On a Bayesian framework for the multifractal analysis of multivariate data

COLLABORATIONS: P. Abry³, Y. Altmann², S. Combrexelle¹, N. Dobigeon¹, S. McLaughlin², J.-Y. Tourneret¹, <u>H. Wendt</u>¹

- ¹ CNRS, IRIT, University of Toulouse, France
- ² Heriot-Watt University, Edinburgh, Scotland
- ³ CNRS, Physics Lab., Ecole Normale Supérieure de Lyon, France

University of Pisa, 27 Feb. 2017

Multifractal spectrum

▶ Local regularity of X(t) at t_0

$$h(t_0) = \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha} \}$$

$$h(t_0)
ightarrow 1 \Rightarrow$$
 smooth, very regular, $h(t_0)
ightarrow 0 \Rightarrow$ rough, very irregular

Multifractal spectrum

▶ Local regularity of X(t) at t_0

$$h(t_0) = \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha} \}$$

$$h(t_0)
ightarrow 1 \Rightarrow$$
 smooth, very regular, $h(t_0)
ightarrow 0 \Rightarrow$ rough, very irregular

Multifractal spectrum

▶ Local regularity of X(t) at t_0

$$h(t_0) = \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha} \}$$

$$h(t_0) o 1 \Rightarrow$$
 smooth, very regular, $h(t_0) o 0 \Rightarrow$ rough, very irregular

Multifractal spectrum

▶ Local regularity of X(t) at t_0

$$h(t_0) = \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha} \}$$

$$h(t_0) o 1 \Rightarrow$$
 smooth, very regular, $h(t_0) o 0 \Rightarrow$ rough, very irregular

Multifractal spectrum

▶ Local regularity of X(t) at t_0

Hölder exponent

$$h(t_0) = \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha} \}$$

 $h(t_0)
ightarrow 1 \Rightarrow$ smooth, very regular, $h(t_0)
ightarrow 0 \Rightarrow$ rough, very irregular

Multifractal spectrum

Hölder exponent
$$h(t_0) = \sup_{\alpha} \{\alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha}\}$$
 $0 < \alpha$

- ▶ Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) = \dim_H\{t: h(t) = h\}$$

Multifractal spectrum

Hölder exponent
$$h(t_0) = \sup_{\alpha} \{\alpha: |X(t) - X(t_0)| < C|t - t_0|^{\alpha}\}$$
 $0 < \alpha$

- ▶ Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) = \dim_H\{t : h(t) = h\}$$

Multifractal spectrum

Hölder exponent
$$h(t_0) = \sup_{\alpha} \{\alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha}\}$$
 $0 < \alpha$

- ▶ Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) = \dim_H\{t : h(t) = h\}$$

Multifractal spectrum

Hölder exponent
$$h(t_0) = \sup_{\alpha} \{\alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha}\}$$
 $0 < \alpha$

- ▶ Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) = \dim_H\{t : h(t) = h\}$$

Multifractal spectrum

Hölder exponent
$$h(t_0) = \sup_{\alpha} \{\alpha : |X(t) - X(t_0)| < C|t - t_0|^{\alpha}\}$$
 $0 < \alpha$

- ▶ Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) = \dim_H\{t: h(t) = h\}$$

Multifractal formalism

 \triangleright D(h) in practice \rightarrow multifractal formalism

[Parisi85]

▶ Multiresolution quantities: wavelet leaders $\{\ell(j\cdot,\cdot)\}$

[Jaffard04]

$$\ell(j,k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k): \; \mathsf{DWT} \; \mathsf{coefficient}$$

Multifractal formalism

 \triangleright D(h) in practice \rightarrow multifractal formalism

[Parisi85]

Multiresolution quantities: wavelet leaders $\{\ell(j\cdot,\cdot)\}$

$$\ell(j,k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k)$$
: DWT coefficient

Polynomial expansion

$$D(h) \approx 1 + \frac{c_2}{2!} \left(\frac{h - c_1}{c_2}\right)^2 - \frac{c_3}{3!} \left(\frac{h - c_1}{c_2}\right)^3 + \dots$$

