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Abstract From a theoretical perspective, scale invariance, or simply scaling, can
fruitfully be modeled with classes of multifractal stochastic processes, designed
from positive multiplicative martingales (or cascades). From a practical perspective,
scaling in real-world data is often analyzed by means of multiresolution quantities.
The present contribution focuses on three different types of such multiresolution
quantities, namely increment, wavelet and Leader coefficients, as well as on a spe-
cific multifractal processes, referred to as Infinitely Divisible Motions and fractional
Brownian motion in multifractal time. It aims at studying, both analytically and by
numerical simulations, the impact of varying the number of vanishing moments of
the mother wavelet and the order of the increments on the decay rate of the (higher
order) covariance functions of the (q-th power of the absolute values of these) mul-
tiresolution coefficients. The key result obtained here consist of the fact that, though
it fastens the decay of the covariance functions, as is the case for fractional Brown-
ian motions, increasing the number of vanishing moments of the mother wavelet or
the order of the increments does not induce any faster decay for the (higher order)
covariance functions.
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1 Motivation

Scale invariance. Scale invariance, or simply scaling, is a paradigm nowadays
commonly used to model and describe empirical data produced by a large variety
of different applications [29]. Scale invariance consists of the idea that the data
being analyzed do not possess any characteristic scale (of time or space). Often,
instead of being formulated directly on the data X(t), scale invariance is expressed
through multiresolution coefficients, TX (a, t), such as increments or wavelet coeffi-
cients, computed from the data, and depending jointly on the position t and on the
analysis scale a. Practically, scaling is defined as power law behaviors of the (q-th
order) moments of the (absolute values of the) TX (a, t) with respect to the analysis
scale a:

1
na

na

∑
k=1
|TX (a,ak)|q ' cqaζ (q), (1)

for a given range of scales a∈ [am,aM], aM/am� 1, and for some (statistical) orders
q.

Performing scaling analyses on data mostly amounts to testing the adequacy of
Eq. (1) and to estimate the corresponding scaling exponents ζ (q).

Fractional Brownian motion and vanishing moments. Fractional Brownian
motion (fBm) has been amongst the first stochastic process used to model scaling
properties in empirical data and still serves as the central reference. It consists of
the only Gaussian self similar process with stationary increments, see [23] and ref-
erences therein. It is mostly controlled by its self-similarity parameter, 0 < H < 1,
and its scaling exponents behave as a linear function of q: ζ (q) = qH.

For 1/2 < H < 1, the increment process of fBm is characterized by a so-called
long range dependence structure, or long memory [23, 6]. This property significantly
impairs the accurate estimation of the process parameters.
Two seminal contributions [12, 13] (see also [25]) showed that the wavelet coeffi-
cients of fBm are characterized by a short range correlation structure, as soon as
the number Nψ of vanishing moments (cf. Section 3, for definition) of the analyzing
mother wavelet ψ0 is such that:

Nψ ≥ 2H +1. (2)

This decorrelation or whitening property of the wavelet coefficients implies, be-
cause of the Gaussian nature of fBm, that the entire dependence structure is turned
short range. This significantly simplifies the estimation of the model parameters,
and notably that of the self-similarity parameter H [2, 26, 30, 10]. It has, later, been
shown that this decorrelation property is also effective when using higher order in-
crements (increments of increments...) [16], which equivalently amounts to increas-
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ing the number of vanishing moments of the mother wavelet (cf. Section 3). This
key role of Nψ , together with the possibility that it can be easily tuned by practition-
ers, has constituted the fundamental motivation for the systematic and popular use
of wavelet transforms for the analysis of empirical data which are likely to possess
scaling properties.

Multiplicative martingales and vanishing moments. Often in applications,
scaling exponents are found to depart form the linear behavior qH associated to
fBm. To account for this, following Mandelbrot’s seminal works (e.g., [20]), mul-
tiplicative cascades (or more technically multiplicative martingales) have received
considerable interests in modeling scaling in applications. Notably, they are con-
sidered as reference processes to model multifractal properties in data, a particular
instance of scaling. Often, it has been considered heuristically by practitioners that
the benefits of conducting wavelet analyses over such models were equivalent to
those observed when analyzing fBm. Despite its being of crucial importance, this
issue received little attention at a theoretical level (see a contrario [15, 3]). This
can partly be explained by the fact that Mandelbrot’s multiplicative cascades, that
remain up to the years 2000, the most (if not the only) practically used process to
model multifractal scaling properties in data, present involved statistical character-
istics. Hence, the derivation of the dependence structure of their wavelet coefficients
has been considered difficult to obtain analytically. In turns, this prevents a theoreti-
cal analysis of the statistical properties of scaling estimation procedure based on Eq.
(1) (see a contrario [22] for one of the only theoretical result). More recently, a new
type of multiplicative martingales, referred to as compound Poisson cascades and
motions, have been introduced in the literature [5]. They were later generalized to
infinitely divisible cascades and motions and fractional Brownian motions in multi-
fractal time [21, 24, 4, 8, 9]. Such processes are regarded as fruitful alternatives to
the original and celebrated Mandelbrot’s cascades, as they enable to define processes
with both known multifractal properties and stationary increments. Moreover, they
are very easy to simulate. Therefore, they provide practitioners with relevant and
efficient models both for the analysis and the modeling of multifractal properties
in real world data. This is why they are studied in details in the present contribu-
tion. Yet, to our knowledge, neither the dependence structures of their wavelet or
increment coefficients nor the impact on such structures of varying the number of
vanishing moments of the analyzing wavelet, or of the order of the increments, have
so far been studied.

Multiresolution analysis. To study scale invariance and scaling properties, in-
crements have been the most commonly used multiresolution coefficients and their
statistical properties are traditionally and classically analyzed in the literature. How-
ever, it is now well known that wavelet coefficients provide relevant, accurate and
robust analysis tools for the practical analysis of scale invariance (self-similarity and
long range dependence notably, cf. [1]). Furthermore, it has recently been shown
[17, 18] that the accurate analysis of multifractal properties requires the use of
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wavelet Leaders instead of wavelet coefficients.

Goals and contributions. The central aim of the present contribution consists
of studying the impact of varying the number of vanishing moments of the ana-
lyzing wavelet or the order of the increments on the correlation and dependence
(or higher order correlation) structures of three different multiresolution coefficients
(increment, wavelet and Leader coefficients) for two different classes of multifractal
stochastic processes, infinitely divisible motions and fractional Brownian motions
in multifractal time. This is achieved by combining analytical studies and numer-
ical analysis. The major contribution is to show that, while increasing the number
of vanishing moments of the analyzing wavelet or the order of the increments sig-
nificantly fasten the decay of the correlation functions of the increment and wavelet
coefficients, in a manner comparable to what is observed for fBm, it does not impact
at all the decay of higher order correlation functions.

Outline. The key definitions and properties of infinitely divisible cascades, mo-
tions and fractional Brownian motions in multifractal time are recalled in Section
2. The three different types of multiresolution quantities (increment, wavelet and
leader coefficients) are defined and related one to the other in Section 3. This sec-
tion also briefly recalls scaling exponent estimation procedures. Analytical results
regarding the correlation and higher order correlation functions of increment and
wavelet coefficients are carefully detailed in Section 4. Results and analyses ob-
tained from numerical simulations for the higher order correlation functions of in-
crement, wavelet and Leader coefficients are reported in Section 5. Conclusions on
the impact of varying the number of vanishing moments of the analyzing wavelet or
the order of the increment on correlation and on higher order correlation function
decays are discussed in Section 6. The proofs of all analytical results are postponed
to Section 7.

2 Infinitely divisible processes

2.1 Infinitely divisible cascade

Infinitely divisible measure. Let G be an infinitely divisible distribution [11],
with moment generating function

G̃(q) = exp[−ρ(q)] =
∫

exp[qx]dG(x).

