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Abstract—Nonnegative matrix factorization (NMF) is the state-
of-the-art approach to unsupervised audio source separation.
It relies on the factorization of a given short-time frequency
transform into a dictionary of spectral patterns and an activation
matrix. Recently, we introduced transform learning for NMF
(TL-NMF), in which the short-time transform is learnt together
with the nonnegative factors. We imposed the transform to be
orthogonal likewise the usual Fourier or Cosine transform. TL-
NMF yields an original non-convex optimization problem over
the manifold of orthogonal matrices, for which we proposed a
projected gradient descent algorithm in our previous work. In
this contribution we describe a new Jacobi approach in which the
orthogonal matrix is represented as a randomly chosen product
of elementary Givens matrices. The new approach performs
favorably as compared to the gradient approach, in particular in
terms of robustness with respect to initialization, as illustrated
with synthetic and audio decomposition experiments.

Index Terms—Nonnegative matrix factorization (NMF), trans-
form learning, single-channel source separation.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) consists of decom-
posing nonnegative data V 2 RM⇥N

+ into

V ⇡WH, (1)

where W 2 RM⇥K
+ and H 2 RK⇥N

+ are two nonnegative
factors referred to as dictionary and activation matrix, respec-
tively. The order K of the factorization is usually chosen such
that K < min(M,N) such that NMF provides a low-rank
approximation. In audio signal processing, V is a spectrogram
|X|�2 or |X|, where X is the short-time frequency transform
of a sound signal y and where | · | and � denote entry-
wise absolute value and exponentiation, respectively. The
transform X is typically computed as �Y, where Y 2 RM⇥N

contains windowed segments of the original signal y in its
columns, M is the length of the analysis window and N

is the resulting number of segments (aka frames). � is a
transform matrix of size M ⇥M such as the complex-valued
Fourier transform or the real-valued discrete cosine transform
(DCT). The factorization of V then leads to a dictionary W
which contains spectral patterns and an activation matrix H
which encodes how these patterns are mixed in every frame.
Finally, the factorization (1) can be used to reconstruct latent
components of the original signal via Wiener filtering [1].

In this state-of-the-art procedure, the time-frequency trans-
form used to compute the input matrix V is chosen off-the-
shelf and may have a considerable impact on the quality of

the decomposition. As such, we proposed in [2], to learn
the transform � together with the factors W and H. Such
transform-learning procedures have received increasing atten-
tion in signal processing, for example in the context of audio
decomposition with neural architectures [3] or sparse coding
of images [4], but their use with NMF is to the best of our
knowledge new. In [2], we defined transform-learning NMF
(TL-NMF) as the solution of

min

�,W,H
C(�,W,H)

def
= DIS(|�Y|�2|WH) + �||H||1 (2)

s.t. H � 0,W � 0, 8k, ||wk||1 = 1,�T� = IM (3)

where DIS(·|·) is the Itakura-Saito divergence and where the
notation A � 0 expresses nonnegativity of the entries of
A. The Itakura-Saito divergence is defined by DIS(A|B) =P

ij(aij/bij � log(aij/bij) � 1) and is a common choice
in spectral audio unmixing [5] (note that other divergences
could be considered without loss of generality). The orthog-
onality constraint imposed on � mimics the usual Fourier
or DCT transform. We here consider a real-valued transform
� 2 RM⇥M for simplicity (like the DCT). The `1 penalty term
in (2) enforces some degree of sparsity on H which indirectly
adds structure to the rows of � as demonstrated in [2].

In [2] we described a block-descent algorithm that updates
the variables �, W and H in turn (as in Algorithm 1). Be-
cause the objective function C(�,W,H) is non-convex, the
proposed algorithm is only guaranteed to return a stationary
point which may not be a global solution. The update of
W and H given � are tantamount to standard NMF and
are obtained using majorization-minimization [6], [7] (leading
to so-called multiplicative updates). In [2], we proposed a
projected gradient-descent update for � using the method
described in [8]. We propose in this contribution a new method
for updating �, namely a Jacobi-like iterative approach that
searches � as a product of randomly chosen Givens rotations.
The approach is described in Section II and illustrated with
experiments in Section III. Section IV concludes.