 $\rightarrow c_p$ tied to cumulants of $\{\ell(j\cdot,\cdot)\}$

[Castaing93]

Multifractal formalism

 \triangleright D(h) in practice \rightarrow multifractal formalism

[Parisi85]

[Castaing93]

▶ Multiresolution quantities: wavelet leaders $\{\ell(i,\cdot,\cdot)\}$

$$\ell(j,k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k): \; \mathsf{DWT} \; \mathsf{coefficient}$$

► Polynomial expansion

$$D(h) \approx 1 + \frac{c_2}{2!} \left(\frac{h - c_1}{c_2}\right)^2 - \frac{c_3}{3!} \left(\frac{h - c_1}{c_2}\right)^3 + \dots$$

- $\rightarrow c_p$ tied to cumulants of $\{\ell(j\cdot,\cdot)\}$
- Multifractality parameter c₂
 - \sim fluctuations of regularity
 - tied to the variance of log-leaders

Var
$$[\ln \ell(j, \cdot)] = c_2^0 + c_2 \ln 2^j$$

Multifractal formalism

ightharpoonup D(h) in practice ightharpoonup multifractal formalism

[Parisi85]

▶ Multiresolution quantities: wavelet leaders $\{\ell(i,\cdot,\cdot)\}$

[Castaing93]

 $\ell(j,k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k)$: DWT coefficient

Polynomial expansion

$$D(h) \approx 1 + \frac{c_2}{2!} \left(\frac{h - c_1}{c_2}\right)^2 - \frac{c_3}{3!} \left(\frac{h - c_1}{c_2}\right)^3 + \dots$$

- $ightarrow c_p$ tied to cumulants of $\{\ell(j\cdot,\cdot)\}$
- Multifractality parameter c₂
 - \sim fluctuations of regularity
 - tied to the variance of log-leaders

$$\mathsf{Var}\big[\ln\ell(j,\cdot)\big] = c_2^0 + c_2\ln 2^j$$

- self-similar processes $\rightarrow c_2 = 0$

Multifractal formalism

ightharpoonup D(h) in practice ightharpoonup multifractal formalism

[Parisi85]

▶ Multiresolution quantities: wavelet leaders $\{\ell(j\cdot,\cdot)\}$

[Jaffard04]

$$\ell(j,k) = \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k)$$
: DWT coefficient

Polynomial expansion

[Castaing93]

$$D(h) \approx 1 + \frac{c_2}{2!} \left(\frac{h - c_1}{c_2}\right)^2 - \frac{c_3}{3!} \left(\frac{h - c_1}{c_2}\right)^3 + \dots$$

 $ightarrow c_p$ tied to cumulants of $\{\ell(j\cdot,\cdot)\}$

Multifractality parameter c_2

- \sim fluctuations of regularity
- tied to the variance of log-leaders

- self-similar processes $\rightarrow c_2 = 0$
- multifractal multiplicative cascades ightarrow $c_2 < 0$

Multifractal analysis Estimation of the multifractality parameter

- ► Estimation of the multimactanty parameter
 - linear regression-based estimation

[Castaing93]

- X poor estimation performance \longrightarrow need (very) long time series
- existing alternatives unsatisfactory (fully parametric models, ...)

Synthetic multiplicative cascades with different c₂

Multifractal analysis Estimation of the multifractality parameter

- Estimation of the multifractality parameter
 - **E**stimation of c_2 is challenging
 - linear regression-based estimation

[Castaing93]

- X poor estimation performance \longrightarrow need (very) long time series
- existing alternatives unsatisfactory (fully parametric models, ...)
- 1. Bayesian estimation for c_2 for single time series

[TIP15,ICASSP16]

- robust semiparametric model for log-leaders
- → significantly improved estimation performance

Synthetic multiplicative cascades with different c2

Multifractal analysis Estimation of the multifractality parameter

Estimation of the multifractality parameter

- Estimation of c₂ is challenging
 - linear regression-based estimation

[Castaing93]

- X poor estimation performance \longrightarrow need (very) long time series
- existing alternatives unsatisfactory (fully parametric models, ...)
- 1. Bayesian estimation for c_2 for single time series

