deterministic methods for reducing the complexity of the SVD for matrices with
certain specific structures
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one can write:

ef(ξ)g(y) = e
w
2 f(y)2e

w
2 g(ξ)2

∞∑
s=0

ws

2ss!
√

1− w2
Hs (ζf(y)) Hs (ζg(ξ))(3.1)

=
∞∑

s=0

ws

2ss!
√

1− w2
e

w
2 f(y)2Hs (ζf(y))︸ ︷︷ ︸

β1
s(y)

e
w
2 g(ξ)2Hs (ζg(ξ))︸ ︷︷ ︸

β̂2
s(ξ)

=
∞∑

s=0

β1
s (y)β̂2

s (ξ),(3.2)

whereHs(x) = (−1)sex2 ds

dxs e
−x2

are Hermite polynomials of order s, and ζ =
√

1−w2

2w . By truncating
the infinite sum to within an a priori fixed numerical precision ε, one obtains the approximate
separated (tensor product) representation

(3.3)
∞∑

s=0

β1
s (y)β̂2

s (ξ) =
S∑

s=0

β1
s (y)β̂2

s (ξ) +O(ε).

Representation (3.3) makes explicit use of the specific form of (2.4). It involves obtaining the
coefficients of the polynomials Hs, which can be pre-calculated and stored, and evaluating the
polynomials, which requires ∼ S operations per y and ξ point.
Rank Reduction. The rank S of representation (3.3) is in general too large for the practical
purpose considered here5. Yet, it can be used efficiently for finding the desired representation with
smaller separation rank R:

(3.4)
R∑

r=0

α1
r(y)α̂

2
r(ξ), R� S.

This can be done using a specific ALS algorithm, originally introduced in [1] for separated repre-
sentation based algorithms in high dimension. The algorithm exploits the (multi-)linear structure
of (3.3) for reducing the nonlinear least squares problem:

(3.5) ||
S∑

s=0

β1
s (y)β̂2

s (ξ)−
R∑

r=0

α1
r(y)α̂

2
r(ξ)|| < ε, R� S

to iterations over linear least squares problems per dimension. It has complexity O(dR(R2 + SN)
per iteration, where d is the dimensionality of the problem (d = 2 in (3.5)). The reader is referred
to [1] for details.

4. Numerical Example – CO Isochrone in homogeneous medium. We aim at con-
structing an isochrone in a common offset (CO) setup with small offset (h/z ≈ 0.05) in homogeneous
medium using the procedure proposed in the previous section. The synthetic data we consider con-
sist of one single point at (x = 0, vt/2 = 2100), which we imagine to be obtained by a superposition
of infinitesimally small line elements with slopes pu within a certain range [pu − ∆p, pu + ∆p]. A
reference image is obtained using explicit 2D CO map time migration expressions ([5] and refer-
ences therein). The synthetic data and the reference image are shown in Fig. 1 left and center,
respectively.
The data are modeled by restricting the set of wave packets obtained by decomposition of the
synthetic data to those at position (x = 0, vt/2 = 2100) and with orientations (in degrees from
horizontal) [pu−∆p, pu +∆p] = [63 ◦, 117 ◦], at all available scales k ≤ kmax (cf. Fig. 1, right). The
generating function S(y, ξ) and the amplitude a(y, ξ) for this CO problem setup are provided in [5].

5For CO imaging in homogeneous medium, it is of the order of 100 for ε = 10−6, whereas, for comparison, the
representation obtained by truncated SVD involves of the order of 10 terms only for the same numerical precision.
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Fig. 1. CO synthetic data (left), reference image (center), and discrete low-resolution data model obtained by
decomposition of the synthetic data into wave packets (right).

4.1. Numerical Setup. The data consist of synthetic 256×256 real-valued 2D images, which
leads to kmax = 5 available scales. The numerical precisions in the Hermite expansion and rank
reduction steps are set to ε = 10−6, leading to an overall precision of 2 · 10−6 in the tensor product
representation and, on average over scales and orientations, to R = 12. The algorithm for 2D wave
packet decomposition/recomposition and for the tensor product representation presented in Section
3 have been implemented by ourselves in MATLAB and C.