Let M denote an infinitely divisible, independently scattered random measure dis-
tributed by the infinitely divisible distribution G, supported by the time-scale half
plane P+ = R×R+ and associated to its control measure dm(t,r). This assump-
tion means that the measure of a set A is the random variable m(A)G. Since G is



Contents 7

infinitely divisible, the Lévy-Khintchine formula applies; it has the following re-
markable consequence on the characteristic function of M: For any Borel set E ,

E[exp[qM(E )]] = exp[−ρ(q)m(E )] = exp
[
−ρ(q)

∫
E

dm(t,r)
]
. (3)

Infinitely divisible cascade. Let Cr(t), 0 < r < 1, denote a so-called truncated
influence cone, defined as

Cr(t) = {(t ′,r′) : r ≤ r′ ≤ 1, t− r′/2≤ t ′ < t + r′/2}.

Following the definition of compound Poisson cascades [5] (see paragraph below),
it has been proposed in [24, 4, 8, 9] to define infinitely divisible cascades (or noises)
as follows.

Definition 1. An Infinitely Divisible Cascade (or Noise) (IDC) is a family of pro-
cesses Qr(t), parametrized by 0 < r < 1, of the form

Qr(t) =
exp[M(Cr(t))]

E[exp[M(Cr(t))]]
= exp[ρ(1)m(Cr(t))]exp[M(Cr(t))]. (4)

Let us moreover define

ϕ̃(q) = ρ(q)−qρ(1) =− log
(

E[eqX ]
E[eX ]q

)
=− log

(
E[Zq]

(E[Z])q

)
,

whenever defined, with Z = exp[X ] and X distributed according to the infinitely di-
visible distribution G. Obviously, ϕ̃(q) is a concave function, with ϕ̃(0) = ϕ̃(1) = 0.
Note that the cone of influence is truncated at the scale r, so that details of smaller
scale are absent in the construction of the cascade. The mathematical difficulty lies
in understanding the limit when r → 0, in which case all (small) scales will be
present.

Control measure. In the remainder of the text, following [4, 8], the control
measure is chosen such that dm(t,r) = µ(dr)dt. The choice of the shift-invariant
Lebesgue measure dt will have the consequence that the processes constructed be-
low have stationary increments. Following [4], µ(dr) is set to µ(dr) = c(dr/r2 +
δ{1}(dr)), where δ{1}(dr) denotes a point mass at r = 1.

Central property. With this choice of measure, an infinitely divisible cascade
possesses the following key property:

Proposition 1. Let Qr be an infinitely divisible cascade, 0 < r < 1. Then, ∀q > 0,
such that E[Qq

r (t)] < ∞, ∀t ∈ R,

E[Qq
r (t)] = exp[−ϕ̃(q)m(Cr(t))] = rϕ(q), (5)
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where, for ease of notation, ϕ(q)≡ cϕ̃(q).

Integral scale. By construction, infinitely divisible cascades Qr are intrinsically
tied to a characteristic scale, referred to as the integral scale, in the hydrodynamic
turbulence literature (cf. e.g., [20]). Essentially, it results from the fact that the in-
fluence cone Cr(t) is limited above by an upper limit r ≤ r′ ≤ L. Traditionally, and
without loss of generality, the upper limit is assigned to the reference value L ≡ 1,
as only the ratio L/r controls the properties of Qr (cf. [8]). Therefore, in what fol-
lows, we study the properties of the different processes defined from Qr only for
0≤ t ≤ L≡ 1.

Compound Poisson cascade. Compound Poisson cascades (CPC) [5] consist of
a particular instance within the IDC family. They are obtained by taking for in-
finitely divisible random measure M a sum of weighted Dirac masses, as follows:
One considers a Poisson point process (ti,ri) with control measure dm(t,r), and
one associates to each of the points (ti,ri) positive weights which are i.i.d. random
variables Wi. Then, the definition Eq. (4) reads [5]:

Qr(t) =
exp[∑(ti,ri)∈Cr(t)] logWi

E[exp[∑(ti,ri)∈Cr(t) logWi]]
=

∏(ti,ri)∈Cr(t)Wi

E[∏(ti,ri)∈Cr(t)Wi]
. (6)

When the control measure dm(t,r) is chosen as above, CPC satisfies Eq. (5) with
[5]:

ϕ(q) = c[(1−E[W q])−q(1−EW )], (7)

whenever defined.

2.2 Infinitely divisible motion

The following remarkable result states that the random cascades Qr(t) have a weak
limit when r→ 0 (i.e. their distribution functions have a pointwise limit).

Proposition 2. Let Qr(t) denote an infinitely divisible cascade and Ar(t)=
∫ t

0 Qr(u)du
be its probability density function (PDF). There exists a càdlàg (right-continuous
with left limits) process A(.) such that almost surely

A(t) = lim
r→0

Ar(t),

for all rational t simultaneously. This process A is a well defined process on condi-
tion that ϕ ′(1−)≥−1.

Clearly, the process A is also increasing, and therefore, it is a PDF; it is called an
Infinitely Divisible Motion.

Remark 1: Since Qr > 0, all processes Ar and A are non-decreasing and therefore
have right and left limits; thus, A can be extended to a càdlàg process defined on R.
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Proposition 3. The process A is characterized by the following properties [5, 4, 8]:

1. It possesses a scaling property of the form, ∀0 < q < q+
c , 0 < t < 1:

EA(t)q = C(q)tq+ϕ(q), (8)

with C(q) > 0 and

q+
c = sup {q≥ 1,q+ϕ(q)−1≥ 0} ; (9)

2. Its increments are stationary w.r.t. time t, hence, the covariance structure of A
necessarily reads EA(t)A(s) = f (|t|)+ f (|s|)− f (|t− s|) ;

3. Combining the two previous items immediately yields the detailed form of the
covariance :

EA(t)A(s) = σ2
A(|t|2+ϕ(2) + |s|2+ϕ(2)−|t− s|2+ϕ(2)), |t− s| ≤ 1. (10)

The constant of the covariance can be computed explicitly: σ2
A ≡EA(1)2 = ((1+

ϕ(2))(2+ϕ(2)))−1 [27].
4. The multifractal1 properties of the sample paths A(t) are entirely controlled by

the only function q+ϕ(q). This can be inferred from the results in [5].

2.3 Fractional Brownian motion in multifractal time

The stationary increment infinitely divisible motion A(t) suffers from a severe limi-
tation as far as data modeling is concerned: It is a monotonously increasing process.
Following the original idea proposed in [21], it has been proposed to overcome this
drawback by subordinating it to fractional Brownian motion:

Definition 2. Let BH denote fBm with self-similarity parameter 0 < H < 1 and A(t)
a stationary increment infinitely divisible motion A(t). The process

B(t) = BH(A(t)) (11)

is referred to as fBm in multifractal time (MF-fBm, in short).

The properties of B(t) stem from the combination of those of BH and of the
random time change A that was performed:

Proposition 4.
1. The process B(t) possesses the following scaling property:

∀0 < q < q+
c /H E|B(t)|q = cq|t|qH+ϕ(qH); (12)

2. Its increments are stationary with respect to time t ;

1 For a thorough introduction to multifractal analysis, the reader is referred to e.g., [17].
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3. Combining stationary increments and scaling yields the following covariance
function:

E(B(t)B(s)) = σ
2
B

(
|t|2H+ϕ(2H) + |s|2H+ϕ(2H)−|t− s|2H+ϕ(2H)

)
, (13)

where σ2
B = E|BH(1)|2/2.

4. The multifractal properties of the sample paths B(t) are entirely controlled by
the only function qH +ϕ(qH).

3 Multiresolution quantities and scaling parameter estimation

3.1 Multiresolution quantities

Increments. The increments of order P, of a function X , taken at lag τ are defined
as:

X(τ,P)(t)≡
P

∑
k=0

(−1)k
(

k
p

)
X(t− kτ). (14)

Wavelet coefficients. The discrete wavelet transform (DWT) coefficients of X
are defined as

dX ( j,k) =
∫

R
X(t) 2− j

ψ0(2− jt− k)dt. (15)

The mother-wavelet ψ0(t) consists of an oscillating reference pattern, chosen such
that the collection {2− j/2ψ0(2− jt − k), j ∈ N,k ∈ N} forms an orthonormal basis
of L2(R). Also, it is characterized by its number of vanishing moments: an integer
Nψ ≥ 1 such that ∀k = 0,1, . . . ,Nψ − 1,

∫
R tkψ0(t)dt ≡ 0 and

∫
R tNψ ψ0(t)dt 6= 0.