II. JACOBI ALGORITHM FOR TRANSFORM LEARNING

A. Givens representation of orthogonal matrices

Let us denote by OM the set of real-valued orthogonal
matrices of size M⇥M . Jacobi methods have a long history in
numerical eigenvalue problems such as Schur decomposition
[9] or joint-diagonalization [10]. They rely on the principle



Algorithm 1: TL-NMF-Jacobi
Input : Y, ⌧ , K , �
Output: �, W, H

Initialize � = �(0), W = W(0), H = H(0) and set l = 1

while ✏ > ⌧ do
H(l)  Update H as in [2] (U1)
W(l)  Update W as in [2] (U2)
�(l)  Update � using Algorithm 2 (U3)
Normalize � to remove sign ambiguity
✏ =

C(�(l�1),W(l�1),H(l�1))�C(�(l),W(l),H(l))
|C(�(l),W(l),H(l))|

l l + 1

end

that any orthogonal matrix in OM may be represented as a
product of Givens matrices Rpq(✓) 2 OM defined by

Rpq(✓) =

0

BBBBBBB@

p q

I 0 ... ... 0

p 0 cos ✓ 0 � sin ✓

...
... 0 I 0

...

q
... sin ✓ 0 cos ✓ 0

0 ... ... 0 I

1

CCCCCCCA

. (4)

The couple (p, q) 2 {1, . . . ,M} ⇥ {1, . . . ,M} defines an
axis of rotation while ✓ 2 [0, 2⇡[ represents the angle of the
rotation. Given a current estimate �(i) and a couple (p, q), the
Jacobi update is given by

�(i+1)
= Rpq(

ˆ

✓)�(i) (5)

ˆ

✓ = argmin

✓
Jpq(✓)

def
= D(|Rpq(✓)X

(i)|�2|WH), (6)

and X(i)
= �(i)Y is the current transformed data. In this basic

scenario, every iteration i involves the choice of a rotation
axis (p, q). Every orthogonal matrix can be decomposed as a
sequence product of Givens rotations, but the correct ordered
sequence of rotation axes is unfortunately unknown. As such,
the sequence pattern in which the axes are selected in Jacobi
methods can have a dramatic impact on convergence and this
has been the subject of many works for eigenvalue problems
(see [9] and reference therein). The optimization of Jpq(✓)

given (p, q) on the one hand and the sequential choice of axes
(p, q) on the other hand are discussed in the next sections.

B. Optimization of Jpq(✓) for one axis (p, q)

By construction of Givens rotations, Rpq(✓)X
(i) is every-

where equal to X(i) except for rows p and q. It follows that

−
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Fig. 1. Illustration of Jpq(✓) evaluated for 10

6 equally spaced points ✓ 2
(�⇡

4 ,
⇡
4 ] for randomly selected X and ˆV.

Jpq(✓) can be expressed as

Jpq(✓) =

X

n


(cos ✓x

(i)
pn � sin ✓x

(i)
qn)

2

v̂pn
+

(sin ✓x

(i)
pn + cos ✓x

(i)
qn)

2

v̂qn

� 2 log

⇥
(cos ✓x

(i)
pn � sin ✓x

(i)
qn)(sin ✓x

(i)
pn + cos ✓x

(i)
qn)

⇤�
+ cst

(7)

where v̂mn
def
= [WH]mn and cst is a constant w.r.t. ✓. Jpq(✓)

is ⇡
2 periodic and we may address its minimization over

the domain ✓ 2 (�⇡
4 ,

⇡
4 ] only. Unfortunately Jpq(✓) does

not appear to have a closed-form minimizer. Furthermore,
Jpq(✓) is highly non-convex w.r.t to ✓. Moreover, one can
show that (7) is not everywhere smooth because it has N

poles for ✓ 2 (�⇡
4 ,

⇡
4 ], see Fig. 1 for an illustration. For

these reasons combined, gradient-descent based minimization
proves, at best, highly inefficient.

To circumvent these difficulties, we propose to resort to
an original randomized grid search procedure described next.
The strategy consists in drawing at random Nprop proposals
˜

✓ 2 (�↵⇡
4 ,

↵⇡
4 ], ↵ 2 (0, 1], which are used to approximate

(6) as ˆ

✓ ⇡ argmin

✓2{✓̃i}
Nprop
i=1

Jpq(✓). If the update of � in (5)
does not improve the objective function, the procedure could
be repeated until a value for ˆ

✓ is found for which the update
yields an improvement. Here, we will instead move on to a
different axis (p, q), see Section (II-C). If the update with ˆ

✓

yields an improvement, then the approximation can be refined
by repeating the procedure for smaller and smaller values of ↵.
We will intertwine such refinements with sweeps over random
couples of rows (p, q), as described next.

C. Updating �: selection of the rotation axes (p, q)

The Givens matrices (4) act on a total number of M(M �
1)/2 different rotation axes, defined by couples (p, q). To
perform the transform update step (U3) in Algorithm 1, we
propose to compute Jacobi updates (5-6), as described in the
previous paragraph, for a total of R couples (p, q) that are
selected at random from the M(M � 1)/2 possible ones.
For computational efficiency, we make use of the fact that
the rotation for a given (p, q) affects the rows p and q only.
Therefore, M

2 mutually independent random couples (p, q), a
so-called rotation set [9], can be updated in parallel. It is easy
to see that a rotation set can be generated by drawing, without
replacement, the values for p and q at random from the set
(1, . . . ,M). This update for � is summarized in Algorithm 2.



