Multiscale Anisotropic Texture Unsupervised Clustering for Photographic Paper

S.G. Roux(1), N. Tremblay(1), P. Borgnat(1), P. Abry(1), H. Wendt(2) and P. Messier(3)

(1) Laboratoire de Physique, ENS Lyon, CNRS 46 allée d’Italie, 69007, Lyon, France
(2) CNRS, IRIT-ENSHEIT, Université de Toulouse, France
(3) Paul Messier LLC, Boston, USA.

Email: patrice.abry@ens-lyon.fr, stephane.roux@ens-lyon.fr,
Work supported by ANR BLANC 2011 AMATIS BS0101102 and GRAPHSIP ANR-14-CE27-0001-02

Abstract—Texture characterization of photographic papers is likely to provide scholars with valuable information regarding artistic intentions. Currently, texture assessment remains mostly based on visual and manual inspections, implying long repetitive tasks prone to inter- and even intra-observer variability. Automated texture characterization and classification procedures are thus important tasks in historical studies of large databases of photographic papers, likely to provide quantitative and reproducible assessments of texture matches. Such procedures may, for instance, produce vital information on photographic prints of uncertain origins. The hyperbolic wavelet transform, because it relies on the use of different dilation factor along the horizontal and vertical axes, permits to construct robust and meaningful multiscale and anisotropic representation of textures. In the present contribution, we explore how unsupervised clustering strategies can be complemented both to assess the significance of extracted clusters and the strength of the contribution of each texture to its associated cluster. Graph based filterbank strategies are notably investigated with the aim to produce small size significant clusters. These tools are illustrated at work on a large database of about 2500 exposed and non exposed photographic papers carefully assembled and documented by the MoMA and P. Messier’s foundation. Results are commented and interpreted.

I. INTRODUCTION

In historical studies of photographic papers, surface examination constitutes an important task, likely to provide photo conservators with crucial information regarding artistic intentions, manufacturer practices, assessment of texture matches or outliers in an artist production. Often, texture assessment remains mostly achieved by visual or manual inspections. This implies long, tedious and repetitive tasks, which are moreover prone to inter- and even intra-observer variability and cannot be achieved for large size databases, cf. e.g., [1], [2], [3].

There is thus a strong need for automated procedures achieving reproducible and quantitative texture characterization. This gave birth to several recent attempts and efforts to investigate the relevance and performance of computer-assisted automated texture characterization and clustering procedures in the context of historical studies of photographic papers, cf. e.g., the Historic Photographic Paper Classification Challenge lead by R. Johnson and P. Messier, under the supervision of the Museum of Modern Art, New York (cf. http://www.papertextureid.org and [3]).

As a first step towards automation, a raking light imaging device, the TextureScope, has recently been designed to measure photographic paper texture with a standardized procedure, currently accepted by numerous museums, thus permitting reproducible and quantified texture measurement [1], [3]. The paper sheets analyzed in this contribution were digitized according to that procedure.

Once digitized samples are made available, image processing tools are needed to characterize textures. Several of them, of very different natures were recently compared in [3], [4]. Following our first works [5], [6], texture characterization in the present contribution makes use of the Hyperbolic Wavelet Transform [7], providing anisotropic multiscale characterization of textures [8].

Texture characterization produces a collection of features from which distance between prints, ressemblance and dissemblance can be quantified. In the context of photographic print classification, several unsupervised classification procedures were compared in [3], [4]. In previous contributions [5], [6], Spectral Clustering [9] was used. A well-known shortcoming of spectral clustering, as well as of other unsupervised clustering techniques such as K-means, lies in the fact that the number K of clusters is either arbitrarily chosen or decided via the recourse to external criteria (such as e.g., AIC, BIC) [10]. In addition, such approaches necessarily classify all images, including those consisting of potential outliers actually far from any cluster. The present contribution aims to alleviate such shortcomings by revisiting spectral clustering as being an ideal low-pass filtering on graphs and considering other multiscale lowpass filterbanks instead, following what has been done for community detection in networks [11]. This elaborate on a first attempt [12] on a larger dataset.

We illustrate how measures of cluster stability and cluster core permit to estimate the relevant number(s) of clusters as well as the relevance of a given print’s attribution to a cluster. This is applied to a large dataset of photographic papers, prepared by P. Messier, and detailed in the following Section.