[TIP15,ICASSP16]

- robust semiparametric model for log-leaders

ightarrow significantly improved estimation performance

2. Bayesian estimation for c_2 for multivariate data [IWSSIP16.EUSIPC016.ICIP16]

- regularization using Markov field joint prior
- → further reduced variance
- ightarrow computational cost \sim linear regression

Synthetic multiplicative cascades with different c_2

7=23

z=10

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \operatorname{Var}[I(j,k)])$$

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \text{Var}[I(j,k)])$$

numerical experiments, (1D and 2D):
 model valid for a large variety of MMC processes

canonical Mandelbrot cascades with log-Normal multipliers
[Yaglom66,Mandelbrot74]

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \text{Var}[I(j,k)])$$

numerical experiments, (1D and 2D): model valid for a large variety of MMC processes

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \text{Var}[I(j,k)])$$

numerical experiments, (1D and 2D): model valid for a large variety of MMC processes

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \text{Var}[I(j,k)])$$

numerical experiments, (1D and 2D): model valid for a large variety of MMC processes

compound Poisson cascades with log-Poisson multipliers
[Barral02,Chainais07]

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \text{Var}[I(j,k)])$$

numerical experiments, (1D and 2D): model valid for a large variety of MMC processes

[Bacry01,Robert10]

Marginal distribution of log-leaders

 Marginal distribution of log-leaders well approximated by Gaussian [ICASSP13,TIP15]

$$I(j,k) = \ln \ell(j,k) \sim \mathcal{N}(\mathbb{E}[I(j,k)], \text{Var}[I(j,k)])$$

numerical experiments, (1D and 2D):
 model NOT valid for (log-)wavelet coefficients ln |d(j, k)|

multifractal random walk (MRW)

[Bacry01, Robert10]

Gaussian random field parametric model

Mean

$$\boxed{\mathbb{E}[I(j,k)] = c_1^0 + jc_1 \ln 2}$$
 (discarded below)

- ightharpoonup Variance-covariance ightarrow piecewise logarithmic model $\varrho_{j, heta}(\Delta k)$
 - parameters $\theta = [\theta_1, \theta_2]^T = [c_2, c_2^0]^T$

→ generic property for multifractal multiplicative cascades

$$Cov[I(j, k), I(j, k + \Delta k)] \approx$$

$$\varrho_{j,\theta}(\Delta k) = \begin{cases} c_2^0 + c_2 j \ln 2 & \Delta k = 0 \\ \varrho_j^{(0)}(|\Delta k|;\theta) & 0 \le |\Delta k| \le 3 \\ \varrho_j^{(1)}(|\Delta k|;\theta) = \max\left(0, C_{lS} + c_2 \ln 2^j |\Delta k|\right) & 3 \le |\Delta k| \end{cases}$$

From a standard likelihood...

- ightharpoonup Likelihood w.r.t. heta (sample) mean removed
 - log-leaders at scale j, $l_j = (I(j,1), I(j,2), \dots)$

$$p(l_j| heta) \propto (\det \Sigma_{j, heta})^{-rac{1}{2}} e^{-rac{1}{2}l_j^T \Sigma_{j, heta}^{-1} l_j}$$

- $\Sigma_{j, heta}$ covariance matrix induced by parametric model $arrho_{j, heta}(\Delta k)$
- collection of log-leaders $j=j_1,\ldots,j_2,\ \boldsymbol{l}=[\boldsymbol{l}_{j_1}^T,...,\boldsymbol{l}_{j_2}]^T$
- → interscale independence assumption

$$p(oldsymbol{l}| heta) \propto \prod_{j=j_1}^{j_2} (\det \Sigma_{j, heta})^{-rac{1}{2}} e^{-rac{1}{2} oldsymbol{l}_j^T \Sigma_{j, heta}^{-1} oldsymbol{l}_j}$$

- X inversion of $\Sigma_{i,\alpha}$ prohibitive
- X constraints on θ (Σ : a p.d.

- \rightarrow reparametrization
- acy of priors for $heta \qquad \qquad o$ data augmentation

From a standard likelihood...

