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Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) = supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
h(t0)→ 0⇒ rough, very irregular

D(h) = dimH{t : h(t) = h}
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Hölder exponent
h(t0) = supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
h(t0)→ 0⇒ rough, very irregular

D(h) = dimH{t : h(t) = h}

α= 0.2

t
0

D(h)

h0

d

Bayesian estimation of multifractal parameters for multivariate time series 1 / 19-



Multifractal analysisg Éy
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Multifractal formalism

I D(h) in practice → multifractal formalism [Parisi85]

I Multiresolution quantities: wavelet leaders {`(j ·, ·)} [Jaffard04]

`(j , k) = sup
λ′⊂3λj,k

|d(λ′)|, d(j , k) : DWT coefficient

X(t)
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- ∼ fluctuations of regularity
- tied to the variance of log-leaders

Var [ ln `(j , ·) ] = c0
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- self-similar processes → c2 = 0
- multifractal multiplicative cascades → c2 < 0
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Estimation of the multifractality parameter
I Estimation of c2 is challenging

- linear regression-based estimation [Castaing93]

X poor estimation performance −→ need (very) long time series

- existing alternatives unsatisfactory (fully parametric models, . . . )

1. Bayesian estimation for c2 for single time series [TIP15,ICASSP16]

- robust semiparametric model for log-leaders
→ significantly improved estimation performance

2. Bayesian estimation for c2 for multivariate data
. [IWSSIP16,EUSIPCO16,ICIP16]

- regularization using Markov field joint prior
→ further reduced variance
→ computational cost ∼ linear regression

Synthetic multiplicative cascades with different c2

III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m, �i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m, �i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
i (15)

1 256 512

c2=-0.06

t

c2=-0.03

c2=-0.01

Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
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Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
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ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.
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where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to
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MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q
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g Éy

Bayesian model for single time series
III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m, �i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m, �i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
i (15)

1 256 512

c2=-0.06

t

c2=-0.03

c2=-0.01

Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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Part 1: Bayesian model for single time seriesg Éy

Marginal distribution of log-leaders

I Marginal distribution of log-leaders well approximated by
Gaussian [ICASSP13,TIP15]

l(j , k) = ln `(j , k) ∼ N (E[l(j , k)],Var [l(j , k)])

I numerical experiments, (1D and 2D):

1
1
1
1
1
1

1
1
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Marginal distribution of log-leaders
I Marginal distribution of log-leaders well approximated by

Gaussian [ICASSP13,TIP15]

l(j , k) = ln `(j , k) ∼ N (E[l(j , k)],Var [l(j , k)])

I numerical experiments, (1D and 2D):

model NOT valid for (log-)wavelet coefficients ln |d(j , k)|
ln |d(2, k)| ln |d(3, k)| ln |d(4, k)|

multifractal random walk (MRW)
1 [Bacry01,Robert10]
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Part 1: Bayesian model for single time seriesg Éy

Gaussian random field parametric model
I Mean

E[l(j , k)] = c0
1 + jc1 ln 2 (discarded below)

I Variance-covariance → piecewise logarithmic model %j ,θ(∆k)

- parameters θ = [θ1, θ2]T = [c2, c
0
2 ]T

−→ generic property for multifractal multiplicative cascades

Cov[l(j , k), l(j , k + ∆k)] ≈

%j,θ(∆k) =





c0
2 + c2j ln 2 ∆k = 0

%
(0)
j (|∆k |; θ) 0 ≤ |∆k| ≤ 3

%
(1)
j (|∆k |; θ) = max

(
0,CIS + c2 ln 2j |∆k|

)
3 ≤ |∆k|

11111111
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Part 1: Bayesian model for single time seriesg Éy

From a standard likelihood. . .
I Likelihood w.r.t. θ (sample) mean removed

– log-leaders at scale j , lj = (l(j , 1), l(j , 2), . . . )

p(lj |θ) ∝ (det Σj ,θ)−
1
2 e−

1
2
lTj Σ−1

j,θ lj

- Σj,θ covariance matrix induced by parametric model %j,θ(∆k)

– collection of log-leaders j = j1, . . . , j2, l = [lTj1 , ..., lj2 ]T

→ interscale independence assumption

p(l|θ) ∝
j2∏

j=j1

(det Σj ,θ)−
1
2 e−

1
2
lTj Σ−1

j,θ lj

X inversion of Σj ,θ prohibitive → Whittle approximation

X constraints on θ (Σj ,θ p.d.) → reparametrization

X conjugacy of priors for θ → data augmentation
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Part 1: Bayesian model for single time seriesg Éy

. . . to a Data Augmented Likelihood [TIP15,ICASSP16]

I Whittle approximation =⇒ Fourier transform (DFT) of centered log-leaders lj

y j = DFT (lj)

I Reparametrization =⇒ independent positivity constraints on parameters

v = ψ((c2, c
0
2 )) ∈ R+2

?