II. PHOTOGRAPHIC PAPER DATASET AND FEATURES

A. Dataset

The dataset consists of 2491 images obtained using the Texturescope, a raking light close up image acquisition that provide repeatable standardized conditions. This imaging system, extensively described in [3], requires minimal specialized handling so that large image sets can be produced rapidly. The images obtained have a size of 1536×2080 pixels and depict a surface of 1.00×1.35 cm (1 pixel equivalent to $42.2 \mu m^2$). This selected scale reveals some microscopic features, such
as matting agents occasionally used by manufacturers, but
also depicts attributes recognizable to a human observer. The
dataset includes blank and printed paper with a very large
diversity of origin and material, and consists in several subsets:
- 2031 sample images of traditional black and white paper
surface texture taken directly from manufacturer packages or
sample books spanning the 20th century. These samples are
representative of the full range of surface textures available
to 20th century photographers. Documentation about texture,
reflectance, brand, manufacturer and year are provided by
art experts and curators for a large proportion of the dataset
samples, essentially consisting of blank papers ;
- 348 sample images from Thomas Walther collection
held by the Museum of Modern Art and contain work by
leading modernist photographers primarily active in Central
and Eastern Europe between the World Wars ;
- 83 sample images from Man Ray (1890-1976) prints ;
- 18 samples images from Lewis Hines (1874-1940) prints ;
- 11 prints belonging to the Museum of Fine Arts, Houston
(MFAH) from the same artist and depicting the same images
as 11 prints from the Thomas Walther collection.

B. Multiscale features

Texture characterization is achieved using the Hyperbolic
wavelet transform [7], [8], a variation of the two dimensional
discrete wavelet transform which relies on two independent
dilation factors along the x_1 and x_2 directions. This transform
explicitly takes into account the possible anisotropic nature
of image textures. More precisely, the hyperbolic wavelet
coefficients of an image I are obtained by scalar product of
the digitalized image with a separable wavelet dilated by two
different factors, a_1 and a_2:

$$T_I((a_1, a_2),(k_1, k_2)) = \frac{1}{\sqrt{a_1 a_2}} \langle I(x_1, x_2), \psi((x_1 - k_1, x_2 - k_2) / a_1, a_2) \rangle.$$ (1)

The multiscale representation of the image is then obtained by
computing space averages (l^2-norm) of these coefficients at
fixed scale (a_1, a_2):

$$S_I(a_1, a_2) = \frac{1}{n} \sum_{k_1, k_2} |T_I(a_1, a_2, k_1, k_2)|^2,$$ (2)

Cepstral distance: To quantify proximity between images
I and J, we use a cepstral-type distance of $S_I(a_1, a_2)$:

$$\Theta(I, J) = \sum_{a_1, a_2} |\tilde{S}_I(a_1, a_2) - \tilde{S}_J(a_1, a_2)|,$$ (3)

where $\tilde{S}_I(a_1, a_2) = \log (S_I(a_1, a_2) / \sum_{a_1', a_2'} S_I(a_1', a_2'))$.

This distance does not depend upon a change in the intensity
of the raking light and exposure variables that influence
overall image brightness. The selected analysis scales are
1 ≤ a_1, a_2 ≤ 7 and correspond to physical scales ranging
from 13μm ≤ a_1, a_2 ≤ 83mm (7 octaves) thus yielding a
matrix of 49 multiscale features. The similarity matrix is then
defined using the non-linear transformation $W = \exp(-\Theta / \epsilon)$
where ϵ is a constant assessing the typical closeness between
images (of the order of the standard deviation of the distance
between all pairs of the database). A comparison with classical
clustering tools (PCA, K-means...) apply directly on Θ will be
done in a future work.

III. UNSUPERVISED CLUSTERING WITH GRAPH FILTERS

A. Background: Spectral clustering

There are many ways to cluster data in an unsupervised
manner (see, e.g., [10] and we focus in this work on the
network interpretation of the similarity matrix W as a weighted
adjacency matrix. Finding groups in the data can be tackled as
finding a partition of the corresponding undirected weighted
graph (each node being a data sample).

We first recall the method of spectral clustering [10],
[9] to partition a graph. The normalized Laplacian matrix is

$$\mathcal{L} = \mathbf{I}_N - \frac{1}{2} \mathbf{W} \mathbf{S}^{-\frac{1}{2}} \mathbf{S}^{-\frac{1}{2}} \mathbf{W},$$

where \mathbf{S} is the diagonal matrix of node strengths, with $S_{ii} = \sum_{j \neq i} W_{ij}$, and \mathbf{I}_N is the identity matrix
of size N (the number of nodes). \mathcal{L} is diagonalizable, and its
sorted Eigenvalues are: $\lambda_1 \leq \lambda_2 \leq \lambda_3 \cdots \lambda_N \leq 2$;
associated to orthonormal eigenvectors: $\chi = (\chi_1, \chi_2, \cdots \chi_N)$.