4.2. Results. We compare the approximation (2.6) (i.e., coordinate transform and alteration
of the wave packet) to the approximation (2.2) (i.e., coordinate transform Tν,k(y) only).
Image of a single input wave packet. Fig. 2 shows one single input wave packet at scale
k = 3 (top), the images obtained by approximation (2.2) (center row, left) and approximation
(2.6) (bottom row, right), and the corresponding amplitudes along the isochrone (bottom row):
The coordinate transform Tν,k involved in both approximations propagates the wave packet to the
correct position in the image. Yet, with approximation (2.6), the wave packet is in addition bending
and spreading along the isochrone (cf. Fig. 2, center and bottom row).
Imaging the isochrone. Fig. 3 shows the final imaging result, obtained as the superposition
of the images of all input wave packets: Images (top row) and amplitudes along the isochrone
(bottom row) for approximation (2.2) (left column) and (2.6) (right column). The image in the
left column has large gaps along the isochrone, resulting from the fact that it is obtained purely by
propagation of wave packets along rays according to geometrical optics. Within approximation (2.2),
the image of a singularity at large time / depth eventually breaks apart into its constituting wave
packets. Similar observations have been obtained in [5]. In contrast, approximation (2.6) produces
a very satisfactory image (right column): The contributing wave packets are bending to follow the
isochrone and spread out such that they connect. As a result, the corresponding amplitude does not
contain any significant gaps. The smaller high frequency fluctuations on top of the overall trend of
the amplitude is an artifact that is entirely caused by poor interpolation in the current coordinate
transform implementation (cf. Section 2, last paragraph).

5. Future Work: Approximate action on a function – discrete implementation. We
finally discuss a potential strategy for the discrete approximation of the action of F on an input
function composed of wave packets.
Suppose that we are given input data u(x) for which we have obtained a decomposition into wave
packets, i.e.:

(5.1) u(x) =
∑

γ

cγϕγ(x) =
∑

γ

〈ψγ , u〉ϕγ(x) =
∑

ξ

∑
ν,k

ei〈x,ξ〉û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ)

 ,
where {β̂ν,k(ξ)} and {χ̂ν,k(ξ)} are the collections of window functions for defining a co-frame of wave
packets (cf. [6] and references therein). Then, the action of the operator F on u can be written as
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Fig. 2. Single input wave packet at scale k = 3 (top), images of this wave packet (center row) and amplitudes
along the isochrone (bottom row), obtained by (2.2) (left column) and (2.6) (right column).

the sum of the action of F on each single wave packet ϕγ , weighted by the coefficients cγ :

(5.2) (Fu)(y) =
∑

γ

cγ(Fϕγ)(y) =
∑
ν,k

∑
j

cj,ν,k(Fϕj,ν,k)(y)

By Theorem 2.1, we have:

(5.3) (Fu)(y) =
∑
ν,k

R∑
r=1

α1
r;ν,k(y)

∑
ξ

[
ei〈Tν,k(y),ξ〉α̂2

r;ν,k(ξ)û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ)
]

+ O(2−kmax/2),

since neither the functions α{1,2}
r;ν,k nor the coordinate transform Tν,k(y) depend on the index j

which determines the precise position of the wave packets in the dual domain. Hence, from a
computational point of view, approximating the action of F on the function u(x) by wave packets
induces the following differences with respect to (5.1) (i.e., the recomposition of the function u(x)
from its constituting wave packets):

1. An additional sum over the elements of the tensor product representation, which increases
the computational complexity by a factor R. The sum over r can be taken either inside or
outside of the sum

∑
ν,k.
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Fig. 3. Isochrone images (top row) and amplitudes along the isochrone (bottom row), obtained by (2.2) (left
column) and (2.6) (right column).

A - Initialization – fix numerical precision
– define regular discrete grid on image domain y

B - Action per ν, k For each orientation ν with non-zero coefficients cγ at scale k:
1. Fix image region y corresponding to data domain x of interest
2. Evaluate ∂S

∂ξ (y, ν) and ∂2S
∂ξ2

2
(y, ν)

3. Obtain tensor product representation (2.4):
a) Hermite polynomial expansion (3.3)
b) rank reduction (3.5)

4. Evaluate
∑

ξ[ · ] in (5.3) for each tensor product term r
5. Evaluate

∑
r in (5.3)

C - Action (Fu)(y)
∑

ν,k in (5.3): Add up the contributions of each ν, k to the final image.
Table 5.1

Outline of a parallel numerical scheme for evaluating (5.3).

2. Due to the (ν, k)-dependence of the coordinate transform Tν,k(y) and the amplitudes α1
r;ν,k(y)

in (5.3), the non-equidistant Fourier transform
∑

ξ[ · ] can not be calculated over the entire
ξ-domain at once, but needs to be calculated for each (ν, k) separately. The sum over ξ has
to be calculated only for ξ points within the support of the wave packets at (ν, k), yet still
needs to be evaluated for each y. This increases the computational complexity by a factor
proportional to the number of (ν, k)-pairs, i.e., in 2D, approximately by

√
N .