I Data augmentation =⇒ hidden mean µj for y j

=⇒ complex Gaussian model for y = [yT
j1
, ..., yT

j2
]T

{
y |µ, v2 ∼ CN (µ, v2F 2) observed data

µ|v1 ∼ CN (0, v1F 1) hidden mean

. F1, F2 diagonal, positive definite, known and fixed

p(y ,µ|v) ∝ p(y |µ, v2) p(µ|v1)

∝ v2
−NY exp

(
− 1

v2
(y−µ)HF−1

2 (y−µ)
)
× v1

−NY exp
(
− 1

v1
µHF−1

1 µ
)
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Part 1: Bayesian model for single time seriesg Éy

Augmented likelihood based Bayesian model [ICASSP16]

I Augmented likelihood

p(y ,µ|v) ∝ v2
−NY exp

(
− 1

v2
(y−µ)HF−1

2 (y−µ)
)
× v1

−NY exp
(
− 1

v1
µHF−1

1 µ
)

I Prior
vi as variance of Gaussian → conjugate inverse-gamma prior IG(αi , βi )

I Posterior
p(v ,µ|y) ∝ p(y ,µ|v)p(v1)p(v2)

I Bayesian estimators via MCMC algorithm

→ marginal posterior mean estimator (MMSE) vMMSE = E[v |y ]
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Part 1: Bayesian model for single time seriesg Éy

Markov Chain Monte Carlo Algorithm

I Sampling of µ and parameters v
p(µ|v , y) closed-form Gaussian distribution
p(v i |v j 6=i ,µ, y) closed-form inverse-gamma distributions

all standard distributions → no Metropolis-Hasting moves

I Performance for synthetic data (further details later)
– N = 512, c2 = −0.01, . . . ,−0.08
– estimation performance improved by factor up to ∼ 4
– about 5 to 2 times slower than linear regression

LF IG

|b| 0.0158 0.0051

std 0.0800 0.0255

rmse 0.0819 0.0262

.

III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m, �i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m, �i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
i (15)

1 256 512

c2=-0.06

t

c2=-0.03

c2=-0.01

Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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Part 1: Bayesian model for single time seriesg Éy

Markov Chain Monte Carlo Algorithm

I Sampling of µ and parameters v
p(µ|v , y) closed-form Gaussian distribution
p(v i |v j 6=i ,µ, y) closed-form inverse-gamma distributions

all standard distributions → no Metropolis-Hasting moves
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Assuming independence between the vectors ym, the joint
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p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators
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i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
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where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to
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MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
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ing exponents ⇣(q) = (H � c2)q + c2q
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III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
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md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m, �i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m, �i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
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1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]
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C. Posterior distribution and Bayesian estimators
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using Bayes’ theorem. To infer the parameters of inter-
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mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
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i is not
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distributed according to (14), it can be approximated as [18]
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Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
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likelihood of Y can be written as

p(Y , M |V ) /
Y
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p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m, �i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m, �i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]
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C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
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Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to
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v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
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(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||
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i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details
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Part 2: Bayesian model for multivariate time seriesg Éy

Strategy: Hierarchical Bayesian models

for volumetric time series (voxels), Xm, m , (m1,m2,m3), of length N
(other data structures possible)

1. Statistical model p(ym,µm|vm)

- ym: Fourier coeff’s of log-leaders of Xm
- µm: latent variables
- vm: parameter vector

2. Prior independence between voxels

p(Y ,M |V ) ∝
∏

m
p(ym,µm|vm)

- Y , {ym}
- M , {µm}
- V , {V 1,V 2} (V i , {θi,m}, i = 1, 2)

3. Design of regularizing priors on V
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Part 2: Bayesian model for multivariate time seriesg Éy

Prior: joint Gamma Markov random field (GaMRF)
→ smooth evolution of multifractal parameters v (i.e., variances of Gaussians)

I Positive auxiliary variables Z = {Z 1,Z 2}, Z i = {zi,m}
−→ induce dependence between neighbouring elements of V i

I vi,m: connected to 8 variables zi,m′∈ Vv (m)

. Vv (m) , {m + (i1, i2, i3)}i1,i2,i3=0,1

via edges with weights ρi , i = 1, 2

(zi,m to vi,m′∈ Vz(m)