Classical spectral clustering makes use of the first K
eigenvectors to define feature vectors $f_{K,i} \in \mathbb{R}^K$ for each node
i:

$$\forall k \in [1, K] \quad f_{K,i}(k) = \chi_k(i).$$ (4)

Then, any suitable classification method can be used to obtain
K clusters from these feature vectors. The K-means algorithm
or hierarchical clusterings are often used.

B. Graph filters for spectral clustering

It was first proposed in [11] to use graph wavelet filters
(introduced in [13]) to find relevant sub-graphs that partition
the data. This work was done for the mining of communities
in graphs and it was later introduced in [12] in the context
of unsupervised clustering. Let us consider the analogy stating
that the graph Laplacian’s eigenvectors are equivalent to the
graph’s Fourier modes [14]. It follows from this analogy that
filtering on graphs is defined by a filter kernel which is
diagonal on the Laplacian eigenvector basis. Following [15],
we will use low-pass filters (derived from a kernel function h
that designed in this graph Fourier space $[0, 2]$ as being scaling
function filterbanks (in relation to wavelet filterbanks). Refer
[15] for their exact mathematical expression.

Then, a scale parameter $s \in \mathbb{R}^{+*}$ is introduced to dilate the
kernel h in order to explore different levels of resolutions of the
clusters to be found. Specifically, the discrete filter vector h_s
reads $\forall i \in [1, N] \quad h_s(i) = h_s(\delta_i)$, and the scaling function
centered around node i at scale s has value $\phi_{s,i} = \chi H_s \chi^\top \delta_i$
where $H_s = \text{diag}(h_s)$. Given these scaling functions, we define new feature vectors different from the $f_{K,i}$ of classical
spectral clustering :

$$f_{s,i} = \chi^\top \phi_{s,i} = H_s \chi^\top \delta_i.$$ (5)

Note that if one defines h_s as a simple low pass step function
up to λ_K (i.e. $h_s(i) = 1$ for all $\lambda_1 \leq \lambda_K$ and zero otherwise),
then $f_{s,i}$ is exactly equivalent to the classical feature vectors
$f_{K,i}$ of Eq. (4). These new feature vectors may therefore be
seen as a generalization of spectral clustering feature vectors
to filter kernels that may be different from the step function
involved in spectral clustering (as illustrated in Fig. 1).
Fig. 1. Filterbanks for scaling functions (black lines) at scales \(s = 1, 10, 30, 50 \), for comparison against the step function filters (in blue) involved in classical spectral clustering. The magenta dots correspond to the eigenvalues of the normalized Laplacian matrix \(\mathcal{L} \).

C. A stochastic estimate of the cosine distance between feature vectors

The next step is to estimate a distance. Here, we choose the cosine distance\(^1\) between feature vectors associated to any pair of nodes \(i \) and \(j \) :

\[
D_s(i, j) = 1 - \frac{\|\mathbf{f}_{s,i}^\top \mathbf{f}_{s,j}\|}{\|\mathbf{f}_{s,i}\| \|\mathbf{f}_{s,j}\|}.
\]

Note that :

\[
\frac{\mathbf{f}_{s,i}^\top \mathbf{f}_{s,j}}{\|\mathbf{f}_{s,i}\| \|\mathbf{f}_{s,j}\|} = \frac{\mathbf{f}_{s,i}^\top \chi \mathbf{f}_{s,j}}{\|\mathbf{f}_{s,i}\| \|\mathbf{f}_{s,j}\|} = \frac{\phi_{s,i}^\top \mathbf{H} \chi \mathbf{f}_{s,j}}{\|\phi_{s,i}\| \|\phi_{s,j}\|}.
\]

