
Multifractality Tests using Bootstrapped Wavelet Leaders

Herwig Wendt and Patrice Abry

Laboratoire de Physique, UMR 5672, Ecole Normale Supérieure de Lyon, France.
patrice.abry@ens-lyon.fr, herwig.wendt@ens-lyon.fr

Abstract

Multifractal analysis, that mostly consists of measuring scaling
exponents, is becoming a standard technique available in most
empirical data analysis toolboxes. Making use of the most re-
cent theoretical results, it is based here on the estimation of
the cumulants of the log of the wavelet Leaders, an elabora-
tion on the wavelet coefficients. These log-cumulants theoret-
ically enable discrimination between mono- and multi-fractal
processes, as well as between simple log-normal multifractal
models and more advanced ones. The goal of the present contri-
bution is to design non parametric bootstrap hypothesis tests
aiming at testing the nature of the multifractal properties of
stochastic processes and empirical data. Bootstrap issues to-
gether with six declinations of test designs are analyzed. Their
statistical performance (significances, powers and p-values) are
assessed and compared by means of Monte-Carlo simulations
performed on synthetic stochastic processes whose multifrac-
tal properties (and log-cumulants) are known theoretically a
priori. We demonstrate that the joint use of wavelet Leaders,
log-cumulants and bootstrap procedures enable us to obtain
a powerful tool for testing the multifractal properties of data.
This tool is practically effective and can be applied to a single
observation of data with finite length.

1 Motivation

Scaling or multifractal analyses [1, 2] nowadays belong to most
standard empirical data analysis toolboxes. Scaling, or scale
invariance, is indeed a property that has been extensively ob-
served in empirical data produced from numerous applications
of very different nature such as turbulence, network traffic and
biomedical signals.
Stating that some data X possess scaling properties mostly
amounts to assuming and checking that its structure functions
S(q, a) behave as power laws of the analysis scale a, for a given
range of scales a ∈ [am, aM ], aM/am � 1 and for a given range
of statistical orders q, usually including q = 2:

S(q, a) =
1
na

na∑
k=1

|TX(a, k)|q ' Gqa
ζ(q). (1)

Here, the TX(a, t) stand for multiresolution quantities such as
the wavelet coefficients, na ≈ n

a denotes the number of such
coefficients available at each scale a, while n stands for the ob-
servation duration (the Gq depend on the details of the process
X and are functions of the variable q, but not of the analysis
scale a). Empirical multifractal analysis essentially consists of
estimating the scaling exponents ζ(q) from a given set of data.
These scaling exponents are commonly involved in various data
analysis tasks, such as detection, identification or classification.

The function ζ(q) can formally be expanded as a polynomial
in q: ζ(q) = c1q + c2q

2/2 + c3q
3/6 + .... When ζ(q) reduces to

a linear function of q, X is said to be monofractal. Self-similar
processes such as fractional Brownian motion (FBM) constitute
a celebrated and widely used class of monofractal processes. In
the present contribution, X is said to be multifractal (MF)
when ζ(q) departs from a linear behavior in q 1. In the case
of ζ(q) = c1q + c2q

2/2, the simplest departure from linear, X
is referred to as a log-Normal multifractal (LN-MF) process.
This process represents the most, if not only, practically used
multifractal model. More complex multifractal models, such as
compound Poisson cascades (CPC), (cf. e.g., [3]), could theo-
retically be used and involve polynomials ζ(q) of order higher
than 2. Therefore, the estimation of the precise values of the cps
is crucial for practical purposes. Mainly, deciding on whether
c2 = 0, or whether c3 = 0 when c2 6= 0, is central to select
which model (FBM, LN-MF, higher order MF) best describes
the data.

The goal of the present contribution is to propose statistical
tests aiming at deciding whether p ≥ 2, cp = 0 or not and thus
at discriminating between mono- and multi-fractal processes.
So far, this issue, that is commonly mentioned as being essen-
tial to empirical multifractal analysis, received no systematic or
detailed study. The hypothesis tests proposed here rely on the
combination of the three key ingredients log-cumulants, wavelet
Leaders and non parametric bootstrap:
First, it has been shown recently [4, 5] that a relevant multi-
fractal formalism should be based on wavelet Leaders rather
than on wavelet coefficients [1, 2]. For instance, wavelet Lead-
ers based multifractal estimation procedures significantly out-

1A rigorous mathematical definition of mono- vs. multi-fractality re-
mains an involved mathematical issue and is further addressed in Section
2.2.
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perform those based on wavelet coefficients [6]. Wavelet coef-
ficients and Leaders are fully defined in Section 2.1. A brief
review of multifractal analysis and formalisms is given in Sec-
tion 2.2.
Second, an alternative to multifractal estimation procedures
based on Eq. (1), has been proposed originally in the early
nineties in [7] and further developed in [8]: From estimations
of the cumulants of the logarithm of the multiresolution quan-
tities, the coefficients cp of the polynomial expansion of ζ(q)
can be estimated directly. As explained above, these so-called
log-cumulants are of particular interest, since they naturally
emphasize the difference between mono - and multifractal pro-
cesses. Log cumulant expansions are introduced in Section 2.3.
Third, we use non parametric bootstrap techniques for the de-
sign of the statistical tests. Bootstrap was introduced in the
eighties [9] and has recently regained interest due to contin-
uously growing computer facilities [10–12]. It consists of ap-
proximating an unknown distribution of a random variable by
means of repeated resampling with replacement from the avail-
able data. The use of bootstrap techniques in the wavelet do-
main was first reported in [13]. Bootstrap has also been con-
sidered for the estimation of the Hurst parameter of self-similar
processes [14], and for the estimation of scaling exponents and
log-cumulants for both mono - and multifractal processes [6,15].
In the present work, we use nonparametric bootstrap methods
on wavelet Leaders and coefficients as robust means for obtain-
ing approximate null distributions of test statistics for hypoth-
esis tests on cp. Six declinations for the precise construction
of the empirical acceptance region are analyzed and compared.
Basics on hypothesis tests and non parametric bootstrap tests,
together with the definitions of the acceptance regions are de-
tailed in Section 3.2.
In order to assess the statistical performance (significances, p-
values and powers) of the proposed bootstrap tests, large sets of
Monte Carlo (MC) simulations are performed. The correspond-
ing methodology, the simulation set up, as well as the multi-
fractal processes used to conduct the numerical simulations,
are presented in Section 4. The results show that the boot-
strap tests exhibit satisfactory performance and are reported
and discussed in Section 5. We end up with a robust and pow-
erful practical test procedure for the analysis of a single and
finite length observation of empirical data. This is detailed in
Section 6, together with conclusions and perspectives.