- Likelihood w.r.t. θ (sample) mean removed
 - log-leaders at scale j, $l_j = (I(j,1), I(j,2), \dots)$

$$ho(l_j| heta) \propto (\det \Sigma_{j, heta})^{-rac{1}{2}} e^{-rac{1}{2}l_j^T \Sigma_{j, heta}^{-1} l_j}$$

- $\Sigma_{j, heta}$ covariance matrix induced by parametric model $arrho_{j, heta}(\Delta k)$
- collection of log-leaders $j=j_1,\ldots,j_2,\ \boldsymbol{l}=[\boldsymbol{l}_{j_1}^T,...,\boldsymbol{l}_{j_2}]^T$
- \rightarrow interscale independence assumption $\int_{0}^{j_{2}} dx = \int_{0}^{1} dx = \int_{0}^{1} d^{T} \nabla^{-1} dx$

$$p(\boldsymbol{l}|\theta) \propto \prod_{j=j_1}^{j_2} (\det \Sigma_{j,\theta})^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2} l_j^T \Sigma_{j,\theta}^{-1} l_j}$$

- X inversion of $\Sigma_{i,\theta}$ prohibitive \to Whittle approximation
- X constraints on θ ($\mathsf{\Sigma}_{i,\theta}$ p.d.) \to reparametrization
- $m{\mathsf{X}}$ conjugacy of priors for heta o data augmentation

Part 1: Bayesian model for single time series ...to a Data Augmented Likelihood

[TIP15,ICASSP16]

 $m{ ilde{ textbf{ iny Whittle approximation}}} \Longrightarrow ext{Fourier transform (DFT) of centered log-leaders } m{l}_j \ m{y}_j = DFT(m{l}_j)$

► Reparametrization ⇒ independent positivity constraints on parameters

$$oldsymbol{v} = \psi((c_2, c_2^0)) \in \mathbb{R}_\star^{+2}$$

lacktriangle Data augmentation \Longrightarrow hidden mean μ_i for ${f y}_i$

$$\Longrightarrow$$
 complex Gaussian model for $m{y} = [m{y}_{j_1}^T,...,m{y}_{j_2}^T]^T$
$$\left\{ egin{array}{l} m{y}| \mu, v_2 & \sim \mathcal{CN}(\mu, v_2 m{F}_2) & ext{observed data} \\ \mu| v_1 & \sim \mathcal{CN}(m{0}, v_1 m{F}_1) & ext{hidden mean} \end{array} \right.$$

F₁, **F**₂ diagonal, positive definite, known and fixed

$$\begin{split} \rho(\mathbf{y}, \boldsymbol{\mu} | \mathbf{v}) &\propto \rho(\mathbf{y} | \boldsymbol{\mu}, v_2) \; \rho(\boldsymbol{\mu} | v_1) \\ &\propto \mathbf{v_2}^{-N_Y} \exp\left(-\frac{1}{\mathbf{v_2}} (\mathbf{y} - \boldsymbol{\mu})^H \mathbf{F}_2^{-1} (\mathbf{y} - \boldsymbol{\mu})\right) \times \mathbf{v_1}^{-N_Y} \exp\left(-\frac{1}{\mathbf{v_1}} \boldsymbol{\mu}^H \mathbf{F}_1^{-1} \boldsymbol{\mu}\right) \end{split}$$

Part 1: Bayesian model for single time series ...to a Data Augmented Likelihood

[TIP15,ICASSP16]

Whittle approximation \Longrightarrow Fourier transform (DFT) of centered log-leaders $m{l}_j$ $m{y}_j = DFT(m{l}_j)$

► Reparametrization
$$\Longrightarrow$$
 independent positivity constraints on parameters $\mathbf{v} = \psi((c_2, c_2^0)) \in \mathbb{R}^{+2}$

lacktriangle Data augmentation \Longrightarrow hidden mean μ_i for $oldsymbol{y}_i$