This Nψ controls the behavior of the Fourier transform Ψ0 of ψ0 at origin:

Ψ0(ν)∼ |ν |Nψ , |ν | → 0. (16)

Wavelet leaders. In the remainder of the text, we further assume that ψ0(t) has a
compact time support. Let us define dyadic intervals as λ = λ j,k =

[
k2 j,(k +1)2 j

)
,

and let 3λ denote the union of the interval λ with its 2 adjacent dyadic intervals:
3λ j,k = λ j,k−1∪λ j,k ∪λ j,k+1. Following [17, 29], wavelet Leaders are defined as:

LX ( j,k) = Lλ = sup
λ ′⊂3λ

|dX ,λ ′ |. (17)

The wavelet Leader LX ( j,k) practically consists of the largest wavelet coefficient
|dX ( j′,k′)| at all finer scales 2 j′ ≤ 2 j in a narrow time neighborhood. It has been
shown theoretically that the analysis of the multifractal properties of sample paths
of stochastic processes and particularly the estimation of their scaling parameters
is relevant and accurate only if wavelet Leaders, rather than wavelet coefficients or



Contents 11

increments, are chosen as multiresolution quantities (cf. [17, 29]).

Vanishing moments. Increments, as defined in Eq. (14) above, can be read as
wavelet coefficients, obtained from the specific mother-wavelet

ψ
I
0(t) =

P

∑
k=0

(−1)k
(

k
p

)
δ (t− k)

(where δ is the Dirac mass function):

X(2 j ,P)(2
jk)≡ dX ( j,k;ψ

I
0).

It is straightforward to check that the number of vanishing moments of this particular
mother-wavelet corresponds to the increment order: Nψ ≡ P. This explains why
increments are sometimes referred to as wavelet coefficients, obtained from a low
regularity mother-wavelet (historically referred to as the poor man’s wavelet [14]).
Moreover, increments are often regarded as practical derivation of order P, the same
interpretation holds for wavelet coefficients, computed from a mother wavelet with

Nψ = P≥ 1 (18)

vanishing moments. Hence, Nψ and P play similar roles.

Multiresolution analysis. From the definitions above, it is obvious that varying
the lag τ corresponds equivalently to changing the analysis scale a = 2 j. Therefore,
increments consists of multiresolution quantities, in the same spirit as wavelet coef-
ficients and Leaders do. In the present contribution, we therefore analyze in a com-
mon framework the three types of multiresolution quantities, TX (a, t), increment,
wavelet and Leader coefficients:

TX (2 j,2 jk) = X2 j ,P(2 jk)
= dX ( j,k),
= LX ( j,k).

3.2 Scaling parameter estimation procedures

Inspired from Eq. (1), classical scaling parameter ζ (q) estimation procedures are
based on linear regressions, over dyadic scales a j = 2 j1 , . . . ,2 j2 (∑ stands for ∑

j2
j= j1

,
the weights w j satisfy ∑w j = 0 and ∑ jw j = 1) (cf. [19, 28] for details):

ζ̂ (q) = ∑w j log2

(
1
n j

n j

∑
k=1
|TX (2 j,2 jk)|q

)
. (19)
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The analysis of the statistical performance of such estimation procedures requires
the knowledge of the multivariate dependence structures of the variables |TX (a, t)|q.
Some aspects of these dependence structure are studied in the next sections.

4 Dependence structures of the multiresolution coefficients:
analytical study

The aim of the present section is to study analytically, both for infinitely divisible
motion and for fractional Brownian motion in multifractal time, X = A,B, the im-
pact of varying P or Nψ on some aspects of the dependence structures of the TX (a, t),
when the TX (a, t) are either increments or discrete wavelet coefficients.

Section 4.1 starts with the theoretical analyses of the covariance functions
ETX (a, t)TX (a,s).

Section 4.2 continues with the theoretical studies of the higher order covariance
functions E|TX (a, t)|q|TX (a,s)|q, for some qs: The key point being that the absolute
values, | · |, consisting of non linear transforms of the TX (a, t) involve the whole
dependence structure.

All results reported in Sections 4 and 5 are stated for 0 < t,s < 1, hence for
|t− s|< 1 (i.e., within the integral scale).

4.1 Correlation structures for increment and wavelet coefficients

4.1.1 Increments

From Eq. (10) (Eq. (13), resp.), it can be shown that the covariance structure of the
increments of order P of Infinitely divisible motion A (Fractional Brownian motion
in multifractal time B, resp.) reads:

EA(τ,P)(t)A(τ,P)(s) = σ
2
A

P

∑
n=0

(−1)n
(

n
P

)
(t− s+(n−P)τ)2+ϕ(2), (20)

EB(τ,P)(t)B(τ,P)(s) = σ
2
B

P

∑
n=0

(−1)n
(

n
P

)
(t− s+(n−P)τ)2H+ϕ(2H). (21)

Taking the limit τ → 0, i.e., 1 > |t− s| � τ yields:

lim
τ→0

EA(τ,P)(t)A(τ,P)(s)
|τ|2P = CP(ϕ(2))|t− s|2+ϕ(2)−2P, (22)

lim
τ→0

EB(τ,P)(t)B(τ,P)(s)
|τ|2P = CP,H(ϕ(2H))|t− s|2H+ϕ(2H)−2P. (23)
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The direct proofs are not given here, they are detailed in [27]. Such results can also
be obtained by following the proof of Proposition 5 below.

4.1.2 Wavelet coefficients

Let ψ0 denote a compact support mother wavelet with Nψ vanishing moments.

Proposition 5. Let j,k,k′ ∈ Z, |k− k′| ≤ C2− j such that the supports of ψ j,k and
ψ j,k′ are included in [0,1]. Then

lim
j→−∞

EdA( j,k)dA( j,k′)
22 jNψ

∼ O(|2 jk−2 jk′|)(2+ϕ(2)−2Nψ ), (24)

lim
j→−∞

EdB( j,k)dB( j,k′)
22 jNψ

∼ O(|2 jk−2 jk′|)(2H+ϕ(2H)−2Nψ ). (25)

Proof. We follow step by step the calculations conducted in [13] on fractional
Brownian motion (note that we use a L1-normalization for the wavelet coefficients
instead of the usual L2-normalization, as in [13]).

From the form of the covariance function (cf. Eq. (10)), one obtains:

EdA( j,k)dA( j,k′) =−σ
2
A(2 j)2+ϕ(2)

∫ (
Rψ(1,τ− (k− k′))|τ|1+ϕ(2)/2

)
dτ

with

Rψ(α,τ) =
√

α

∫ +∞

−∞

ψ0(t)ψ0(αt− τ)dt

the reproducing kernel of ψ0. Rewriting the relation above in the Fourier domain
and using Eq. (16) yields:

EdA( j,k)dA( j,k′) = σ
2
A,ψ0

(2 j)2+ϕ(2)+1
∫ +∞

−∞

eiω(k−k′) |Ψ0(ω)|2

|ω|2+ϕ(2)+1

dω

2π
,

with σ2
A,ψ0

= σ2
A2sin(π

2 (2+ϕ(2)))Γ (4+2ϕ(2)+1), and hence:

EdA( j,k)dA( j,k′) = 2 j(2+ϕ(2)O(|k− k′|2+ϕ(2)−2Nψ ).

Now, since 0≤ |k−k′| ≤C2− j (which means that the support of ψ j,k is centered on
a point t = c2 jk), we can write k = 2− j p, k′ = 2− j p′ for |p− p′| ≤C, and

EdA( j,k)dA( j,k′) = EdA( j,2− j p)dA( j,2− j p′) = 22 jNψ O(|p− p′|2+ϕ(2)−2Nψ ).