2 Wavelets and Multifractal Analysis

2.1 Wavelet Coefficients and Wavelet Leaders

Wavelet Coefficients. Let ψ0(t) denote a reference pattern
whose energy remains mostly concentrated in a narrow sup-
port both in the time and frequency domains. This func-
tion ψ0(t) is commonly referred to as the mother-wavelet and
can be further characterized by its number of vanishing mo-
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dX(j,k)LX(j,k) = supλ‘⊂3λ |dX,λ‘ |

λ‘⊂ 3λ

Figure 1: The wavelet Leaders LX (black circle) are calculated
from the discrete wavelet coefficients dX(·, ·) (dots) by taking
the supremum in the time neighborhood 3λj,k, over all finer
scales 2j

′
< 2j (area in grey).

ments, a strictly positive integer Nψ ≥ 1 defined as: ∀k =
0, 1, . . . , Nψ − 1,

∫
R t

kψ0(t)dt ≡ 0 and
∫
R t

Nψψ0(t)dt 6= 0. Let
{ψj,k(t) = 2−jψ0(2−jt−k), j ∈ Z, k ∈ Z} denote the collection
of templates of ψ0, dilated to scales a = 2j , and translated to
time positions 2jk. Let us further assume that the {ψj,k(t), j ∈
Z, k ∈ Z} forms an orthonormal basis of L2(R). Let X(t),
t ∈ [0, n) denote the process under analysis and n its observa-
tion duration. The wavelet coefficients of X are obtained as
comparisons, by means of inner products: dX(j, k) = 〈ψj,k|X〉.
The dX(j, k) therefore provide a time-scale representation of X
that fully characterizes it: X(t) =

∑
j,k dX(j, k)ψj,k(t). For a

detailed introduction to wavelet transforms, the reader is re-
ferred to e.g., [16, 17].
Wavelet Leaders. Let us now further assume that ψ0(t) has
a compact time support and let us introduce the indexing λj,k =
[k2j , (k+1)2j) and the union 3λj,k = λj,k−1∪λj,k∪λj,k+1. The
wavelet Leaders LX(j, k) are defined as

LX(j, k) = sup
λ′⊂3λj,k

|dλ′ |, (2)

where the supremum is taken on the discrete wavelet coefficients
dX(·, ·) in the time neighborhood 3λj,k over all finer scales 2j

′
<

2j . Fig. 1 illustrates this definition.

2.2 Multifractal Analysis

Multifractal spectrum. Multifractal analysis aims at char-
acterizing the signal X under analysis through the description
of the variations along time of the regularity of its sample path.
Such a local regularity is measured by means of Hölder expo-
nents h(t). The Hölder exponent quantifies the strength of the
singular behavior of X around t0, by comparing the local vari-
ations of X around t0 to a local power law behavior: X(t0) is
said to belong to Cα(t0) with α ≥ 0 if there exists a constant
C > 0 and a polynomial Pt0(t) with deg(Pt0) < α such that:

|X(t)− Pt0(t)| ≤ C|t− t0|α. (3)

The Hölder exponent is defined as the largest such α:

h(t0) = sup{α : X ∈ Cα(t0)}. (4)
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Instead of making use of a function of time h(t), it is usually
preferred to describe the variability of the range of Hölder ex-
ponents actually encountered in X through the multifractal (or
singularity) spectrum D(h), which is defined as the Hausdorff
dimensions of the sets of points ti for which h(ti) = h.
Multifractal formalisms. Therefore, empirical or practical
multifractal analysis mostly consists of inferring D(h) from a
single finite duration observation of data: this is commonly re-
ferred to as a multifractal formalism. In a nutshell, multifractal
formalisms essentially amount first to performing estimations of
the scaling exponents ζ(q) (by direct use of Eq. (1)) and second
to relating those estimates to D(h) via a Legendre transform.

For a long period of time, wavelet coefficients have been
considered as the key quantities empirical multifractal analy-
sis should be based on [1, 4, 18–21]. However, recent results
[4, 5] show that this wavelet based multifractal formalism suf-
fers from two major drawbacks: It does not enable to reach the
entire multifractal spectrum of the process under analysis, and
it is not valid for all types of multifractal processes. Notably,
processes containing oscillating singularities are incorrectly an-
alyzed.
Leader based multifractal formalism. A more relevant
multifractal formalism holds if wavelet coefficients are replaced
with the wavelet Leaders, defined above. By construction, Lead-
ers are monotonously increasing with scale 2j , a property that
has been recently shown to be key in designing a multifractal
formalism [4]. Indeed, under mild regularity conditions on the
sample path, wavelet Leaders exactly reproduce the Hölder ex-
ponent of X(t) at t0, i.e., h(t0) is the supremum of all values h
such that, in the limit of fine scales (2j → 0),

LX(j, k) ≤ C2jh. (5)

Following intuitions originally developed in [22] making use
of an increment based multifractal formalism, Eq. (5) above
suggests that the wavelet Leader structure functions SL(q, 2j)
possess power law behavior with respect to scales in the limit
2j → 0:

SL(q, 2j) =
1
nj

nj∑
k=1

LX(j, k)q = Fq|2j |ζ(q). (6)

Here, nj ≈ n
2j is the number of Leaders available at each scale

and n the length of the sample. Under mild uniform Hölder
regularity condition on X(t), it has been shown [4,23] that Eq.
(6) is an exact result and that the Legendre transform of the
ζ(q) provides a tight upper bound for the multifractal spectrum
D(h):

D(h) ≤ min q 6=0(1 + qh− ζ(q)). (7)

It turns out that for most if not all commonly used multiplica-
tive processes (whose multifractal spectra are concave), the in-
equality Eq. (7) is an equality and thus relates the scaling

exponents to the multifractal spectrum.
For more thorough introductions to multifractal analysis, the
reader is referred to e.g., [4, 20,23,24].
Multi- vs. mono-fractal. Rigorous mathematical defini-
tions of mono-fractality and multi-fractality refer to whether
the characterization of X(t) requires a single Hölder exponent
or a collection of different such exponents. In the present con-
tribution, we refer to monofractal (respectively, multifractal)
processes when their scaling exponents ζ(q) follow a linear be-
havior in q (respectively, depart from a linear behavior in q).
This definition is not rigorously true and results in a little loss
of generality: It excludes specific processes such as Lévy stable
self-similar processes or random wavelet series which are of the-
oretical interest but remain difficult to use in applications. This
restrictive definition of monofractality is formulated by analogy
with finite variance self-similar processes with stationary incre-
ments, which are widely used in applications, and is sufficient
for most practical purposes.