The cosine distance between \(\mathbf{f}_{s,i} \) and \(\mathbf{f}_{s,j} \) is equal to the cosine distance between the scaling functions associated to \(i \) and \(j \). To compute \(D_s \), one needs first to compute all scaling functions \(\phi_{s,i} \), which requires the diagonalisation of the (potentially large) Laplacian matrix. To circumvent this issue, and inspired by Section 5 of [11] where the cosine distance between wavelets is stochastically estimated, we define stochastic features as :

\[
\mathbf{f}_{s,i}^\top = \phi_{s,i}^\top \mathbf{R} = \delta_{s,i}^\top \mathbf{H} \chi \mathbf{H}^\top \mathbf{R}
\]

where \(\mathbf{R} = (\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) \) is a set of \(\eta \) realizations of random vectors, of \(N \) i.i.d. Gaussian random variables of zero mean and finite variance. We can show, following [11] for wavelet filters, that the correlation of the feature vectors \(\mathbf{f}_{s,i} \), of size \(\eta \) for each node, gives an estimate of the cosine distance between scaling functions :

\[
\lim_{\eta \to +\infty} \overline{\text{Cor}}(\mathbf{f}_{s,i}^\top, \mathbf{f}_{s,j}^\top) = \frac{\phi_{s,i}^\top \phi_{s,j}}{\|\phi_{s,i}\| \|\phi_{s,j}\|} = 1 - D_s(i, j).
\]

Furthermore, even though the limit holds for \(\eta \) infinite, in practice, a small \(\eta \) is enough. Empirically we observe that to correctly estimate a partition in \(K \) clusters, one needs to use at least \(\eta > K \) random vectors.

The advantages of the stochastic approach are two-fold. First, it is not necessary anymore to diagonalize the Laplacian because one can rely on the fast graph filtering proposed in [13] to directly compute Eq. (7) without explicitly knowing \(\chi \). This method relies on a polynomial approximation of the filter \(h \) which is extensively explained in references [16]. Second, the inherent stochasticity allows us to assess the stability of the obtained results, which in turn helps us to estimate the relevant number of clusters.

D. Clustering algorithm

We have just shown that given \(\eta \) random vectors grouped in matrix \(\mathbf{R} \), and computing the correlation of their scaling function transform, one obtains an estimate of the cosine distance matrix \(\mathbf{D}_s \). We then use hierarchical clustering with average linkage as in [11] to obtain a partition in clusters \(P_s \).

We generate \(J \) random matrices \(\mathbf{R} \), and obtain thereby a family of partitions \(\{ P_s^j \}_{j \in [1, J]} \). Because of the randomness in the definition of \(\mathbf{R} \), any two partitions in this family are not necessarily equal. This stochasticity allows us to propose two indices to assess whether an obtained clustering is robust enough: the global stability of the clusters, and the local constancy of the attribution of each node to cluster(s).

E. Robustness of the clustering

The first metric, called Global Stability Index \(\gamma(s) \), is defined as the mean of the similarity between all pairs of partitions of \(\{ P_s^j \}_{j \in [1, J]} \):

\[
\gamma(s) = \frac{2}{J(J - 1)} \sum_{(i,j) \in [1, J]^2, i \neq j} \text{ari}(P_s^i, P_s^j)
\]

where the function \(\text{ari} \) is taken here as the Adjusted Rand Index [17]. The more stable is the partition at scale \(s \), i.e. the more interesting this scale is, the closer to 1 will be \(\gamma(s) \). In the following, we will closely consider scales whose stability is high enough. In fact, we typically estimate the clustering for a set of logarithmically spaced scales between two boundaries automatically detected by the algorithm [11]. Only the scales \(s^\ast \), the local maxima of \(\gamma(s) \), and their associated partitions are kept. This allows us to circumvent the usual issue of choosing or estimating the number of clusters \(K \) in spectral clustering.

Second, we introduce a local robustness measure of the clustering. Core clusters were defined in [18] in the context of community detection and we extend its use to the problem of data clustering. Two nodes \(i \) and \(j \) will be in the same cluster core if, in each of the \(J \) partitions, they are always classified in the same cluster. Clusters of size 1 will not be counted as cores. Given a scale \(s \), from the \(J \) different clustering \(\{ P_s^j \}_{j \in [1, J]} \), we obtain a list of cluster cores \(\{ C_z^s \}_{z \in [1, Z]} \). For each node \(i \), we define its frequency of core association \(\rho_s(i) \) : if \(i \) belongs to core \(C_z \), then the frequency is \(\rho_s(i) = 1 \); if \(i \) is not in a core, we compute the relative frequency \(\rho_s(i) = n_z / J \) based on the number of occurrences \(n_z \) for which \(i \) is associated to the same core \(C_z \) (we only keep the \(z' \) which maximizes \(n_z \)). In some cases, \(\alpha \) is always in its own cluster of size 1 which does not qualify as a core cluster and we keep it unclassified with \(\rho_s(i) = 0 \). If \(\rho_s(i) = 1 \), then we may confidently classify data \(i \) in its cluster core. If not, then \(i \) cannot be classified with full reliability with other points in this dataset, and \(C_z \) (cluster with a maximal number of occurrences for \(i \)) is only an indication of its closest core. The average