 $p(\mathbf{v}, \boldsymbol{\mu}|\mathbf{v}) \propto p(\mathbf{v}|\boldsymbol{\mu}, v_2) p(\boldsymbol{\mu}|v_1)$

$$\implies$$
 complex Gaussian model for $\mathbf{y} = [\mathbf{y}_{j_1}^T, ..., \mathbf{y}_{j_2}^T]^T$
$$\begin{cases} \mathbf{y} | \boldsymbol{\mu}, v_2 \ \sim \mathcal{CN}(\boldsymbol{\mu}, v_2 \boldsymbol{F}_2) & \text{observed data} \\ \boldsymbol{\mu} | v_1 \ \sim \mathcal{CN}(\mathbf{0}, v_1 \boldsymbol{F}_1) & \text{hidden mean} \end{cases}$$

 \mathbf{F}_1 , \mathbf{F}_2 diagonal, positive definite, known and fixed

$$\propto {\color{red} {v_2}^{-N_Y}} \exp\left(-\frac{1}{{\color{red} {v_2}}} ({\color{red} {y}} - {\color{red} {\mu}})^H {\color{red} {F_2}^{-1}} ({\color{red} {y}} - {\color{red} {\mu}})\right) \times {\color{red} {v_1}^{-N_Y}} \exp\left(-\frac{1}{{\color{red} {v_1}}} {\color{red} {\mu}}^H {\color{red} {F_1}^{-1}} {\color{red} {\mu}}\right)$$
 Bayesian estimation of multifractal parameters for multivariate time series

Augmented likelihood based Bayesian model

[ICASSP16]

Augmented likelihood

$$p(\mathbf{y}, \boldsymbol{\mu} | \mathbf{v}) \propto \frac{\mathbf{v_2}^{-N_Y}}{2} \exp\left(-\frac{1}{\mathbf{v_2}} (\mathbf{y} - \boldsymbol{\mu})^H \mathbf{F}_2^{-1} (\mathbf{y} - \boldsymbol{\mu})\right) \times \frac{\mathbf{v_1}^{-N_Y}}{2} \exp\left(-\frac{1}{\mathbf{v_1}} \boldsymbol{\mu}^H \mathbf{F}_1^{-1} \boldsymbol{\mu}\right)$$

- ▶ Prior v_i as variance of Gaussian \rightarrow conjugate inverse-gamma prior $\mathcal{IG}(\alpha_i, \beta_i)$
- Posterior $p(\mathbf{v}, \mu | \mathbf{y}) \propto p(\mathbf{y}, \mu | \mathbf{v}) p(v_1) p(v_2)$
- ► Bayesian estimators via MCMC algorithm
- o marginal posterior mean estimator (MMSE) $m{v}^{\mathsf{MMSE}} = \mathbb{E}[m{v}|m{y}]$

Markov Chain Monte Carlo Algorithm

- Sampling of μ and parameters v $p(\mu|v,y) \qquad \qquad \text{closed-form Gaussian distribution}$ $p(v_i|v_{j\neq i},\mu,y) \qquad \qquad \text{closed-form inverse-gamma distributions}$ all standard distributions v no Metropolis Hasting moves
- all standard distributions ightarrow no Metropolis-Hasting moves
- ▶ Performance for synthetic data (further details later)
 - $-N = 512, c_2 = -0.01, \dots, -0.08$
 - estimation performance improved by factor up to \sim 4
 - about 5 to 2 times slower than linear regression

	LF	
b	0.0158	
std		
rmse	0.0819	

Markov Chain Monte Carlo Algorithm

- Sampling of μ and parameters \mathbf{v} $p(\mu|\mathbf{v},\mathbf{y}) \qquad \text{closed-form Gaussian distribution}$ $p(\mathbf{v}_i|\mathbf{v}_{j\neq i},\mu,\mathbf{y}) \qquad \text{closed-form inverse-gamma distributions}$
 - all standard distributions \rightarrow no Metropolis-Hasting moves
- Performance for synthetic data (further details later)
 - $-N = 512, c_2 = -0.01, \dots, -0.08$
 - estimation performance improved by factor up to \sim 4
 - about 5 to 2 times slower than linear regression