2.3 Log-Cumulants

For some classes of multifractal processes [7, 25], Eq. (6) takes
a more general form:

ELX(j, ·)q = Fq|2j |ζ(q). (8)

Using the second characteristic functions of the distributions of
the random variables lnLX(j, ·), Eq. (8) can be rewritten as:

ln Eeq lnLX(j,·) =
∞∑
p=1

Cjp
qp

p!
= lnFq + ζ(q) ln 2j , (9)

where the Cjp stand for the cumulants of order p ≥ 1 of
lnLX(j, ·). Eq. (9) implies that the Cjps must satisfy:

∀p ≥ 1 : Cjp = c0p + cp ln 2j (10)

and therefore that:

ln Eeq lnLX(j,·) =
∞∑
p=1

c0p
qp

p!︸ ︷︷ ︸
lnFq

+
∞∑
p=1

cp
qp

p!︸ ︷︷ ︸
ζ(q)

ln 2j ,

where c0p and cp do not depend on the scale 2j . This yields:

ζ(q) =
∞∑
p=1

cp
qp

p!
. (11)

Thus, the measurements of the scaling exponents ζ(q) can be
interestingly replaced by those of the log-cumulants cp.

The main benefit of this change of multifractal attributes lies
in the fact that the cps emphasize the difference between scaling
exponents ζ(q) that are linear in q (equivalently, ∀p ≥ 2 : cp ≡
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0) and ζ(q) that depart from linear (equivalently, there exists
p ≥ 2 : cp 6= 0) [7, 25]. In other words, according to our pre-
vious definitions, knowing whether c2 = 0 or not is practically
equivalent to choosing between mono- vs. multifractality. Also,
the cps enable to discriminate between simple LN-MF processes
(p ≥ 3 : cp = 0) and more complex multifractal models, such
as CPCs (c3 6= 0). Therefore, in the sequel of this contribution,
we concentrate on estimating the cp and on testing whether
cp = 0 or not.

2.4 Estimation Procedures

Estimations of the cumulants Cjp. From the n samples
of X, one computes nj ≈ n

2j wavelet Leaders LX(j, k) at each
scale j. The asymptotically unbiased and consistent standard
estimators (e.g., [26]) are used to obtain the estimations Ĉjp of
the cumulants of lnLX(j, k).
Linear regressions - log cumulants cp. Based on Eq.
(10), the cps are estimated by linear regressions of Ĉjp vs. ln 2j :

ĉp = log2 e

j2∑
j=j1

wjĈ
j
p, (12)

where (j1, j2) defines the range of scales, 2j1 ≤ a ≤ 2j2 , over
which the linear regressions are performed.
Weights. The weights wj in Eq. (12) have to satisfy the
usual constraints

∑j2
j1
jwj ≡ 1 and

∑j2
j1
wj ≡ 0. A standard

form reads wj = 1
bj

S0j−S1
S0S2−S2

1
, with Si =

∑j2
j1
ji/bj , i = 0, 1, 2.

The freely selectable positive numbers bj reflect the confidence
granted to each Ĉjp. In the present work, we select bj = 1/nj
(cf. [1]), without loss of generality.

Coefficients vs. Leaders.
The estimation procedures presented above involve wavelet

Leaders LX(j, k). Note that corresponding procedures can be
based on wavelet coefficients, mutatis mutandis. The same is
true for all test procedures described in the next section. The
respective performance of Leader and coefficient based test pro-
cedures are compared in Section 5.

3 Testing Statistical Hypothesis on
log Cumulants

3.1 Statement of the Problem

We want to test cp = cp,0 against the two sided alternative
cp 6= cp,0. Eventually, the specific case c2,0 = 0 is seen as the
test of mono- versus multi-fractality.

Given a single sample of X of size n, the dX(j, k)s,
LX(j, k)s, Ĉjp and ĉp are computed and estimated accord-
ing to the procedures described in Section 2.4. We denote

the unknown distributions of X, LX(j, .), Ĉjp and ĉp by
Fχθχ , χ = {X, Lj , Cjp, cp} with parameters θχ, respectively.
The distributions Fχθχ are unknown members of families of
distributions FχΘχ

, θχ ∈ Θχ.

We consider the basic test statistic

TB = cp − cp,0, t̂B = ĉp − cp,0,

and the studentized test statistic

TS =
cp − cp,0

σ
, t̂S =

ĉp − cp,0
σ̂∗

,

where σ and σ̂∗ stand for the theoretical standard deviation
of ĉp and for its bootstrap estimation (cf. Eq. 22 below), re-
spectively. The studentized test statistic attempts to make the
random variable t̂S pivotal, i.e., to remove the unknown param-
eter σ from the distribution of ĉp.

3.2 Statistical Tests

3.2.1 Definition

Tests for such problems can be constructed in the following way
(see e.g. [27]): A null hypothesis

H0 : cp = cp,0 ; equivalently H0 : θχ ∈ Θχ,0 (13)

postulates that θχ is a member of a specified subset Θχ,0 ⊂ Θχ

of the set of all possible parameter vectors. H0 is simple if it
completely specifies all the parameters describing the family of
distributions FχΘχ

, i.e., the subset Θχ,0 = {θχ,0} contains only
one single element. Otherwise, H0 is composite.

For H0 simple, the null distribution of T is given by

PTθχ,0(τ) = Pr{T ≤ τ |Fθχ,0}, (14)

and a (1− α) acceptance region T(1−α) can be defined as a set
on the real axis for which

Pr{T ∈ T(1−α)|PTθχ,0} = 1− α.