Algorithm 2: Jacobi update of � at iteration l

Input : �,X = �Y,

ˆV = WH, Nprop, R, l

Output: �

for k = 1, . . . , b2R/Mc do
Generate a random permutation of (1, ...,M) in u
for j = 1, . . . ,M/2 do

(p, q) = (uj ,uj+M
2
)

for s = 1, . . . , Nprop do
Draw at random ˜

✓ 2 (�↵(k,l)⇡
4 ,

↵(k,l)⇡
4 ]

Evaluate Jpq(
˜

✓) = D(|Rpq(
˜

✓)X|�2
�� ˆV)

end
ˆ

✓  argmin✓̃ Jpq(
˜

✓)

if D(|Rpq(
ˆ

✓)X|�2
�� ˆV) < D(|X|�2

�� ˆV) then
Update transform � Rpq(

ˆ

✓)�
end

end
end

Further, the refinement factor ↵ in the optimization of
Jpq(✓) is sequentially updated as

↵ = ↵(k, l) = l

�a1
k

�a2
, (8)

where l is the number of the outer iteration for updating W,H
and � (see Algorithm 1) and k is the inner iteration over the
number of blocks of M

2 mutually independent random couples
(p, q) in the update of �. The Jacobi algorithm for updating
� is summarized in Algorithm 2.

III. EXPERIMENTS

A. Transform learning experiment with synthetic data

We begin with studying the performance of the proposed
randomized Jacobi algorithm for finding a transform � given
ˆV (i.e., for update step (U3) in Algorithm 1). To this end,
we let Y 2 RM⇥N and �⇤ 2 OM be two randomly
generated matrices, and let V⇤

= |�⇤Y|�2, and we study
the minimization of

F (�) = D(|�Y|�2
��V⇤

) s.t. � 2 OM
, (9)

i.e., Algorithm 1 with ˆV = V⇤ and update steps (U1)
and (U2) removed. The minimum of F (�) is here 0 by
construction. We compare the Jacobi approach for minimizing
(9) proposed in this paper with the gradient-descent approach
described in [2], which consists of Algorithm 1 with step
(U3) replaced by a gradient-descent step with Armijo step
size selection. The algorithms are run with ⌧ = 10

�10, and
(a1, a2) = (0.75, 0) for this experiment. We initialize the
algorithms with � = �(0) in the vicinity of the ground-truth
solution �⇤. To measure the closeness of the initialization to
the ground-truth solution we define the Initialization Proximity
Ratio (IPR) as

IPR = 10 log10
||�⇤||2F

||�(0) ��⇤||2F
. (10)
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Fig. 2. Finding � for fixed ˆV. Objective function values log10(F (�)) as
a function of CPU time for different values M,N (from top to bottom) and
initializations for � (increasingly close to the ground-truth �⇤, from left to
right): Jacobi (blue) and Gradient (black) algorithm, respectively.

A large IPR value means �(0) and �⇤ are close; �(0) is
generated as �(0)

= projOM (�⇤
+�B) where projOM denotes

the projection onto OM [8], B is a standard normal random
matrix and � > 0 is set to meet the desired IPR value.

The objective function values F (�) obtained for the two
algorithms are plotted in Fig. 2 for several values of M , N
and IPR, as a function of CPU time. As expected, larger
IPR values lead overall to solutions with smaller objective
function value. A comparison of the two algorithms yields the
following conclusions. First, with the proposed randomized
Jacobi algorithm, a transform � is obtained that corresponds
with a local minimum of (9) that has a smaller objective
function value than that returned by gradient descent. Sec-
ond, the proposed algorithm is in general faster in finding a
transform � with objective function below a given value, as
indicated by the fact that in most of the cases plotted in Fig. 2,
the blue curve (Jacobi) is consistently below the black curve
(Gradient). Overall, these findings clearly demonstrate the
practical benefits of the proposed randomized Jacobi algorithm
for updating �.

B. NMF with transform learning for audio data

We now study the full TL-NMF problem (2-3) with un-
knowns (�,W,H) for the decomposition of the toy piano
sequence used in [5]. The audio sequence consists of four
notes played all at once in the first measure and then by pairs
in all possible combinations in the subsequent measures, see
Fig. 3 (a) and (b). The audio signal was recorded live on a
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Fig. 3. Three representations of the piano data.
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Fig. 4. Objective function C(�,W,H), data fitting term D(|�Y|�2|WH)

and sparsity term �kHk1 with respect to CPU time.