\[
\bar{\rho}_s = \frac{1}{N} \sum_{a} \rho_s(i)
\]
over all nodes of their relative association frequency to a
cluster core gives a second stability function that we will call
Local Stability Index in the following. The closer is β_s to 1,
the more stable is the local association of nodes (i.e., prints)
to cluster cores.

Global and Local Stability Indices are illustrated in Fig. 2.

F. Choice of the Laplacian

The equivalence between spectral clustering and low pass
graph filtering is technically exactly valid for symmetrical
Laplacian matrices (whose eigenbases are orthonormal); the
combinatorial Laplacian $L = S - W$ and the normalized
Laplacian (as previously defined) are two good candidates.
One may extend this analogy to the random walk Laplacian
$S_{rw} = I_N - S^{-1}W$, which is not symmetrical anymore
but has the same spectrum and has shown better results in
the spectral clustering literature (see [9] for instance). In the
following, we will show results obtained with the random walk
Laplacian.

Fig. 2. Left: Global (Eq. (9), blue) and Local (Eq. (10), black) Stability
Indices of achieved clustering versus clustering scale. Red dots on the Global
Stability Index correspond to local maxima, and thus indicate scales at which
achieved clustering show most relevance. The three red cross correspond to the
local maxima of the three analyzed scales in section IV. Right: Corresponding
number of cluster cores at each scale.

IV. PHOTOGRAPHIC PAPER CLUSTERING

A. Stability analysis and hierarchy of clusters

The proposed stochastic scaling function filterbank clustering
is applied to the affinity matrix W defined in Section II-B
and computed from features measured on each sample of the
large dataset described in II-A: 50 different scales are scanned,
using $\gamma = 200$ and $J = 100$ random matrices.

Fig. 2 reports the obtained stability indices across scales
for this large dataset (left) and the corresponding number of
clusters (right). Red dots on the Global Stability Index indicate
scales at which clustering can be considered relevant. While
fine scale $s = 4$ is marked as stable by the Global Stability
Index, the Local Stability Index is found very low at that scale
indicating that most prints randomly switch from one cluster
to the other in the stochastic procedure used to compute the
cosine distance (cf. Section III-C). This is due to artifacts of the
similarity measure Adjusted Rand Index used in the definition
of γ in Eq. (9). Scale $s = 4$ is thus considered as not yielding a
relevant clustering. The Global Stability Index shows 10 local
maxima above scale $s > 10$. In all cases, these local maxima
coincide with large Local Stability Indices. These scales can
thus be considered as yielding relevant partitions of the datasets
of prints at hand.

At the finest stable scale $s = 11$, the achieved partition
consists of 177 clusters, the largest of which contains 487
prints. The precise analysis and interpretation of the content
of each cluster is beyond the scope of the present article. For
the illustration of the relevance of the proposed clustering
approach, let us now concentrate on three stable scales
(amongst the 9 remaining stable scales), $s = 16, 21$ and 26,
yielding respectively 85, 28 and 20 clusters. Fig. 3 represents
the evolution of the core communities along the three chosen
scales $s = 16, 21$ and 26. It shows that the achieved clustering
is not hierarchical: a cluster at scale s can split into several at
scale $s' < s$, and conversely, a cluster at scale s' can result
from the merging of (portions) of clusters at a coarser scale
$s > s'$.

Fig. 4 displays the mean 49-features, $\overline{S_X}(a_1, a_2)$, rep-
resented as an image, for the 20 cluster cores obtained at
coarse scale $s = 26$. The differences in the mean signatures
permit to assess differences between the anisotropic multiscale
properties of the prints classified into each cluster: Asymmetry
in amplitude around the first diagonal betrays asymmetry of
the texture ; Large amplitude close to the bottom right corner
indicates energy at coarse physical scales.