For instance, this could be the equi-tailed interval T(1−α) =
[tα/2, t1−α/2], where tα denotes the α quantile of the null dis-
tribution Eq. (14). The complement of T(1−α) is called the
rejection region. The test dα is then:

dα =

{
1 if t̂ /∈ T(1−α)

0 otherwise,
(15)

Thus, dα rejects H0 if, for a given preset value α, the observed
value t̂ of the test statistic is in the rejection region.
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3.2.2 Significance and p-value

The quantity α is called the level or significance of the test and
equals the error rate in rejecting H0.
The critical value of α for which the observed test statistic t̂
would be regarded as just decisive against H0 is called the p-
value or significance p of t̂,

p = (α|dα = 0, dα+ε = 1) , ε > 0. (16)

Under H0, the p-value ideally has a uniform distribution on
[0, 1], yielding its interpretation as an error rate: If t̂ were re-
garded as just decisive against H0, then this is equivalent to a
procedure that rejects H0 with error rate p [12].

3.2.3 Power

When performing a test, we may commit two types of errors:
First, we may reject H0 when it is true (error of the first kind),
which ideally happens with probability equal to the significance
α. Second, we may accept H0 when it is false (error of the
second kind), i.e. accept when θχ ∈ Θχ,A, where Θχ,A is the
subset of alternatives, Θχ,0 ∪ Θχ,A = Θχ. The probability
of rejection, evaluated for a given alternative θχ,A ∈ Θχ,A is
called the power of the test against this alternative,

β(θχ,A, α) = Pr{dα = 1|Fθχ,A}, θχ,A ∈ Θχ,A. (17)

A good test should have small α and large β, which are antag-
onistic goals. It is common practice to preset the significance
α and then select a test with power β as large as possible.

3.2.4 Composite null hypotheses

In most parametric and all nonparametric problems, H0 is com-
posite. This is also the case for the tests considered here. Then,
the null distributions FΘχ,0 and PTΘχ,0

are not completely spec-
ified, since Θχ,0 has more than one (and possibly infinitely
many) elements. Therefore, the acceptance and rejection re-
gions and the p-value are not well defined.
An approximate solution that is appropriate for the problem
considered here is to estimate a distribution PT0 ∈ PTΘχ,0

that
satisfies H0, and to use this null model to define an acceptance
region T̂(1−α) :

Pr{T ∈ T̂(1−α)|PT0 } = 1− α. (18)

The test is then given by Eq. (15), with T̂(1−α) replacing T(1−α).

3.3 Nonparametric Bootstrap Tests

3.3.1 Nonparametric Bootstrap

In order to define an acceptance region, cf. Eq. (18), for our
problem, we need to estimate PT0 ∈ PTΘχ,0

. The distributions

PTΘχ,0
are, however, unknown, since the distributions FχΘχ,0

are
not known. Nonparametric bootstrap solutions to this problem
consist of replacing the unknown distributions FχΘχ,0

by the em-

pirical distributions F̂χθχ , given by the samples χ = {X,Lj , Cjp}.
The bootstrap estimations of PT0 ∈ PΘT,0 are:

P̂T0 (τ) = Pr{t̂∗ ≤ τ |F̂χθχ}, (19)

with t̂∗:

t̂∗B = ĉ∗p − ĉp,

t̂∗S =
ĉ∗p − ĉp

σ̂∗∗
.

The ĉ∗ps and σ̂∗∗ are respectively bootstrap estimations for cp
(cf. Eq. (20) below) and for the standard deviations of ĉ∗p
(cf. Eq. (23), below). Since the empirical distributions F̂χθχ do
not necessarily satisfy H0, cp,0 must be replaced by ĉp in the
bootstrap versions t̂∗B and t̂∗S of the original test statistics t̂B
and t̂S . This ensures that P̂T0 approximately satisfies H0 [28].

3.3.2 The Resampling Procedure

Eq. (19) is solved through simulation. We fix the empirical
distribution F̂χθχ to be the samples of Leaders, F̂LjθLj

. This has
been shown to perform well in the context of wavelet-based
multifractal analysis (see [6, 13–15]). Despite the decorrelat-
ing property of the wavelet transform, the width of the time
support of the wavelet introduces some very short term corre-
lation among the samples Lj . Thus, we use a moving blocks
bootstrap with block length equal to the (finite) size of the
time support of the wavelet, (cf. [6]). For Daubechies wavelets
used here, it amounts to B = 2 · Nψ . At each scale a = 2j ,
R bootstrap resamples L∗(1)j , · · · ,L∗(R)

j are generated from the
original samples Lj = {LX(j, 1), · · · , LX(j, nj)}. Each resam-
ple L∗j = {L∗(j,1)X (·), · · · , L∗(j,nj)X (·)} is an unsorted collection of
nj sample points, drawn blockwise and with replacement from
the original sample Lj .

3.3.3 Bootstrap estimations

The collections L∗(r)j are used to compute R bootstrap cumu-

lant estimations {Ĉj∗(r)p }Rr=1. From these, we obtain the R
log-cumulant bootstrap estimations:

ĉ∗(r)p = log2 e

j2∑
j=j1

wjĈ
j∗(r)
p , (20)

and the bootstrap test statistics {t̂∗(r)B }Rr=1 and {t̂∗(r)S }Rr=1. Fi-
nally, the empirical bootstrap distributions:

P̂T0 (τ) ≈
1 +

∑R
r=1H

(
τ − t̂∗(r)

)
R+ 1

(21)
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Figure 2: Estimated null distribution and (1 − α) basic boot-
strap test for the second log-cumulant of MRW (single realiza-
tion): The hypothesis H0 is rejected if the observed value t̂ of
the test statistic is within the rejection regions, i.e., outside the
interval T̂ bas(1−α) = [t̂∗α

2
, t̂∗1−α

2
].

approximate Eq. (19), where H(x) = 1 when x ≥ 0 and 0 else-
where. These distributions are used to determine approximate
limits of the acceptance regions T̂(1−α) (see Section 3.3.5), nec-
essary for performing the test Eq. (15) and for estimating the
p-value Eq. (16). A typical bootstrap distribution, obtained
for c2 (for a LN-MF process, cf. Section 4.2) and the basic
bootstrap test procedure are illustrated in Fig. 2.