4.1.3 Vanishing moments and correlation

These computations show two striking results regarding the impact of varying Nψ

(resp., P) on the covariance function of the wavelet coefficients (resp., the incre-
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ments). First, the order of the leading term in |τ of the asymptotic expansion,
|τ| → 0, increases with Nψ (resp., P). Second, the decrease in |t − s| of the coef-
ficient of the leading term is faster when Nψ (resp., P) increases. To conduct com-
parisons against results obtained for fractional Brownian motions, this shows first
that the limit |t− s| →+∞ needs to be replaced with the limit |τ| → 0 and the range
τ ≤ lt− s| ≤ 1. Then, one observes that the impact of varying Nψ (resp., P) on the
correlation structures of the wavelet coefficients (resp., the increments) of Infinitely
Divisible Motion and fractional Brownian motion in multifractal time is equivalent,
mutatis mutandis, to that obtained for fractional Brownian motion: The larger Nψ

(resp., P), the faster the decay of the correlation functions.
Such results call for the following comments:

- This comes as no surprise as both processes A and B share with BH two key
properties: scale invariance and stationary increments.

- Because A and B are non Gaussian processes, the derivation of their correlation
structures does not induce the knowledge of their dependence (or higher order
correlation) structures. This is why functions E|TX (a, t)|q|TX (a,s)|q are further
analyzed in the next sections.

- No analytical results are available for the correlation of the wavelet Leaders,
ELX ( j,k)LX ( j,k′). This is because while increment and wavelet coefficients are
obtained from linear transforms of X , the Leaders LX ( j,k) consists of non linear
transforms (as do the |TX (a, t)|q in general).

- Because ϕ(1)≡ 0, the key quantity ϕ(2) can be rewritten ϕ(2)−2ϕ(1).

4.2 Higher order correlations for increments

4.2.1 First order increments

Infinitely divisible motion A. The covariance function for the integer q-th power
of the first order increments of A can be obtained analytically:

Theorem 1. Let 1 ≤ q < q+
c /2 be an integer. There exists c(q) > 0 such that, for

0 < t,s < 1,

lim
τ→0

EA(τ,1)
q(t)A(τ,1)

q(s)
c(q)|τ|2(q+ϕ(q)) = |t− s|ϕ(2q)−2ϕ(q).

The constant c(q) can be calculated precisely from c(q)|τ|2(q+ϕ(q)) =(EA(τ,1)
q(1))2.

The proof of Theorem 1 is postponed to Section 7.2.

For non integer q /∈ N, an exact result for scaling is not available, yet the follow-
ing inequalities can be obtained, that show that the exact power behavior obtained
for integer q extend to real q, at least in the limit |t− s| → 0.

Theorem 2. Let 1 ≤ q < q+
c /2. There exists C1 > 0 and C2 > 0 depending only on

q such that,
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C1|t− s|ϕ(2q)−2ϕ(q) ≤ lim
τ→0

EA(τ,1)
q(t)A(τ,1)

q(s)
|τ|2(q+ϕ(q)) ≤C2|t− s|ϕ(2q)−2ϕ(q).

In particular,

ϕ(2q)−2ϕ(q) = inf{α ∈ R; lim
|t−s|→0

1
|t− s|α

lim
τ→0

EA(τ,1)
q(t)A(τ,1)

q(s)
|τ|2(q+ϕ(q)) = +∞}

= sup{α ∈ R; lim
|t−s|→0

1
|t− s|α

lim
τ→0

EA(τ,1)
q(t)A(τ,1)

q(s)
|τ|2(q+ϕ(q)) = 0}.

This is proven in Section 7.3.

Moreover, it is also of interest to consider the dependence of increments taken at
two different analyzing scales, τ1 and τ2:

Corollary 1. (Of the proof of theorem 7.2) Let 1 ≤ q < q+
c /2 be an integer. There

exists c(q) > 0 such that,

lim
τ1,τ2→0

EAq
(τ1,1)(t)A

q
(τ2,1)(s)

c(q)|τ1τ2|q+ϕ(q) = |t− s|ϕ(2q)−2ϕ(q).

This shows that the power law behavior in Theorem 7.3 for increments taken at the
same scale τ can be extended to increments defined at any two different scales.

Fractional Brownian motion in multifractal time B

Proposition 6. Let 1 > H > 1/2. There exists two constants C1 > 0 and C2 > 0 such
that,

C1|t− s|ϕ(4H)−2ϕ(2H) ≤ lim
τ→0

EB2
(τ,1)(t)B

2
(τ,1)(s)

τ4H+2ϕ(2H) ≤C2|t− s|ϕ(4H)−2ϕ(2H).

The proof, which mostly relies on the use of Theorem 2, with q = 2H, is postponed
to Section 7.4.

4.2.2 Second order increments

Let us now study the correlation of the squared (q = 2) second order (P = 2) incre-
ments of Infinitely divisible motion A and fractional Brownian motion in multifrac-
tal time B.

Proposition 7. Let ϕ be chosen such that qc > 4 (cf. Eq. (9)). There exists c > 0
such that,

lim
τ→0

EA(τ,2)
2(t)A(τ,2)

2(s)

EA(τ,2)
2(t)EA(τ,2)

2(s)
= lim

τ→0

EA(τ,2)
2(t)A(τ,2)

2(s)
c|τ|2(ϕ(2)+2) = |t− s|ϕ(4)−2ϕ(2).
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The proof is detailed in Section 7.5.

Proposition 8. Let ϕ be chosen such that qc > 4 (cf. Eq. (9)) and let 1 > H > 1/2.
There exists two constants C1 > 0 and C2 > 0 such that, for all 0≤ t < s≤ 1 ,

C1|t− s|ϕ(4H)−2ϕ(2H) ≤ lim
τ→0

EB2
(τ,2)(t)B

2
(τ,2)(s)

τ4H+2ϕ(2H) ≤C2|t− s|ϕ(4H)−2ϕ(2H).

The proof is detailed in Section 7.6. This result suggests that the higher order co-
variance functions of B have the same behaviors as those of A, replacing q with
qH.

4.3 Role of the order of the increments

Comparing, on one hand, the results of Theorem 1 (for EA2
τ,1(t)A

2
τ,1(s)≡E|Aτ,1(t)|2|Aτ,1(s)|2)

versus those of Proposition 7 (for EA2
τ,2(t)A

2
τ,2(s) ≡ E|Aτ,2(t)|2|Aτ,2(s)|2) and, on

other hand, the results of Proposition 6 (for EB2
τ,1(t)B

2
τ,1(s)≡E|Bτ,1(t)|2|Bτ,1(s)|2)

versus those of Proposition 8 (for EB2
τ,2(t)B

2
τ,2(s)≡E|Bτ,2(t)|2|Bτ,2(s)|2), yields the

first major conclusion: Increasing P from 1 to 2 induces, for the higher order cor-
relation functions, neither a change in the order in |τ| of the leading term of the
asymptotic expansion in |τ| → 0, nor any faster decay of the coefficient in |t− s| for
this leading term. This is in clear contrast with the impact of P on the correlation
functions EAτ,P(t)Aτ,P(s) and EBτ,P(t)Bτ,P(s), with P = 1,2 (cf. results of Section
4.1).

5 Dependence structures of the multiresolution coefficients:
Conjectures and numerical studies

5.1 Conjectures

The analytical results obtained in Section 4 for the q-th (q = 1,2) power of the abso-
lute values of the first and second order increments of both processes X = A,B lead
us to formulate the two following conjectures, for the three different multiresolution
quantities TX (a, t) considered here (increment, wavelet and Leader coefficients).

Conjecture 1. Let 1≤ q < q+
c /2. There exists CA(q) > 0 depending only on q such

that, for 0 < s− t < 1, one has

lim
a→0

E|TA(a, t)|q|TA(a,s)|q

|a|2(q+ϕ(q)) = CA(q)|t− s|ϕ(2q)−2ϕ(q).
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Conjecture 2. Let 1 ≤ qH < q+
c /2. There exists CB(q) > 0 depending only on q

such that, for 0 < s− t < 1, one has

lim
a→0

E|TB(a, t)|q|TB(a,s)|q

|a|2(qH+ϕ(qH)) = CB(q)|t− s|ϕ(2qH)−2ϕ(qH).