The proposed clustering approach relies on a true multi-
尺度 strategy, that does not favor clusters of similar size but
rather clusters having the same “local vision” of the graph at a
given scale. This implies that the large cluster (Cluster 1 of size
2162) consists of a large ensemble that gathers most typical
prints, while the 19 other clusters have positions in the graph
that are definitely peculiar at that scale, and thus correspond
to prints whose properties depart significantly from the typical
properties of Cluster 1. At intermediate scale $s = 21$, the large
Cluster 1 splits into several clusters with one larger than the
other ones (size 1944). At fine scale $s = 16$, this large cluster
further splits into several clusters, the largest of which yet
remains significantly larger than all others (size 830).

Let us focus on some case studies of the 19 smaller clusters
at scale $s = 26$ and study with some details their evolution
across scales.

B. Case studies

Silk clusters: At coarse scale $s = 26$, Clusters 13, 14 and
20 (of sizes 25, 30 and 3) contain 45 prints documented as
Silk textures. Out of the 13 remainders, 9 are not documented
and visually look very much like silk texture. Fig. 5 (left) displays one example of print and the mean features of the cluster. Obvious differences in mean features explain why the prints are clustered in 3 different groups. Fig. 3 further shows that these three clusters remain identical at intermediate scale $s = 21$. At fine scale $s = 16$, however, while Clusters 13 and 20 stay identical, Cluster 14 is split into two clusters (57 and 65, of size 11 and 20). Fig. 5 (right) illustrates differences in the mean-features of these two refined clusters. Moreover, at this fine scale, a new small cluster (77 of size 2, Fig. 5 bottom right) appears as further extraction of Silk texture papers from the very large Cluster 1 at coarse scale $s = 26$, where they were mis-classified. At this fine scale, only 6 prints documented as silk are not accounted for. They are displayed in Fig. 6 with their features. The top 4 prints show, at least visually, patterns similar to other Silk prints, with much less contrasted textures though. The 2 bottom prints, though documented as Silk, show very different textures and features. This case study of Silk textures shows the ability to extract given attributes, such as Silk texture, in an automated way, and to detect potential mislabeling in metadata.

Glossy clusters: Let us now concentrate on Clusters 3, 8 and 11 (of size 139, 21 and 33) at coarse scale $s = 26$. Metadata indicates that they all essentially contain print reflectance documented as Glossy. Fig. 7 displays a sample and mean features for each of the 3 clusters and shows that mean-features of Cluster 3 significantly depart from those of Clusters 8 and 11. Interestingly, metadata indicate that Cluster 3 preferentially consists of prints from Kodak manufacturer (64 out of 139), while Clusters 8 and 11 contain far fewer Kodak prints (2 out of 21 and 7 out of 33, respectively). The fine scale features of textures may thus be interpreted as a Kodak manufacturer signature. These clusters remain identical at intermediate scale $s = 21$. At finer scale $s = 16$, Cluster 11 remains identical, while Cluster 8 splits into three clusters (42, 44 and 68, of size 12, 2 and 7), cf. Fig. 7 (right). Interestingly, Cluster 3 splits into four clusters shown in Fig. 8: Two of them, Clusters 53 and 56 (of size 11 and 101), contain mostly Kodak prints (8 out of 11 and 51 out of 101); Cluster 18 (of size 24) contains hardly any Kodak prints (3 out of 24); Cluster 85 (size 2) gathers the only two prints documented as Kodak manufacturer and Scientific Imaging Film brand.

Other clusters: At coarse scale $s = 26$, Clusters 9 (size 3), 10 (size 5) and 18 (size 3) display similar features as shown in Fig 4. Cluster 10 contains the only two prints from the entire database documented as Agfa Ansco and brand Cykon or Cikora with Crystal texture. This cluster remains identical down to the finest stable scale, thus showing its consisting of a set of 2 very specific textures. Cluster 9 contains one print from the Thomas Walther collection and the only two prints documented as Defender manufacturer, Velour Black Brand with canvas texture. At fine scale $s = 16$, the two defender remain together in a cluster of size 2. Besides the large cluster (Cluster 1), the two remaining significant clusters at coarse
Such algorithms and approaches may be used to achieve a number of tedious systematic tasks, such as detecting mislabeling in documentation or proposing automatic tentative labeling by semi-supervised strategies; art historians would then only have to validate proposed pre-documentations.

On the technical side, an extension of the work may consist of exploring the replacement of low-pass with band-pass filters (wavelet filterbanks on graphs) [13]: this may yield further details at finer scales.

REFERENCES