real piano. The duration is 15.7 s with sampling frequency
fs = 16 kHz. The columns of matrix Y are composed of
adjacent frames of size M = 640 (40 ms) with 50 % overlap,
windowed with a sine-bell. This leads to a total of N = 785

frames.
We compare the performance and results of TL-NMF-

Jacobi, TL-NMF-Gradient (the gradient descent method of [2])
and baseline (sparse) IS-NMF. The latter simply consists of
running Algorithm 1 without step (U3) and with a fixed DCT
transform � = �DCT defined as

[�DCT]qm = (2M)

� 1
2
cos (⇡(q + 1/2)(m+ 1/2)/M) . (11)

The DCT spectrogram of the audio data is plotted in Fig. 3
(c). The three algorithms are run with K = 8. IS-NMF
was run with ⌧ = 10

�10, which ran in a few minutes on
a personal computer. TL-NMF-Gradient and TL-NMF-Jacobi
were run for several days, reaching ⌧ ⇡ 4 · 10�7. Further,
the parameters for TL-NMF-Jacobi are set to Nprop = 100,
R = 6 and (a1, a2) = (0.3, 0.7). All algorithms are initialized
with the same random factors W and H, and TL-NMF-Jacobi
and TL-NMF-Gradient are initialized with the same random
orthogonal matrix �. The hyper-parameter � was set to 10

6,
like in [2].
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Fig. 5. Separated audio components using IS-NMF (left) and Jacobi TL-NMF
(right), sorted by decreasing energy (from top to bottom). IS-NMF (resp., TL-
NMF) splits the first (resp., second) and third notes over two components.
In the two cases, component 7 extracts percussive sounds and component 8
contains residual noise.

Minimization of the objective function. Fig. 4 plots the
values of the objective function C(�,W,H), data fitting term
D(|�X|�2) and sparsity term �kHk1 as a function of CPU
time and yields the following conclusions. Firstly, IS-NMF
is of course considerably faster because � is fixed in its
case. Then, TL-NMF-Gradient is much slower than TL-NMF-
Jacobi; it has not been able to reach a stationary point within
the experiment’s runtime, and not even an objective function
value below that of IS-NMF, despite the extra flexibility
offered by learning �. In contrast, the proposed TL-NMF-
Jacobi algorithm yields objective function values that are
significantly below that reached by IS-NMF, already after a
small fraction of the total runtime of the experiment. Finally,
Fig. 4 shows that both the fit and the penalty term on H
are decreased along the iterations, which confirms the mutual
influence of the sparsity of H and the learnt transform and
dictionary.
Decomposition. Fig. 5 displays the 8 latent components
that can be reconstructed from the factorization returned
by IS-NMF and by TL-NMF-Jacobi. The components have
been reconstructed with standard Wiener filtering, inverse
transformation and overlap-add [2], [5]. The set of com-
ponents returned by the two methods are comparable and
coherent: the piano notes, percussive sounds (hammer hitting
the strings, sustain pedal release) and residual sounds are
separated into distinct components. The corresponding audio



files are available online.1 The audio quality of the components
is satisfactory and comparable between the two methods, the
components obtained with TL-NMF being a tiny bit fuzzy.
Learnt transform. We finally examine examples of the
atoms returned by TL-NMF (rows {�m}m of �). Fig. 6 dis-
plays the 33 atoms which most contribute to the audio signal
(i.e., with largest values of k�Yk2). As already observed in
[2], the atoms adjust to the shape of the analysis window and
come in quadrature pairs. As such, TL-NMF is able to learn
a shift-invariant representation. Additionally, Fig. 6 shows
that TL-NMF learns a variety of oscillatory patterns: regular
tapered sine/cosine-like atoms (e.g., �1-�8), harmonic atoms
exhibiting slow (�9, �12-�14) to fast (�27, �32) amplitude
modulations, atoms with little regularity (e.g., �18, �22, �24)
and atoms with uncommon structure (�28). Atoms �1 to �8

fit to the fundamental frequencies of the 4 individual notes
while the other atoms adjust to the specificities of the data
(such as partials of the notes). The previous paragraph shows
that they make sense of the data in their ability to produce a
meaningful decomposition that accurately describes the data.
We feel that it is quite remarkable to be able to learn such a
structured transform from a random initialization.

IV. CONCLUSION

In this paper, we proposed a novel Jacobi algorithm for
TL-NMF. Experiments with synthetic and audio data have
illustrated its superior performance with respect to our pre-
vious gradient-descent approach. In our setting it led to faster
convergence and convergence to solutions with lesser objective
values. We conjecture that the latter observation may be a
consequence of the randomness element in the axes selection.
The randomness is likely to improve the exploration of the
non-convex landscape of the objective function. Despite TL-
NMF-Jacobi being more efficient than TL-NMF-Gradient, it
still runs very slow as it requires a few days to converge when
applied to a few seconds audio signal (using a standard per-
sonal computer). Future work will look into faster optimization
using for example incremental/stochastic variants.
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