Outline for a parallel computational scheme. Tab. 5.1 summarizes the main steps of a
scheme for evaluating (5.3). All of the computationally costly operations are performed in step
B, independently for each ν, k, and can hence be performed using massive parallelization. Step
A merely consists in setting up a discrete target grid in the image domain by fixing a reference
point y0 and target resolution dy, such that the final image can be obtained as a simple sum of the
contributions from different ν, k in step C.
Since wave packets with different orientation ν do not propagate to the same image region, in step
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B1, the image region corresponding to data wave packets at ν, k is determined in order to decrease
the size of the y domain to be considered for each orientation. This could be performed either by
an iterative search for y points for which Tν,k(y) correspond to the borders of the data domain x,
or by inversion of Tν,k(y). A numerical scheme for step B3 has been presented in Section 3. For the
evaluation of the non-equispaced Fourier transform in step B4, several methods with complexity
close to that of a standard FFT have been proposed in the literature (cf., e.g., [7, 8]).

6. Conclusion and perspectives. In this note, numerical approaches for practically using
recent theoretical work in [4] for approximating the action of GRT operators using wave packets
have been proposed and discussed. Notably, a numerical procedure for obtaining the approximate
low rank tensor product representation of a complex exponential has been proposed, which turns
out to be one of the key steps in the approximation obtained in [4]. The proposed procedure has
been used here to provide a first numerical example that illustrates the effectiveness of the result
Theorem 4.1 in [4] in practice. Similar results, not presented here, have been obtained for the time-
reversal of a wave fronts in the presence of multi-pathing, and for modeling the propagation of wave
packets for real-world data from a physical experiment conducted by L. Pyrak-Nolte Department of
Physics, Purdue University. Finally, a parallel scheme for numerically approximating the action of
GRT operators on input functions composed of wave packets has been outlined. This is currently
being investigated.

REFERENCES

[1] G. Beylkin and M.J. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM J. Sci.
Comput., 26 (2005), pp. 2133–2159.

[2] E. Candès, L. Demanet, D. Donoho, and L. Ying, Fast discrete curvelet transforms, SIAM Multiscale Model.
Simul., 5 (2006), pp. 861–899.

[3] E. Candès, L. Demanet, and L. Ying, Fast computation of fourier integral operators, SIAM J. Sci. Comput.,
29 (2007), pp. 2464–2493.

[4] M.V. de Hoop, H. Smith, G. Uhlmann, and R.D. van der Hilst, Seismic imaging with the generalized radon
transform: a curvelet transform perspective, Inverse Problems, 25 (2009), pp. 025005+.

[5] H. Douma and M.V. de Hoop, Leading-order seismic imaging using curvelets, Geophysics, 72 (2007), pp. 231–
248.

[6] A. Duchkov, F. Andersson, and M.V. de Hoop, Discrete almost symmetric wave packets and multi-scale
representation of (seismic) waves, preprint, (2009).

[7] A. Dutt and V. Rokhlin, Fast fourier transforms for nonequispaced data, SIAM J. Sci. Comput., 14 (1993),
pp. 1368–1393.

[8] , Fast fourier transforms for nonequispaced data II, Appl. Comput. Harmon. Anal., 2 (1995), pp. 85–100.
[9] G.H. Golub and C.F. Van Loan, Matrix Computations (3rd ed.), Series in Mathematical Science, Johns

Hopkins University Press, Baltimore, MD, USA, 1994.
[10] S. Kapur and D.E. Long, Ies3: A fast integral equation solver for efficient 3-dimensional extraction, in Proc.

IEEE/ACM Int. Conf. Computer Aided Design, Washington, DC, 1997, pp. 448–455.
[11] H. Smith, A parametrix construction for wave equations with c1,1 coefficients, Ann. Inst. Fourier, Grenoble, 48

(1998), pp. 797–835.
[12] C.C. Stolk and M.V. de Hoop, Microlocal analysis of seismic inverse scattering in anisotropic, elastic media,

Comm. Pure Appl. Math., 55 (2002), pp. 261–301.
[13] G.N. Watson, Notes on generating functions of polynomials: (2) hermite polynomials, J. London Math. Soc.,

8 (1933), pp. 194–199.

8