3.3.4 Standard deviation estimations for studentized
statistic TS

The bootstrap estimations σ̂∗ are readily obtained from the
samples ĉp (Ŝtd denotes the sample standard deviation):

σ̂∗ = Ŝtd ĉ∗p ≈ Std ĉp. (22)

For obtaining estimations σ̂∗∗(r) of the standard deviation of
each ĉ

∗(r)
p , a second layer of bootstrap resampling is necessary

on top of the first one: From each bootstrap resample L∗(r)j , S

double bootstrap resamples L∗∗(r,s)j are obtained as an unsorted
collection of nj sample points, drawn blockwise and with re-
placement from L∗(r)j , similar to the procedure described above.
These collections are used to compute the R·S double bootstrap
estimations ĉ∗∗(r,s)p , t̂∗∗(r,s), and:

σ̂∗∗(r) = Ŝtd ĉ∗∗(r,·)p ≈ Std ĉ∗(r)p . (23)

3.3.5 Bootstrap Test Acceptance Regions

As we consider tests against double-sided alternatives, double-
sided acceptance regions T(1−α) are used in the present work,
that is, acceptance regions with finite lower and upper limits.
There exists a large number of nonparametric bootstrap tests in
the literature, producing different acceptance regions (cf. [12]
for an overview). We analyze 6 different significance α boot-
strap tests, including simple, computationally cheap, and more
sophisticated, computationally expensive bootstrap methods:

The asymptotic bootstrap test uses simple symmetric accep-
tance regions, employing only the bootstrap standard deviation
estimations. The basic and percentile tests employ quantiles of
the empirical bootstrap distributions Eq. (21) of t̂∗B . The stu-
dentized test uses quantiles of the empirical distributions of the
pivoted test statistic t̂∗S . The adjusted basic and adjusted per-
centile tests use the double bootstrap estimations to correct for
a bias in the limits of the acceptance regions of the basic and
percentile tests. The three latter methods are potentially more
performant, however at the price of a costly double bootstrap
layer.
Asymptotic (Normal) Bootstrap Test. Assuming TB
to be approximately normal, the bootstrap standard deviation
estimation σ̂∗ is used to construct the equi-tailed and symmetric
acceptance region

T̂ nor(1−α) = [q(α2 )σ̂
∗ + cp,0,−q(α2 )σ̂

∗ + cp,0], (24)

where qα is the α quantile of the standard normal distribution.
Basic Bootstrap Test. The bootstrap distribution Eq.
(21) of t̂∗B is used directly to define the equi-tailed acceptance
region

T̂ bas(1−α) = [t̂∗B,(α2 ), t̂
∗
B,(1−α

2 )], (25)

where t̂∗B,(α) is the empirical α-quantile of Eq. (21) for t̂∗B .
Percentile Bootstrap Test. There is a duality between
significance tests for parameters and confidence sets for those
parameters, in the sense that - for a prescribed level - a con-
fidence region includes parameters that are not rejected by
an appropriate significance test [12]. The percentile test is
constructed by inversion of a percentile confidence interval
[ĉ∗p, (α2 ), ĉ

∗
p, (1−α

2 )] for cp, and has acceptance region

T̂ per(1−α) = [−t̂∗(1−α
2 ),−t̂

∗
(α2 )]. (26)

Studentized Bootstrap Test. The studentized test is a
basic bootstrap test for the pivoted test statistic TS . The
method thus demands a double bootstrap for calculating the
standard deviation estimations σ̂∗∗ and has acceptance region

T̂ stu(1−α) = [t̂∗S, (α2 ), t̂
∗
S, (1−α

2 )]. (27)

Adjusted p-value for Basic Bootstrap Test. If the usual
error rate interpretation of p is to be valid, the p-value must
be uniformly distributed on [0, 1] under H0. This is, however,
not guaranteed for composite null hypotheses and approximate
null models Eq. (21). The adjusted p-value method aims at
estimating an improved p-value that is more nearly uniformly
distributed than the unadjusted one. It treats p as the observed
test statistic and estimates its distribution by resampling under
the null model [12]. The double-sided adjusted p-value is:

pbasadj = 2min
(
Pr{pbas∗ ≤ pbas|F̂θ}; Pr{pbas∗ > pbas|F̂θ}

)
.

(28)
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dα =

{
1 if t̂ /∈ T̂(1−α)

0 otherwise.
p = (α|dα = 0, dα+ε = 1) , ε > 0

Normal: T̂ nor(1−α) = [q(α2 )σ̂
∗ + cp,0,−q(α2 )σ̂

∗ + cp,0]

Basic: T̂ bas(1−α) = [t̂∗B,(α2 ), t̂
∗
B,(1−α

2 )]

Percentile: T̂ per(1−α) = [−t̂∗(1−α
2 ),−t̂

∗
(α2 )]

Studentized: T̂ stu(1−α) = [t̂∗S, (α2 ), t̂
∗
S, (1−α

2 )]

Adjusted Basic: T̂ adjbas(1−α) = {t : pbasadj ≥ α}

Adjusted Percentile: T̂ adjper(1−α) = {t : pperadj ≥ α}

Table 1: Overview of significance α bootstrap tests and their
corresponding acceptance regions.

Here, pbas is the p-value of the basic bootstrap test, and the
pbas∗ are its bootstrap resamples, obtained through a double
bootstrap. The acceptance region is

T̂ adjbas(1−α) = {t : pbasadj ≥ α}. (29)

Adjusted p-value for Percentile Bootstrap Test. The
adjusted p-value for the percentile bootstrap test is given by
Eq. (28) by replacing pbas and pbas∗ with the p-value of the
percentile bootstrap test pper and its corresponding bootstrap
resamples pper∗, respectively. It has acceptance region:

T̂ adjper(1−α) = {t : pperadj ≥ α}. (30)

The bootstrap tests, p-values and acceptance regions consid-
ered in this work are summarized in Table 1.

4 Statistical performance assessment

4.1 Methodology: Monte Carlo Simulations

We evaluate the statistical performance of the proposed boot-
strap test procedures by applying them to a large number NMC

of realizations of two different synthetic stochastic processes
with a priori known and controlled multifractal properties and
log-cumulant values cp. For each realization, each test proce-
dure defined above provides us with 2 outputs: The decision d̂α,
and the p-value of the observed test statistic. From averages
over realizations, we evaluate the actual significances, p-values
and powers of the tests and compare them both against theo-
retical targets and against each other. The aim of this numer-
ical study is to address the following issues: Do the bootstrap

test procedures described above exhibit satisfactory statistical
performance? Should one prefer wavelet coefficients or wavelet
Leaders for testing mono- vs. multi-fractality? What precise
design of the acceptance region Eqs. (24-27, 29, 30) yields the
best statistical performance?