The central features of these two conjectures consists of the following facts: i) the
higher order covariance functions decay algebraically (by concavity of the function
ϕ(q), for all q > 0, the quantity ϕ(2q)−2ϕ(q) is strictly negative) ; ii) the scaling
exponent of the leading term characterizing the algebraic decay in |t − s| is not
modified when the order P of the increments or the number of vanishing moment
Nψ of the mother wavelet are increased.

5.2 Numerical simulations

To give substance to these conjectures, formulated after the analytical results ob-
tained in Section 4, the following sets of numerical simulations are performed and
analyzed.

5.2.1 Simulation set up

Numerical simulations are conducted on compound Poisson motions (i.e., processes
A obtained from compound Poisson cascades) rather than on infinitely divisible mo-
tions, as the former are much easier to handle from a practical synthesis perspective.
The practical synthesis of realizations of the latter is linked with heavy computa-
tional and memory costs, which impose severe practical limitations (in maximally
possible sample size, for instance). Therefore, they remain barely used in applica-
tions. In contrast, realizations of processes A and B based on compound Poisson
cascades are reasonably easy to simulate numerically (cf. [8] for a review). For
ease of notations, the corresponding processes A and B are referred to as CPM and
CPM-MF-fBm.

More specifically, we illustrate results with log-Normal multipliers W = exp[V ],

where V i.i.d.∼ N (µ,σ2) are Gaussian random variables. In this case, the function
ϕ(q) Eq. (7) is given by:

ϕ(q) = c
[(

1− exp
(

µq+
σ2

2
q2
))
−q
(

1− exp
(

µ +
σ2

2

))]
. (26)

This choice is motivated by the fact that it is often considered in applications [7].
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For CPM, numerical results reported here are computed with parameters c = 1,
µ =−0.3 and σ2 = 0.04 (hence q+

c /2≈ 8.92) ; nbreal = 100 realizations of the pro-
cess are numerically synthetised, with sample size N = 221. For CPM-MF-fBm, the
same parameters are used, with in addition H = 0.7 (hence (q+

c /H)2 ' 12.74) and
the sample size is reduced to N = 218 (as the synthesis of realizations of CPM-MF-
fBm is slightly more involved than for CPM, hence limiting the obtainable sample
size to a smaller one, as compared to CPM).

From these, the increment, wavelet and Leader coefficients of CPM A and CPM-
MF-fBm B are calculated for a chosen analysis scale a. Results are illustrated here
for a = 23, but similar conclusions are drawn for any different a. The number of
vanishing moments (and increment orders) are set to P≡ Nψ = {1,2,5,8}. The sta-
tistical orders q are in the range 0 < q < qc/2.

Both the synthesis and analysis codes are developed by ourselves in MATLAB
and are available upon request.

5.2.2 Goal and analysis

Following the formulation of Conjectures 1 and 2 above, the goal of the simula-
tions is to validate the power law decay of the correlation functions of the q-th
power of the absolute values of the multiresolution quantities and to estimate the
corresponding power law exponents αA(q,Nψ) = ϕ(2q)−2ϕ(q) and αB(q,Nψ) =
ϕ(2qH)−2ϕ(qH), controlling respectively such decays.

To do so, we make use of the wavelet based spectral estimation procedure doc-
umented and validated in [26], whose key features are briefly recalled here. Let Y
denote a second order stationary process with covariance function, EY (t)Y (s)' |t−
s|−α . Then, it has been shown that 1/n j ∑

n j
k d2

Y ( j,k)' 2 jα . Therefore, the parameter
α can be estimated from a linear regression in the diagram log2 1/n j ∑

n j
k d2

X ( j,k) vs.
log2 2 j = j:

α̂ =
j2

∑
j= j1

w j log2

(
1/n j

n j

∑
k

d2
Y ( j,k)

)
,

the weights w j satisfy ∑
j2
j= j1

w j = 0 and ∑
j2
j= j1

jw j = 1. This wavelet based estima-
tion procedure is applied to time series consisting of the q-th power of the absolute
value of increment, wavelet and Leader coefficients of A and B computed at an ar-
bitrary scale a: Y (t) ≡ |TX (a, t)|q. Estimation is performed with a compact support
Daubechies wavelet with 4 vanishing moments.

5.2.3 Results and analyses

For increments, wavelet coefficients and Leaders, for all 0 < q < q+
c , for all Nψ ≡ P,

for both CPM A and CPM-MF-fBm B, satisfactory power laws behaviors can be
observed in diagrams log2 1/n j ∑

n j
k d2

X ( j,k) vs. log2 2 j = j and power scaling expo-
nent can be estimated. These plots are not shown here.
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Fig. 1 Wavelet based estimations of power law exponents for the higher correlation functions.
Wavelet based estimates (averaged over realizations) of the power law exponents α̂A(q,Nψ ) (for
CPM A, top row) and α̂B(q,Nψ ) (CPM-MF-fBm B, bottom row) of the higher order correlations
of increments (left), wavelet coefficients (center) and wavelet Leaders (right), as functions of q.
The conjectured exponents, αA(q,Nψ ) = ϕ(2q)−2ϕ(q) and αB(q,Nψ ) = ϕ(2qH)−2ϕ(qH), are
drawn in fat solid black with dots. The symbols { ’∗’ , ’�’ , ’2’ , ’◦’ } correspond to P ≡ Nψ =
{1,2,5,8}, respectively. The error bars (in red) for Nψ = P = 1 correspond to 95% asymptotic
confidence intervals.

Fig. 1 represents (in bold black solid with dots) the conjectured power law
exponents αA(q,Nψ) = ϕ(2q)− 2ϕ(q) (for CPM A, top row) and αB(q,Nψ) =
ϕ(2qH)− 2ϕ(qH) (CPM-MF-fBm B, bottom row), as a function of q, and com-
pares them to averages over realizations of estimates of power law exponents
α̂A(q,Nψ) and α̂B(q,Nψ), for increments (left), wavelet coefficients (center) and
wavelet Leaders (right) with P ≡ Nψ = {1,2,5,8} vanishing moments. Also, for
Nψ = 1, asymptotic 95% error bars are shown. Error bars for other values of Nψ are
of similar size and omitted for better readability.

The results in Fig. 1 clearly indicate that, both for A and B:
- No significant difference can be observed between the power law exponents

estimated from increments, wavelet coefficients, and wavelet Leaders: The differ-
ences between the different estimated scaling exponents are very small, and within
confidence intervals.

- These power law exponents, characterizing the decay of the higher order corre-
lation functions of the multiresolution quantities, practically do not vary when the
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number of vanishing moments (or the order of the increments) is increased.
- For A, for fixed q, notably for small q, the differences between the estimated

and conjectured scaling exponents remain small, and within confidence intervals.
The slight discrepancies for large q values can be interpreted by the fact that only
leading order terms are taken into account by Conjecture 1, whereas in practice,
for finite size realizations, higher order terms may also contribute (cf. Remark 3 in
Section 7.5). For B, estimated scaling exponents appear farther from (and smaller
than) the conjectured ones. This discrepancy can be explained by the limited sam-
ple size for realizations of CPM-MF-fBm (roughly one order of magnitude smaller
than those obtainable for A). Therefore, higher order terms are likely to impact more
significantly than for A on the asymptotic expansion of E|TB(a, t)|q|TB(a,s)|q, and
hence to impair the accurate estimation of the power law exponent of the leading
term.

- Conjectures are also actually valid for the range q ∈ [0,1].

These results and analyses strongly support Conjectures 1 and 2. Similar results
and equivalent conclusions are drawn from other choices of ϕ(q) and from numer-
ical simulations performed directly on infinitely divisible motions (though of lower
sample size, and not reported here).

6 Discussions and conclusions on the role of the number of
vanishing moments:

The theoretical studies (reported in Section 4), together with the numerical analyses
(conducted in Section 5) yield the following major conclusions regarding the impact
of varying Nψ or P on the higher order correlations functions of X(τ,P)(t), dX ( j,k)
and LX ( j,k).