. Vz(m) , {m + (i1, i2, i3))}i1,i2,i3=−1,0)

I Associated density [Dikmen10]

Bayesian model for multivariate time seriesg Éy

Likelihood for spatio-temporal data

I Xm, m , (m1, m2, m3)

- discrete time series (voxels), length N
- ym: Fourier coe↵’s of log-leaders of Xm
- µm: latent variables
- vm: parameter vector

I collections for all voxels {Xm}
- Y , {ym}
- M , {µm}
- V , {V 1,V 2} (V i , {✓i,m}, i = 1, 2)

assuming independence between vectors ym:
�! augmented likelihood

p(Y ,M |V ) /
Y

m
p(ym, µm|vm)

.

Xm

t

S. Combrexelle et al., Bayesian approach for multifractal analysis of spatio-temporal data 5 / 11-

p(V i ,Z i |ρi ) ∝
∏

m,n
e(8ρi−1) log zi,m e−(8ρi+1) log vi,m .×e

− ρi
vi,m

∑
m′∈Vvm zi,m′

zi ,m|V i ∼ G(8ρi ,
(
ρi
∑

m′∈Vz (m)
v−1
i ,k ′
)−1

) → gamma conditionals

v i ,m|Z i ∼ IG(8ρi , ρi
∑

m′∈Vv (m)
zi ,m′) → inverse-gamma cond.
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ρi
∑

m′∈Vz (m)
v−1
i ,k ′
)−1
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m′∈Vv (m)
zi ,m′) → inverse-gamma cond.
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Part 2: Bayesian model for multivariate time seriesg Éy

Prior: joint Gamma Markov random field (GaMRF)
→ smooth evolution of multifractal parameters v (i.e., variances of Gaussians)

I Positive auxiliary variables Z = {Z 1,Z 2}, Z i = {zi,m}
−→ induce dependence between neighbouring elements of V i

I vi,m: connected to 8 variables zi,m′∈ Vv (m)

. Vv (m) , {m + (i1, i2, i3)}i1,i2,i3=0,1

via edges with weights ρi , i = 1, 2

(zi,m to vi,m′∈ Vz(m)

. Vz(m) , {m + (i1, i2, i3))}i1,i2,i3=−1,0)

I Associated density [Dikmen10]
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Part 2: Bayesian model for multivariate time seriesg Éy

Bayesian model

I Posterior distribution

p(V ,Z ,M |Y , ρ1, ρ2) ∝
p(Y |V 2,M) p(M |V 1)︸ ︷︷ ︸

augmented likelihood

× p(V 1,Z 1|ρ1) p(V 2,Z 2|ρ2)︸ ︷︷ ︸
independent GaMRF priors

I Bayesian estimator → marginal posterior mean

VMMSE
i = E[V i |Y , ρi ] ≈ (Nmc − Nbi )

−1
∑Nmc

q=Nbi

V (q)
i

with {V (q), Z (q), M(q)}Nmc
q=0 generated via MCMC algorithm [Robert05]

I Hyperparameters ρi not estimated here, fixed manually
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Part 2: Bayesian model for multivariate time seriesg Éy

Gibbs sampler: independent IG priors (univariate)

I Sampling of M and parameters V
p(µm|V ,Y

,Z ,ρ

) closed-form Gaussian distribution

p(v i ,m|V j 6=i ,M ,Y

,Z ,ρ

) closed-form inverse-gamma distributions

I Sampling of auxiliary variables Z
p(zi ,m|V ,M ,Y ,ρ) closed-form gamma distributions

all standard distributions → no Metropolis-Hasting moves

→ efficient sampling scheme, tailored for large datasets
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Numerical illustration for synthetic datag Éy

Numerical simulations

I Synthetic multifractal time series: Multifractal Random Walk

∼ Mandelbrot’s celebrated multiplicative cascades

I cube of 323 voxels of length N = 512

- 3 zones with constant c2 ∈ {−0.01,−0.03,−0.06}
III. BAYESIAN MODEL FOR MULTIVARIATE TIME SERIES

A. Likelihood

Based on the likelihood (11) for one single time series
X(t), we now design a joint Bayesian model for the analysis
of multivariate time series. Let Xm, m , (m1, m2, m3),
md = 1, . . . , Md, denote M1 ⇥M2 ⇥M3 discrete time series
(voxels) of length N (as illustrated in Fig. 1). Denote as
ym, µm and vm the Fourier coefficients, latent variables and
parameter vector associated with Xm and as Y , {ym},
M , {µm}, and V , {V 1, V 2} (where V i , {vi,m},
i = 1, 2) the corresponding collections for all voxels {Xm}.
Assuming independence between the vectors ym, the joint
likelihood of Y can be written as

p(Y , M |V ) /
Y

m
p(ym, µm|vm). (12)

B. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,m, �i,m) are conjugate
priors for the parameters vi,m in (12), and we propose to
specify (↵i,m, �i,m) such that the resulting prior for V i is a
hidden GMRF [15]. A GMRF makes use of a set of positive
auxiliary variables Z = {Z1, Z2}, Zi = {zi,m}, to induce
positive dependence between the neighbooring elements of
V i (and thus spatial regularization) [15]. Specifically, each
vi,m is connected to the eight auxiliary variables zi,m0 >
0, m0 2 Vv(m) , {m + (d1, d2, d3)}d1,d2,d3=0,1 (and
therefore, each zi,m to vi,m0 , m0 2 Vz(m) , {m +
(d1, d2, d3))}d1,d2,d3=�1,0), via edges with weights ⇢i, i =
1, 2, that are hyperparameters and control the amount of
smoothness. It can be shown that this prior for (V i,Zi) is
associated with the density [15]

p(V i, Zi|⇢i) /
Y

k
e(8⇢i�1) log zi,m e�(8⇢i+1) log vi,m

.⇥ e
� ⇢i

vi,m

P
m02Vv(m) zi,m0

. (13)

C. Posterior distribution and Bayesian estimators

Under the assumption of prior independence between
(V 1, Z1) and (V 2, M , Z2), the joint posterior distribution
associated with the proposed model is obtained as

p(V , Z, M |Y , ⇢1, ⇢2) / p(Y |V 2, M) p(M |V 1)

⇥ p(V 1, Z1|⇢1) p(V 2, Z2|⇢2) (14)

using Bayes’ theorem. To infer the parameters of inter-
est V i, we consider the marginal posterior mean (mini-
mum mean square error) estimator, denoted MMSE, which
is defined as V MMSE

i , E[V i|Y , ⇢i], where the expecta-
tion is taken with respect to the marginal posterior den-
sity p(V i|Y , ⇢i). The direct computation of V MMSE

i is not
tractable since it requires integrating the posterior (14) over
the variables Z and M and computation of the expectation.
Instead, by considering a Gibbs sampler (GS) generating
samples ({V

(q)
i }, M (q), {Zi

(q)})Nmc
q=0 that are asymptotically

distributed according to (14), it can be approximated as [18]

V MMSE
i ⇡ (Nmc � Nbi)

�1
XNmc

q=Nbi

V
(q)
i (15)

1 256 512

c2=-0.06

t

c2=-0.03

c2=-0.01

Fig. 1. Illustration of the cube of 32 ⇥ 32 ⇥ 32 voxels of time series (left
panel) with prescribed multifractal properties c2 2 {�0.01,�0.03,�0.06}
(indicated as green, yellow, dark blue, respectively); the slices correspond to
those analyzed in Fig. 2. Single realizations of time series corresponding to
3 voxels with different value of c2 (right panel).

TABLE I
ESTIMATION PERFORMANCE FOR 100 INDEPENDENT REALIZATIONS.

LF IG GMRF
|b| 0.0158 0.0051 0.0092
std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

where Nbi is the number of samples of the burn-in period.

D. Gibbs sampler

Here, the GS consists of successively drawing samples
from the conditional distributions that are associated with the
posterior (14) [18]. Simple calculations lead to

p(µ | Y ,V )⇠ CN
⇣
v1F̃��1

v y,
⇣
(v1F̃ )�1+(v2G̃)�1

⌘�1
⌘

(16a)

p(vi | Y ,M ,Zi) ⇠ IG(NY+↵i,⌅i+�i) (16b)
p(zi | V i) ⇠ G(↵i, �i) (16c)

where the subscript m has been omitted for notational con-
venience and where ⌅1 = ||µ||

F̃
�1 , ⌅2 = ||y�µ||

G̃
�1 with

||x||⇧ , xH⇧x, ↵i,m = 8⇢i, �i,m = ⇢i

P
m02Vv(m) zi,m0

and �i,m = (⇢i

P
m02Vz(m) v�1

i,m0)�1. All conditionals (16a–
16c) are standard laws that can be sampled efficiently, without
MHG steps. Finally, note that when the parameters vi,m

are assumed to be independent and have IG(ci, di) priors
instead of (13) (i.e., no smooth spatial evolution is assumed),
a Bayesian model is obtained that can also be sampled using
the GS steps (16a–16b), with ↵i,m = ci and �i,m = di.