4.2 Scaling Processes

We make use of two stochastic processes, Fractional Brownian
motion (FBM) and Multifractal random walk (MRW), chosen
because they provide us with simple yet representative exam-
ples of Gaussian monofractal processes and non Gaussian mul-
tifractal processes, respectively.
FBM is the only Gaussian exactly self-similar process with
stationary increments. Its full definition as well as that of self-
similarity can be found in e.g., [29]. The statistical properties
of FBM are entirely determined by the parameter H. FBM
possesses scaling properties as in Eqs. (6-8), with ζ(q) = qH,
for q ∈ (−∞,∞). Thus, c1 = H and cp ≡ 0 for all p ≥ 2.
MRW is a specific example of a LN-MF process. MRW
has been introduced in [8] as a simple multifractal (hence
non Gaussian) process with stationary increments: X(k) =∑n
k=1GH(k)eω(k), where GH(k) consists of the increments

of FBM with parameter H. The process ω is indepen-
dent of GH , Gaussian, with the following specific covariance:
cov(ω(k1), ω(k2)) = λ ln

(
L

|k1−k2|+1

)
when |k1 − k2| < L, and 0

otherwise. MRW has interesting scaling properties as in Eqs.
(6-8) for q ∈

[
−

√
2/λ,

√
2/λ

]
, with ζ(q) = (H + λ)q − λ2q2/2.

Hence, c1 = H + λ, c2 = −λ2 and cp ≡ 0 for all p ≥ 3, and the
departure from a linear behavior in q is fully controlled by c2.

4.3 Simulation Setup

The results presented here are obtained using Daubechies
wavelets with Nψ = 3 vanishing moments. The sample sizes
read n = 2J with J = {12, 15}, and the linear regressions
Eq. (12) are performed over the scales defined by j1 = 3
to j2 = J − 4. The bootstrap parameters are fixed to B =
2 ·Nψ = 6, (R = 599, S = 50) for N = 212 and (R = 399, S =
25) for N = 215. Nominal significances were chosen to be
α = {0.05, 0.1, 0.15, 0.2, 0.25}. The process parameters are
set to H = c1 = 0.8 for FBM, and (H,λ) = (0.72,

√
0.08),

i.e. c1 = 0.8 and c2 = −0.08 for MRW. For the simula-
tions of the power against multiple alternatives with MRW (cf.
Figure 4), a range of 10 parameter settings, H = 0.72 and
λ2 = −c2 = {0.01, 0.02, · · · , 0.09, 0.1}, is used.
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c2 FBM Coefficients n = 212 Coefficients n = 215

α nominal 0.050.100.150.200.25 0.050.100.150.200.25

Normal 0.10 0.18 0.23 0.29 0.35 0.07 0.13 0.18 0.24 0.29

Basic 0.08 0.16 0.23 0.30 0.34 0.07 0.13 0.18 0.23 0.29

Percentile 0.12 0.19 0.26 0.31 0.37 0.080.12 0.18 0.24 0.30

Studentized 0.08 0.16 0.23 0.29 0.34 0.060.120.170.220.27

Adj Basic 0.070.130.200.240.29 0.10 0.15 0.19 0.26 0.30

Adj Percent. 0.11 0.17 0.22 0.26 0.30 0.10 0.15 0.19 0.25 0.31

c2 FBM Leaders n = 212 Leaders n = 215

α nominal 0.050.100.150.200.25 0.050.100.150.200.25

Normal 0.13 0.20 0.27 0.32 0.38 0.18 0.27 0.34 0.40 0.46

Basic 0.17 0.22 0.29 0.34 0.40 0.24 0.34 0.41 0.48 0.54

Percentile 0.14 0.21 0.28 0.34 0.40 0.12 0.21 0.28 0.34 0.39

Studentized 0.12 0.19 0.26 0.30 0.34 0.20 0.30 0.38 0.44 0.50

Adj Basic 0.14 0.19 0.22 0.28 0.34 0.30 0.33 0.40 0.46 0.51

Adj Percent. 0.120.150.190.250.30 0.160.170.240.290.34

c2 MRW Coefficients n = 212 Coefficients n = 215

α nominal 0.050.100.150.200.25 0.050.100.150.200.25

Normal 0.06 0.12 0.17 0.22 0.28 0.050.100.150.200.25

Basic 0.07 0.12 0.18 0.24 0.29 0.05 0.12 0.18 0.23 0.29

Percentile 0.07 0.13 0.19 0.24 0.30 0.050.10 0.14 0.19 0.24

Studentized 0.07 0.12 0.17 0.23 0.27 0.040.10 0.16 0.22 0.28

Adj Basic 0.060.09 0.14 0.19 0.24 0.08 0.13 0.18 0.24 0.28

Adj Percent. 0.070.110.150.200.25 0.080.10 0.140.20 0.24

c2 MRW Leaders n = 212 Leaders n = 215

α nominal 0.050.100.150.200.25 0.050.100.150.200.25

Normal 0.06 0.12 0.17 0.23 0.27 0.07 0.14 0.19 0.24 0.30

Basic 0.10 0.16 0.21 0.26 0.31 0.10 0.18 0.24 0.30 0.36

Percentile 0.050.100.140.200.25 0.050.100.160.210.26

Studentized 0.06 0.110.16 0.210.25 0.06 0.12 0.18 0.23 0.28

Adj Basic 0.09 0.120.16 0.19 0.23 0.15 0.16 0.23 0.26 0.32

Adj Percent. 0.04 0.06 0.09 0.12 0.16 0.08 0.080.14 0.16 0.22

Table 2: Actual significances α̂MC of bootstrap tests on c2,
using coefficients and Leaders, for FBM (c2,0 = c2 = 0) and
MRW (c2,0 = c2 = −0.08). Nominal significances and results
closest to nominal values are marked in bold.