- The correlation functions of the increments and wavelet coefficients of A and
B decay faster when Nψ ≡ P is increased. This effect is equivalent to that obtained
for fractional Brownian motion, and results from the facts that BH , A and B posses
a scale invariance property (as in Eqs. (8) or (12)) and stationary increments and
wavelet coefficients(and also from the fact that increments and wavelet coefficients
consist of linear transform of the processes).

- For the q-th power (0 < q < q+
c /2) of Leaders or of the absolute values of the

increments or wavelet coefficients, which consist of non linear transforms of pro-
cesses A and B, Nψ and P no longer impact the decay of the correlation functions.

- The power law exponents characterizing the algebraic decay of these correlation
functions are found to be identical for increment, wavelet and Leader coefficients.

- These power law exponents are conjectured to be controlled by the only func-
tion ϕ(q) underlying the construction of the infinitely divisible cascade for A, and,
in addition, parameter H for B: αA(q,Nψ) = ϕ(2q)− 2ϕ(q) and αB(q,Nψ) =
ϕ(2qH)−2ϕ(qH).
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- Furthermore, both estimated and predicted power law exponents are larger than
−1. This is significantly so for small q values. This would be the case for most, if
not any, choices of function ϕ(q) commonly used in applications. This reveals very
slow (algebraic) decay of the covariance functions, a important characteristic with
respect to parameter estimation issues.

After the seminal works on self similar fractional Brownian motions and wavelet
coefficients [12, 13] or increments [16], we believe that the present theoretical anal-
yses and numerical results are closing a loop: They shed new lights and significantly
renew the understanding of the role of the order of the increments and of the number
of vanishing moments of the mother wavelet, for wavelet coefficients and Leaders,
with respect to the analysis of scale invariance as modeled by infinitely divisible
multifractal processes.

7 Proofs

7.1 Key lemma

The proofs of the results obtained in the present contribution relies on the use of
the key Lemma in [4], restated here. Let ϕ(·) = ψ(−i·) and let ωr be defined by
Qr = eωr . For t, t ′ ≥ 0, one defines:

Cr(t, t ′) = Cr(t)∩Cr(t ′)

Lemma 1. Let q∈N∗,
→
tq =(t1, t2, ..., tq) with t1≤ t2≤ ...≤ tq and

→
pq =(p1, p2, ..., pq).

The characteristic function of the vector {wr(tm)}1≤m≤q reads:

E
(

e∑
q
m=1 ipmM(Cr(tm))

)
= e∑

q
j=1 ∑

j
k=1 α( j,k)ρr(tk−t j)

where M is the infinitely divisible, independently scattered random measure used in
the construction of Qr,

ρr(t) = m(Cr(0, t)),

α( j,k) = ψ(rk, j)+ψ(rk+1, j−1)−ψ(rk, j−1)−ψ(rk+1, j)

and

rk, j =

{
∑

j
m=k pm, for k ≤ j,

0 for k > j.

Moreover,
q

∑
j=1

j

∑
k=1

α( j,k) = ψ

(
q

∑
k=1

pk

)
.

This can be rewritten as
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EQp1
r (t1)Qp2

r (t2)...Qpm
m (tm) = e∑

q
j=1 ∑

j
k=1 β ( j,k)ρr(tk−t j)

with
β ( j,k) = ϕ(rk, j)+ϕ(rk+1, j−1)−ϕ(rk, j−1)−ϕ(rk+1, j)

and
q

∑
j=1

j

∑
k=1

β ( j,k) = ϕ

(
q

∑
k=1

pk

)
.

7.2 Proof of Theorem 1

Let us assume that s > t and s− t > τ . Because EA(τ,1)
2q(x) < ∞ for all 0≤ x ≤ 1,

one obtains that EA(τ,1)(t)qA(τ,1)(s)q < ∞ and, using the monotone convergence
theorem for the 4th equality,

EA(τ,1)
q(t)A(τ,1)

q(s) = E
(

lim
r1→0

∫ t+τ

t
Qr1(x)dx

)q(
lim

r2→0

∫ s+τ

s
Qr2(y)dy

)q

= E
q

∏
i=1

lim
r1,i→0

lim
r2,i→0

∫ t+τ

t
Qr1,i(xi)dxi

∫ s+τ

s
Qr2,i(y j)dy j

= E lim
r→0

q

∏
i=1

∫ t+τ

t
Qr(xi)dxi

∫ s+τ

s
Qr(yi)dyi

= lim
r→0

E
q

∏
i=1

∫ t+τ

t
Qr(xi)dxi

∫ s+τ

s
Qr(yi)dyi

= lim
r→0

∫
[t,t+τ]q

∫
[s,s+τ]q

E
q

∏
i=1

Qr(xi)Qr(yi)d(x1, ...,xq)d(y1, ...,yq)

By symmetry, this yields:

EA(τ,1)
q(t)A(τ,1)

q(s) = (q!)2 lim
r→0

∫
D1

∫
D2

E
q

∏
i=1

Qr(xi)Qr(yi)d(x1, ...,xq)d(y1, ...,yq).

where D1 = {t ≤ x1 ≤ x2, ...≤ xq ≤ t +τ} and D2 = {s≤ y1 ≤ y2 ≤ ...≤ yq ≤ s+τ}.
Let us fix r < s− t−τ and define ∆+

r = {(t,z) ∈R2;z > r}. Using Lemma 1, we
can write I = E∏

q
i=1 Qr(xi)Qr(yi) for t ≤ x1 ≤ x2, ...≤ xq ≤ t +τ and s≤ y1 ≤ y2 ≤

...≤ yq ≤ s+ τ as the product of 3 terms:

I = e∑
q
j=1 ∑

j
k=1 β ( j,k)ρr(xk−x j)e∑

q
j=1 ∑

j
k=1 β ( j+q,k+q)ρr(yk,y j)e∑

q
j=1 ∑

q
k=1 β ( j,k+q)ρr(yk,x j).

(27)
The second term (containing ρr(yk,x j,)) controls the behavior in |t−s|ϕ(2q)−2ϕ(q)

while the first and third terms, which do not depend on |t−s|, yield the multiplicative
factor |τ|2(q+ϕ(q)). Indeed, let us consider
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J = e∑
q
j=1 ∑

q
k=1 β ( j+q,k)ρr(y j ,xk)

Since r < s− t− τ , ρr(yk,x j) = − ln |yk− x j| with s− t− τ ≤ |yk− x j| ≤ s− t + τ ,
we obtain,

q

∑
j=1

q

∑
k=1

β ( j +q,k) =
2q

∑
j=1

j

∑
k=1

β ( j,k)−
q

∑
j=1

j

∑
k=1

β ( j,k)−
q

∑
j=1

j

∑
k=1

β ( j +q,k +q).

But, here, with the notations of Lemma 1,
→
pq = (1,1, ...,1), rk, j = j− k + 1 and

β ( j,k) depends only on k− j. Finally, we obtain

q

∑
j=1

q

∑
k=1

β ( j +q,k) = ϕ(2q)−2ϕ(q)

and
|s− t + τ|ϕ(2q)−2ϕ(q) ≤ J ≤ |s− t− τ|ϕ(2q)−2ϕ(q).

Hence,

|s−t +τ|ϕ(2q)−2ϕ(q) lim
r→0

L(r,τ)≤EA(τ,1)
q(t)A(τ,1)

q(s)≤ |s−t−τ|ϕ(2q)−2ϕ(q) lim
r→0

L(r,τ)

with

L(r,τ) = (q!)2
∫

D1

∫
D2

e∑
q
j=1 ∑

j
k=1 β ( j,k)ρr(xk−x j)e∑

q
j=1 ∑

j
k=1 β ( j+q,k+q)ρr(yk,y j).

Lemma 2.
lim
r→0

L(r,τ) = (EA(τ,1)
q(t))2 = c|τ|2(q+ϕ(q)).