IV. NUMERICAL EXPERIMENTS

We compare the performance of the proposed estimator
(denoted as GMRF) with its counterpart with an IG prior
(denoted as IG) and with the linear regression estimator (3)
(denoted as LF, with weights as in [7]) by applying it to
100 independent realizations of a cube of 323 voxels of
length N = 512. Each voxel is an independent realization
of MRW, with prescribed values c2 2 {�0.01,�0.03,�0.06}
as illustrated in Fig. 1. MRW belongs to the class of MMC
processes and possesses multifractal properties similar to those
of Mandelbrot’s multiplicative log-normal cascades, with scal-
ing exponents ⇣(q) = (H � c2)q + c2q

2/2, cf., [19] for details

1 256 512

c
2
=-0.06

t

c
2
=-0.03

c
2
=-0.01

I Comparison of estimators for c2 (Nψ = 2, j ∈ [2, 4])

- LF – univariate linear regression based estimation
- IG – univariate Bayesian estimation
- GaMRF – joint Bayesian estimator
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Numerical illustration for synthetic datag Éy

Illustration for single realization: estimates
estimates for c2

prescribed c2 LF IG GaMRF

HISTOGRAMS

-0.09-0.06-0.03 -0.2 0 0.2 -0.09-0.06-0.03 -0.09-0.06-0.03
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Numerical illustration for synthetic datag Éy

Illustration for single realization: histogram thresholding
k-means classification

prescribed c2 LF IG GaMRF

HISTOGRAMS
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Numerical illustration for synthetic datag Éy

Estimation performance

LF IG GaMRF

|b| 0.0158 0.0051 0.0092

std 0.0800 0.0255 0.0020

rmse 0.0819 0.0262 0.0094

b= Ê[ĉ2]− c2, std=

√
V̂ar[ĉ2], rmse=

√
b2 + std2

(100 independent realizations)

Computation time:

log2N

log2T
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Numerical illustration for fMRI datag Éy

fMRI data experiment (with P. Ciuciu, CEA NeuroSpin, Paris)
Experimental design: verbal n-back working memory task (n = 3).
– serially presented upper-case letters (displayed 1s, separation 2s)
→ determine whether letter is same as that presented 3 stimuli before

– each run: alternating sequence of 8 blocks

Data acquisition.
– fMRI data acquisition at 3 Tesla (Siemens Trio, Germany).
– multi-band GE-EPI (TE=30ms, TR=1s, FA=61, b=2) sequence
(CMRR, USA), 3-mm isotropic resolution, FOV of 192×192×144mm3

– resting-state fMRI images: participant at rest, with eyes closed
– 543 scans (9min10s) / 512 scans (8min39s) for resting state / task

Analysis setting.
– Nψ = 2
– j = [2, 5]
– Nmc = 16000

– regularization parameter: ρ = 1 (preliminary analysis)

– shown here: single subject (arbitrarily chosen from 40 participants)
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Numerical illustration for fMRI datag Éy

Resting state (−c2)-maps

Left sagittal Coronal Right sagittal Axial

LF

IG

GaMRF
−→ significant multifractality in default mode network.
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Numerical illustration for fMRI datag Éy

Task (3-back run) (−c2)-maps

Left sagittal Coronal Right sagittal Axial

LF

IG

GaMRF
−→ increased multifractality. working memory network. occipital cortex.
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Conclusions and perspectivesg Éy

Conclusions
I Bayesian estimation for c2 of multivariate time series

- hierarchical Bayesian model with smoothing priors:
{

data augmented Fourier domain likelihood (∼ CN )

GaMRF joint prior for c2 of different data components

- efficient inference via a Gibbs sampler

→ significantly improved estimation performance (gain: factor ∼ 10)

I Alternative regularization for c2 (not shown here)

- simultaneous autoregression (SAR) smoothing prior
- enables sampling of regularization parameter ρ
- similar estimation performance, but (much) less efficient algorithm

I Joint Bayesian estimation for c1 (not shown here)

- can be incorporated at little extra cost (using a SAR prior for c1)

I Can also handle missing data (not shown here)
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Conclusions and perspectivesg Éy

Open issues

I current model
I estimation of GaMRF hyperparameter
I estimation of integral scale
I EM algorithm

I model and algorithm with other multivariate priors
I joint estimation-segmentation in space
I temporal change detection and estimation
I joint estimation-segmentation in time / space

I applications: group level
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