5 Results

5.1 Significance and p-value, under H0

A first set of experiments is run to evaluate the actual signif-
icances and p-values of the procedures. For that, we test the
hypothesis H0 : cp = cp,0 when this hypothesis is true.
We obtain NMC estimates d̂α and p̂ for each of the proposed
tests and nominal αs.
Significance. The actual significances α̂MC of the tests are
estimated as (Ê denotes the average performed over Monte-
Carlo realizations):

α̂MC = Ê{d̂α|cp ≡ cp,0} (31)

c2 FBM MRW

Coefficients Leaders Coefficients Leaders

212 215 212 215 212 215 212 215

Normal 0.43 0.48 0.42 0.36 0.47 0.49 0.49 0.47

Basic 0.44 0.48 0.39 0.32 0.47 0.48 0.46 0.43

Percentile 0.42 0.47 0.41 0.41 0.47 0.50 0.50 0.50

Studentized 0.44 0.49 0.42 0.34 0.48 0.49 0.50 0.47

Adj Basic 0.46 0.46 0.43 0.31 0.49 0.46 0.50 0.44

Adj Percent. 0.44 0.46 0.47 0.42 0.50 0.49 0.56 0.52

Table 3: Mean p-value Ê{p̂|c2 = c2,0} of bootstrap tests on c2,
using coefficients and Leaders, for FBM (c2,0 = c2 = 0) and
MRW (c2,0 = c2 = −0.08). Results closest to the theoretical
value E p = 1/2 are marked in bold.

and should ideally equal the nominal significance α.
Table 2 summarizes the results for tests on c2. We see that α̂MC

is in general satisfactorily close to nominal α for the proposed
methods. For FBM, the tests employing coefficients reproduce
the nominal α slightly better than those using Leaders, in par-
ticular for large sample size. For MRW, coefficients and Lead-
ers based tests perform equivalently well, both having actual
significance very close to the nominal one. When using coeffi-
cients, no clear preference can be given to any of the particular
acceptance regions. We note that the adjusted percentile and
the percentile (FBM), and the percentile and the studentized
(MRW) method perform slightly better than the others for tests
based on Leaders.
P-value. Ideally, the p-value under H0 should be uniformly
distributed, with mean 1/2. The average actual p-values p̂MC

of the tests are estimated as p̂MC = Ê{p̂|cp ≡ cp,0}, and are
summarized in Table 3 for c2. Examples of their empirical dis-
tributions are shown in Fig. 3. We observe that the expected
uniform (mean 1/2) distributions are satisfactorily reproduced
for both FBM and MRW and for all acceptance regions. There-
fore, the error rate interpretation of the estimation p̂ of p is valid
for the proposed procedures. We note that whereas the adjusted
methods generally improve results for small sample size n, it ap-
pears to be much less decisive for larger sample size. This may
be due to the smaller number of double bootstrap resamples
(S = 25) used in the latter case.

5.2 Power, under HA

A second set of experiments is run to evaluate the power of the
procedures. For that, we test the hypothesis H0 : cp ≡ 0 when
an alternative HA : cp = cp,A 6= 0 is true.
Power. The actual powers of the tests are estimated as:

β̂MC(cp,A, α) = Ê{d̂α|cp = cp,A}. (32)

Table 4 summarizes the results for the particular alternative
HA : c2 = c2,A = −0.08. The larger the power, the better the
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Figure 3: Empirical distributions of the p-value of the bootstrap
tests, obtained for MRW (c2,0 = c2 = −0.08, n = 215) using
Leaders.

c2 MRW Coefficients 212 Coefficients 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

Normal 0.16 0.25 0.31 0.38 0.42 0.45 0.55 0.62 0.67 0.71

Basic 0.13 0.21 0.28 0.35 0.40 0.40 0.50 0.57 0.62 0.66

Percentile 0.220.300.360.410.47 0.48 0.590.660.710.75

Studentized 0.13 0.18 0.25 0.32 0.37 0.29 0.41 0.50 0.57 0.61

Adj Basic 0.12 0.18 0.24 0.30 0.35 0.46 0.53 0.58 0.63 0.66

Adj Percent. 0.19 0.27 0.33 0.38 0.43 0.550.600.660.71 0.74

c2 MRW Leaders 212 Leaders 215

α nominal 0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

Normal 0.61 0.71 0.78 0.82 0.85 0.970.990.99 0.99 0.99

Basic 0.53 0.63 0.69 0.74 0.78 0.96 0.97 0.98 0.99 0.99

Percentile 0.700.800.840.870.89 0.980.990.991.001.00

Studentized 0.45 0.56 0.62 0.67 0.71 0.90 0.94 0.96 0.97 0.98

Adj Basic 0.49 0.56 0.61 0.67 0.71 0.97 0.97 0.98 0.98 0.99

Adj Percent. 0.66 0.71 0.76 0.81 0.84 0.990.990.99 0.99 0.99

Table 4: Actual power β̂MC(cp,A, α) vs. significance of boot-
strap tests of H0 : c2 ≡ 0 for MRW (c2,A = c2 =−0.08), us-
ing coefficients (top) and Leaders (bottom). Best results are
marked in bold.

test. As expected, we observe that the power increases with n.
Also, we see that the percentile and adjusted percentile method
have consistently the largest power. Whereas the tests employ-
ing coefficients achieve only low powers, the Leader based pro-
cedures perform significantly better, with power up to 0.7 for
small sample size and α, and approximately 1 for large sam-
ple size. The superiority of the Leaders based procedures is
also clearly illustrated in Fig. 4, which shows the power of the
basic bootstrap test (with R = 199) for a set of alternatives
c2 = c2,A = {−0.01,−0.02, · · · ,−0.1}: Whereas the coefficient
based test achieves only low powers over the whole range of al-
ternatives, the Leader based procedure maintains large powers
over a wide range of alternatives. The powers of the Leader
based test remain significantly above those of the coefficient
based test for alternatives close to the null value c2,0 = 0, in
particular for large sample size.
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Figure 4: Actual power β̂MC(c2,A, α) of basic bootstrap test of
H0 : c2 ≡ 0 for MRW against various alternatives c2,A = c2,
obtained for nominal significances α = 0.05 (left) and α = 0.1
(right). Dashed and solid lines represent results obtained with
coefficients and Leaders, respectively. The symbols (◦, ×) stand
for n =(212 , 215), respectively.

5.3 Conclusions

The results discussed above show that the proposed non para-
metric bootstrap procedures for testing H0 : cp = cp,0 present
satisfactory performance in reproducing the targeted signifi-
cances and p-values, equivalently for wavelet coefficients and
wavelet Leaders. However, the test procedures involving Lead-
ers are significantly more powerful than their coefficient-based
counterparts and are thus clearly preferable. The choice of ac-
ceptance region has little impact on the actual significances
α̂MC and on the empirical distributions of the p-values, with a
slight preference however for the percentile and adjusted per-
centile methods. These methods obtain as well the largest pow-
ers, hence, they will be preferred. Furthermore, the adjusted
method requires the calculation of double bootstrap resamples,
increasing the computational cost for the bootstrap by a factor
S, without bringing significant improvements. For instance, on
a standard PC, the bootstrap estimation and test procedures
for c1, c2 for a single observation of length n = 212 (215) requires
around 1.6 (2.7)s for simple bootstrap methods and 21.3 (48.4)s
for double bootstrap methods (R = 399, S = 25 in all cases).
It is possible that the results obtained with double bootstrap
methods could be slightly improved by using a larger number
of double bootstrap resamples S, however at the cost of further
increasing computational load considerably.
Therefore, we conclude that tests for H0 : cp = cp,0 should be
based on Leaders and percentile acceptance regions.