PROOF. It is known that EA(τ,1)
q(t) = c|τ|q+ϕ(q). However, we also have:

EA(τ,1)
q(t) = lim

r→0

∫
t≤x1,...,xq

E
q

∏
i=1

Qr(xi)d(x1, ...,xq)

= (q!) lim
r→0

∫
D1

E
q

∏
i=1

Qr(xi)d(x1, ...,xq)

which yields EA(τ,1)
q(t)EA(τ,1)

q(s) = limr→0 L(r,τ). Replacing limr→0 L(r,τ) with
c|τ|2(q+ϕ(q)), we obtain

|s− t + τ|(ϕ(2q)−2ϕ(q) ≤
EA(τ,1)

q(t)A(τ,1)
q(s)

c|τ|2(q+ϕ(q)) ≤ |s− t− τ|ϕ(2q)−2ϕ(q).
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7.3 Proof of Theorem 2

Let us now consider the case q > 1, q /∈N. Let us define q = m+ε with m = [q] and
0 < ε < 1. One writes:

EA(τ,1)
q(s)A(τ,1)

q(t) = EA(τ,1)
m−1(s)A(τ,1)

m−1(t)A(τ,1)
1+ε(s)A(τ,1)

1+ε(t).

(if m = 1, only the term EA(τ,1)
1+ε(s)A(τ,1)

1+ε(t) appears, but the proof is the same).
Again, A(τ,1)

m−1(s)A(τ,1)
m−1(t) can be written as a multiple integral. Moreover,

a classical Hölder inequality yields:

A(τ,1)
1+ε(t) =

(∫ t+τ

t
Qr(x)dx

)1+ε

≤ τ
ε

∫ t+τ

t
Q1+ε

r (x)dx.

Hence, one gets

EA(τ,1)
q(s)A(τ,1)

q(t)≤ lim
r→0

τ
2ε

∫
D

E
m−1

∏
i=1

Qr(xi)Qr(yi)Qr(xm)1+ε Qr(ym)1+ε d(x1, ...,xm)d(y1, ...,ym)

(28)
where D = [t, t + τ]m× [s,s+ τ]m. From Lemma 1, one can write

E
m−1

∏
i=1

Qr(xi)Qr(yi)Qr(xm)1+ε Qr(ym)1+ε

as the product of three terms. The term

J = e∑
q
j=1 ∑

q
k=1 β ( j+q,k)ρr(y j ,xk)

is bounded above by |t− s+τ|ϕ(2q)−2ϕ(q) and the integral on D of the other terms is
bounded by τ2ϕ(q)+2m. Finally, one gets

EA(τ,1)
q(s)A(τ,1)

q(t)≤ τ
2ε

τ
2m+2ϕ(q)|t−s+τ|ϕ(2q)−2ϕ(q)≤ τ

2q+2ϕ(2q)|t−s+τ|ϕ(2q)−2ϕ(q).

To obtain a lower bound, one writes

EA(τ,1)
q(s)A(τ,1)

q(t) = EA(τ,1)
m(s)A(τ,1)

m(t)A(τ,1)
ε(s)A(τ,1)

ε(t).

with

A(τ,1)
ε(t) =

(∫ t+τ

t
Qr(x)dx

)ε

≥ τ
ε−1

∫ t+τ

t
Qε

r (x)dx.

With the same arguments than before, ones gets

EA(τ,1)
q(s)A(τ,1)

q(t)≥C(q)τ2q+2ϕ(q)|t− s+ τ|ϕ(2q)−2ϕ(q)

where C(q) > 0 depends only on q.
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7.4 Proof of Proposition 6

EB2
(τ,1)(t)EB2

(τ,1)(s)

= E[E
(
[BH(u)−BH(v)]2[BH(x)−BH(y)]2|u = A(s+ τ),v = A(s),x = A(t + τ),y = A(t)

)
]

Because X = BH(u)−BH(v) and Y = BH(x)−BH(y) are two gaussian vectors with
finite variance, one can use the classical equality

EX2Y 2 = EX2EY 2 +2(EXY )2, (29)

which leads by the Cauchy-Schwarz inequality to

EX2EY 2 ≤ EX2Y 2 ≤ 3EX2EY 2,

with EX2 = E(BH(u)−BH(v))2 = σ2|u− v|2H , EY 2 = σ2|x− y|2H .
Therefore,

σ
4EA(τ,1)

2H(t)A(τ,1)
2H(s)≤ EB2

(τ,1)(t)EB2
(τ,1)(s)≤ 3σ

4EA(τ,1)
2H(t)A(τ,1)

2H(s)

which, combined to Theorem 2 with q = 2H, gives the announced result.

7.5 Proof of Proposition 7

Because ϕ is chosen such that qc > 4, the quantity I = EA(τ,2)
2(t)A(τ,2)

2(s) is finite.
Developing A(τ,2)

2(t)A(τ,2)
2(s) = (A(τ,1)(t + τ)−A(τ,1)(t))2(A(τ,1)(s + τ)−A(s))2

enables to rewrite the expectation as the sum of 9 terms. Each term can be written
as the integral of a product of functions Qr. More precisely, with r > t− s+2τ ,

I = 4 lim
r→0

∫ t+τ

u=t

∫ t+τ

v=u

∫ s+τ

x=s

∫ s+τ

y=x
J(u,v,x,y)dydxdvdu

with

J(u,v,x,y) = F(u+ τ,v+ τ,x+ τ,y+ τ)−2F(u,v+ τ,x+ τ,y+ τ)
+F(u+ τ,v+ τ,x,y)−2F(u+ τ,v+ τ,x,y+ τ)
+4F(u,v+ τ,x,y+ τ)−2F(u,v+ τ,x,y)
+F(u,v,x+ τ,y+ τ)−2F(u,v,x,y+ τ)+F(u,v,x,y)

where F(a,b,c,d) = G(a,b)G(c,d)H(a,b,c,d) for a≤ b≤ c≤ d with

G(z1,z2) = Gr(z1,z2) = eβ (2,1)ρr(z2−z1)

and
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H(a,b,c,d) = e−β (3,2)ρr(c−b)eβ (3,1)ρr(c−a)eβ (4,2)ρr(d−b)eβ (1,4)ρr(d−a)

= (c−b)β (3,2)(c−a)β (3,1)(d−b)β (4,2)(d−a)β (4,1).

Hence, J can be written as

J = −∆x∆vF(u,v,x,y+ τ)+∆u∆xF(u,v+ τ,x,y+ τ)
+∆v∆yF(u,v,x,y)−∆u∆yF(u,v+ τ,x,y)

where ∆uF(u,v,x,y) (resp. ∆v, ∆x and ∆y) denotes the forward difference F(u +
τ,v,x,y)−F(u,v,x,y) (resp. F(u,v+ τ,x,y)−F(u,v,x,y), etc).

Expressing J in terms of G and H, one finds

J = ∆uG(u,v+ τ)∆xG(x,y+ τ)H(u,v+ τ,x,y+ τ)
+G(u,v+ τ)∆xG(x,y+ τ)∆uH(u,v+ τ,x,y+ τ)
+∆uG(u,v+ τ)G(x,y+ τ)∆xH(u,v+ τ,x,y+ τ)
+G(u,v+ τ)G(x,y+ τ)∆u∆xH(u,v+ τ,x,y+ τ)
−∆xG(x,y+ τ)∆vG(u,v)H(u,v,x,y+ τ)−G(x,y+ τ)∆vG(u,v)∆xH(u,v,x,y+ τ)
−∆xG(x,y+ τ)G(u,v)∆vH(u,v,x,y+ τ)−G(x,y+ τ)G(u,v)∆x∆vH(u,v,x,y+ τ)
+∆yG(x,y)∆vG(u,v)H(u,v,x,y)+∆yG(x,y)G(u,v)∆vH(u,v,x,y)
+G(x,y)∆vG(u,v)∆yH(u,v,x,y)+G(x,y)G(u,v)∆v∆yH(u,v,x,y)
−∆yG(x,y)∆uG(u,v+ τ)H(u,v+ τ,x,y)−∆yG(x,y)G(u,v+ τ)∆uH(u,v+ τ,x,y)
−G(x,y)∆uG(u,v+ τ)∆yH(u,v+ τ,x,y)−G(x,y)G(u,v+ τ)∆u∆vH(u,v+ τ,x,y).