5.4 Further developments.

The bootstrap tests were illustrated here with MRW, a Log-
Normal multifractal process (i.e., ∀p ≥ 3, cp = 0). However,
as mentioned above, the tests can be applied to any multifrac-
tal process and any cp. For instance, applying the tests with
the choice H0 : c3 = c3,0 ≡ 0 provides us with indications to
decide whether a Log-Normal multifractal process or a more
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sophisticated MF model is to be used to describe the data un-
der study. Let us recall that, in itself, c3 = 0 does not prove
that data follow a Log-Normal process, this is however a very
valuable and practically useful information. We have studied
the relevance and statistical performance of such tests through
numerical simulations for another class of synthetic multifractal
processes: Compound Poisson Cascades [3], whose c3 6= 0 can
be set a priori. For space reasons, such results are not presented
here and will be reported elsewhere.

Along another line, alternative test statistics such as T =
|cp − cp,0| have also been studied. Results on this, yielding
similar conclusions, are not reported here.

6 Conclusions and Perspectives

Practical test procedure. We have constructed a prac-
tical procedure that enables us to test a given a priori chosen
multifractal property: H0 : cp = cp,0. Obviously, the choice
H0 : c2 = c2,0 ≡ 0 can be seen as a test of mono- versus multi-
fractality (indeed, it is conjectured, that c2 = 0 ⇒ ∀p ≥ 3, cp =
0). We showed from numerical simulations on synthetic multi-
fractal processes that such tests possess satisfactory statistical
performance. A Matlab procedure, designed by the authors,
implements this proposed multifractality test procedures. To
the best of our knowledge, this is the first and only practical
multifractal test that can actually be applied to a single ob-
servation of data with finite length. We see this result as an
important contribution to empirical multifractal analysis.
In addition to obtaining d̂α and p̂, our practical test procedure
also outputs, from a single realization, an approximate p-value
as a function of a potentially observable value c̃p. This is done
by (numerically) inverting the estimated null distribution:

p̂(c̃p) = 2 ·min
(
P̂T0 (γ); 1− P̂T0 (γ)

)
(33)

with γ = c̃p − cp,0 for test statistic TB , and γ = c̃p−cp,0
σ̂∗ for

TS . Examples of such p-value functions are depicted in Fig.
5, together with an estimate from MC simulation. For all ac-
ceptance region methods, we observe that the functions p̂(c̃p)
match satisfactorily well the one obtained from MC simulations.
Such p-value functions can be seen as a powerful help for the
practitioner. Indeed, the narrower the functions, the more pow-
erful the tests.
When analyzing real data, power functions such as those pro-
posed in Fig. 4 can usefully complete the test procedure. They
can be estimated by numerical simulations on synthetic mul-
tifractal processes whose parameters and size fit those of the
data under analysis.
Perspectives. Parametric bootstrap tests can also be used.
They must be based on the assumption that the distributions
of wavelet Leaders can be modeled via a general class of func-
tions. This is under current investigations.
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Figure 5: P-value function estimate from Monte Carlo simula-
tion (dashed) and bootstrap estimates from single realization
(solid) vs. a potentially observable value c̃2, obtained for MRW
(c2 = −0.08, c2,0 = 0) using Leaders. The symbols (� , . , × , ◦)
stand for (Normal, Basic, Percentile, Studentized) acceptance
regions, respectively.

Methods for estimating the power of a test against specific alter-
natives from a single realization can further improve the prac-
tical test procedures and are currently tested.
There are major potential interests in applying these multi-
fractal tests to empirical data from hydrodynamic turbulence,
computer network traffic and biomedical applications. We are
currently analyzing such data.
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[6] H. Wendt, S.G. Roux, and P. Abry, “Bootstrap for log
wavelet leaders cumulant based multifractal analysis,” in
Proceedings of EUSIPCO, Florence, 2006.

10



[7] B. Castaing, Y. Gagne, and M. Marchand, “Log-similarity
for turbulent flows,” Physica D, vol. 68, pp. 387–400, 1993.

[8] E. Bacry, J. Delour, and J.F. Muzy, “Multifractal random
walk,” Phys. Rev. E, vol. 64, pp. 026103, 2001.

[9] B. Efron, The Jackknife, the Bootstrap, and Other Resam-
pling Plans, Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1982.

[10] A.M. Zoubir and D.R. Iskander, Bootstrap Techniques for
Signal Processing, Cambridge University Press, ISBN 0-
521-83127-X, 2004.

[11] A.M. Zoubir, “On confidence intervals for the coherence
function,” in Proceedings of the 30th IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), Philadelphia, 2005.

[12] A.C. Davison and D.V. Hinkley, Bootstrap methods and
their application, Cambridge series on statistical and prob-
abilistic mathematics. Cambridge University Press, Cam-
bridge, 1997.

[13] D.B. Percival, S. Sardy, and A.C. Davison, “Wavestrap-
ping time series: Adaptive wavelet-based bootstrapping,”
in Nonlinear and Nonstationary Signal Processing, W.J.
Fitzgerald, R.L. Smith, A.T. Walden and P.C. Young,
Eds., Cambridge, 2000, pp. 442–471, Cambridge Univer-
sity Press.

[14] A.M. Sabatini, “Wavelet-based estimation of 1/f -type sig-
nal parameters: Confidence intervals using the bootstrap,”
in Proceedings of the 30th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Philadelphia, 2005.

[15] H. Wendt and P. Abry, “Bootstrap for multifractal analy-
sis,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Toulouse, 2006.

[16] I. Daubechies, Ten Lectures on Wavelets, SIAM, New
York, 1992.

[17] S. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, San Diego, CA, 1998.

[18] J.F. Muzy, E. Bacry, and A. Arneodo, “The multifractal
formalism revisited with wavelets,” Int. J. of Bifurc. and
Chaos, vol. 4, no. 2, pp. 245–301, 1994.
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