We first consider the terms where one or two finite differences are taken on H,
for example, G(x,y + τ)∆uG(u,v + τ)∆xH(u,v,x,y + τ). One has, for any 0 < r <
s− t−2τ ,

|∆xH(u,v,x,y+ τ)| ≤ τ|t− s−2τ|ϕ(4)−2ϕ(2)−1 + τR(τ),

with R(τ)→ 0 when τ → 0, ∆vG(u,v)≤ 0 and G(x,y+ τ)≥ 0. Therefore,

A =
∫ ∫ ∫ ∫

G(x,y+ τ)∆uG(u,v+ τ)∆xH(u,v,x,y+ τ)dydxdvdu

≤ τ|t− s−2τ|ϕ(4)−2ϕ(2)−1
(∫ ∫

G(x,y+ τ))dxdy
)(∫ ∫

∆vG(u,v)dudv
)

.

Besides, we have the following result whose proof is postponed to the end of this
subsection.

Lemma 3. There exists c1 > 0 and c2 > 0 such that

lim
r→0

∫ s+τ

x=s

∫ s+τ

y=x
G(x,y+ τ)dydx≤ EA2

(2τ,1)(t) = c1|τ|ϕ(2)+2
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and

lim
r→0

∫ t+τ

u=t

∫ t+τ

v=u
∆uG(u,v+ τ)dvdu = EA(τ,2)

2(t)/4 = c2|τ|ϕ(2)+2.

So,

lim
τ→0

∫ ∫ ∫ ∫
G(x,y+ τ)∆vG(u,v)∆vH(u,v,x,y+ τ)dudvdxdy

|τ|2(2+ϕ(2)) = 0.

The other terms with finite difference on H can be dealt with in a similar way.
Finally, since

lim
r→0

∆uG(u,v+τ)=− lim
r→0

∆vG(u,v)= lim
r→0

∆xG(x,y+τ)=− lim
r→0

∆xG(x,y)= 1/4EA(τ,2)
2(t),

and since

|s− t +2τ|ϕ(4)−2ϕ(2) ≤ H(u,v+ τ,x,y+ τ)≤ |s− t−2τ|ϕ(4)−2ϕ(2),

|s− t +2τ|ϕ(4)−2ϕ(2) ≤ H(u,v+ τ,x,y)≤ |s− t−2τ|ϕ(4)−2ϕ(2),

we obtain the announced result.
Let us now give the proof of Lemma 3. The first inequality is trivial since we

have

EA2
(2τ,1)(t) = lim

r→0

∫ t+2τ

t

∫ t+2τ

t
EQr(x)Qr(y)dxdy

≥
∫ t+τ

t

∫ t+τ

t
EQr(x)Qr(y+ τ)dxdy

=
∫ t+τ

t

∫ t+τ

t
G(x,y+ τ)dxdy.

For the second point, let us remark first, that

EA(τ,2)
2(t) = (A(τ,1)(t + τ)−A(τ,1)(t))

2

= A(τ,1)(t + τ)2−2A(τ,1)(t)A(τ,1)(t + τ)+A(τ,1)
2(t)

= lim
r→0

∫ t+τ

t

∫ t+τ

t
(EQr(x+ τ)Qr(y+ τ)−2EQr(x)Qr(y+ τ)

+EQr(x)Qr(x))dxdy).

But, EQr(x+ τ)Qr(y+ τ) = EQr(x)Qr(y) and

EA(τ,2)
2(s) = 2 lim

r→0

∫ t+τ

t

∫ t+τ

t
(EQr(x+ τ)Qr(y+ τ)−EQr(x)Qr(y+ τ))dxdy

= 4 lim
r→0

∫ t+τ

x=s

∫ t+τ

y=x
∆xG(x,y+ τ)dxdy.

We still have to show that limr→0
∫ ∫

∆uG(u,v+ τ)dudv = cτϕ(2)+2. First, note that
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lim
r→0

∫ t+τ

u=t

∫ t+τ

v=u
∆uG(u,v+τ)dudv = lim

r→0

∫ t+τ

u=t

∫ t+τ

v=u
(G(u+τ,v+τ)−G(u,v+τ))dudv.

But,

lim
r→0

∫ t+τ

u=t

∫ t+τ

v=u
G(u+τ,v+τ)dudv = 1/2 lim

r→0

∫ t+τ

u=t

∫ t+τ

v=t
EQr(u)Qr(v)dudv = 1/2EA(τ,1)

2(t)= c|τ|ϕ(2)+2

for some c > 0 and

lim
r→0

∫ t+τ

u=t

∫ t+τ

v=u
G(u,v+ τ) = lim

r→0

∫ t+τ

u=t

∫ t+τ

v=u
|v+ τ−u|ϕ(2)dvdu = c̃|τ|ϕ(2)+2.

for some c̃ > 0. Thus,

lim
r→0

∫ t+τ

u=t

∫ t+τ

v=u
∆uG(u,v+ τ)dvdu = C|τ|ϕ(2)+2

for a C ∈ R. Since limr→0
∫ ∫

∆uG(u,v)dudv = EA(τ,2)
2(s)/4 > 0, it comes that

C > 0 and Lemma 3 is proven.

Remark 2: The crucial point in the above proof consists of the fact that when
q ≥ 2, the covariance function can be split into a number of terms, expressed with
auto-terms G and cross terms H (whose that involve the dependence in |t − s|).
Increments - of any order P - for some of these terms apply only to the auto-terms
G and hence do not produce in reduction the in the rate of decrease in |t− s| (only
related to the cross terms H). A contrario, for q = 1, G ≡ 1 and the increments are
taken on H, leading to Formula (20). This qualitative argument indicates that P does
not play any role in the control of higher order correlation functions and is founding
for the formulation of Conjectures 1 and 2 in Section 5.

Remark 3: Also, it is worth mentioning that in this derivation of the proof of
Proposition 6, one obtains a number of higher order terms in the expansion in |τ|,
whose impact is significant, so that the leading power law term may be difficult to
observe practically (cf. Discussion in Section 5.2.3).

7.6 Proof of Proposition 8

EB2
(τ,2)(t)EB2

(τ,2)(s)

= E
(
E[BH(w)−2BH(v)+BH(u))]2[BH(z)−2BH(y)+BH(x)]2|

w = A(s+2τ),v = A(s+ τ),u = A(s),z = A(t +2τ),y = A(t + τ),x = A(t))

where X = BH(w)− 2BH(v) + BH(u) and Y = BH(z)− 2BH(y) + BH(x) are two
gaussian vectors with finite variance. Equality (29) and Cauchy-Schwarz inequality
yield
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EX2EY 2 ≤ EX2Y 2 ≤ 3EX2EY 2

with

EX2 = E(BH(w)−2BH(v)+BH(u))2 = σ
2(2|w− v|2H −|w−u|2H +2|v−u|2H).

In addition, since A is a non decreasing function,

2|A(t +2τ)−A(t +τ)|2H−|A(t +2τ)−A(t)|2H +2|A(t +τ)−A(t)|2H ≤ 2A(τ,1)
2H(t +τ)+2A(τ,1)

2H(t)≤ 2A2H
(2τ,1)(t)

and there exists CH > 0 such that

2|A(t +2τ)−A(t +τ)|2H +|A(t +2τ)−A(t)|2H +2|A(t +τ)−A(t)|2H ≥CH(A(τ,1)(t +τ)+A(τ,1)(t))≥CHA(τ,1)(t).

Finally, it comes

CHσ
4EA(τ,1)

2H(t)A(τ,1)
2H(s)≤ EB2

(τ,2)(t)EB2
(τ,2)(s)≤ 4σ

4EA2H
(2τ,1)(t)A

2H
(2τ,1)(s),

which, combined with Theorem 2, leads to the result.
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