	LF	IG
b	0.0158	0.0051
std	0.0800	0.0255
rmse	0.0819	0.0262

Bayesian estimation of multifractal parameters for multivariate time series

Strategy: Hierarchical Bayesian models

for volumetric time series (voxels), X_{m} , $m \triangleq (m_1, m_2, m_3)$, of length N (other data structures possible)

- 1. Statistical model $p(\mathbf{y_m}, \mu_m | \mathbf{v_m})$
 - y_m : Fourier coeff's of log-leaders of X_m
 - μ_m : latent variables
 - v_m: parameter vector

Strategy: Hierarchical Bayesian models

for volumetric time series (voxels), X_{m} , $m \triangleq (m_1, m_2, m_3)$, of length N (other data structures possible)

- 1. Statistical model $p(y_m, \mu_m | v_m)$
 - y_m : Fourier coeff's of log-leaders of X_m
 - $\mu_{\it m}$: latent variables
 - **v**_m: parameter vector
- 2. Prior independence between voxels

$$p(\mathbf{Y}, \mathbf{M} | \mathbf{V}) \propto \prod_{\mathbf{m}} p(\mathbf{y}_{\mathbf{m}}, \mu_{\mathbf{m}} | \mathbf{v}_{\mathbf{m}})$$

- $Y \triangleq \{y_m\}$
- $\mathbf{M} \triangleq \{\mu_{m}\}$
- $\mathbf{V} \triangleq \{\mathbf{V}_1, \mathbf{V}_2\} \ (\mathbf{V}_i \triangleq \{\theta_{i,m}\}, \ i = 1, 2)$

Strategy: Hierarchical Bayesian models

for volumetric time series (voxels), X_{m} , $m \triangleq (m_1, m_2, m_3)$, of length N (other data structures possible)

- 1. Statistical model $p(y_m, \mu_m | v_m)$
 - y_m : Fourier coeff's of log-leaders of X_m
 - $\mu_{\it m}$: latent variables
 - **v**_m: parameter vector
- 2. Prior independence between voxels

$$p(\mathbf{Y}, \mathbf{M}|\mathbf{V}) \propto \prod_{\mathbf{m}} p(\mathbf{y}_{\mathbf{m}}, \mu_{\mathbf{m}}|\mathbf{v}_{\mathbf{m}})$$

- $Y \triangleq \{y_m\}$
- $\pmb{M} riangleq \{\pmb{\mu_m}\}$
- $\mathbf{V} \triangleq \{\mathbf{V}_1, \mathbf{V}_2\} \ (\mathbf{V}_i \triangleq \{\theta_{i,m}\}, \ i = 1, 2)$
- 3. Design of regularizing priors on **V**

Prior: joint Gamma Markov random field (GaMRF)

- \rightarrow smooth evolution of multifractal parameters \mathbf{v} (i.e., variances of Gaussians)
- ▶ Positive auxiliary variables $Z = \{Z_1, Z_2\}, Z_i = \{z_{i,m}\}$
- \rightarrow induce dependence between neighbouring elements of V_i
- $v_{i,m}$: connected to 8 variables $z_{i,m'} \in \mathcal{V}_{v}(m)$

$$(z_{i,\mathbf{m}} \text{ to } v_{i,\mathbf{m}'} \in \mathcal{V}_z(\mathbf{m}) \ \mathcal{V}_z(\mathbf{m}) \triangleq \{\mathbf{m} + (i_1, i_2, i_3))\}_{i_1, i_2, i_3 = -1, 0})$$

Associated density

Associated density [Dikmen10]
$$p(\boldsymbol{V}_i, \boldsymbol{Z}_i | \rho_i) \propto \prod_{\boldsymbol{m}, n} e^{(8\rho_i - 1) \log z_{i, m}} e^{-(8\rho_i + 1) \log v_{i, m}} \times e^{-\frac{\rho_i}{v_{i, m}} \sum_{\boldsymbol{m}' \in \mathcal{V}_v \boldsymbol{m}} Z_{i, m'}}$$

 $z_{i, m} | \boldsymbol{V}_i \sim \mathcal{G}(8\rho_i, (\rho_i \sum_{\boldsymbol{m}' \in \mathcal{V}_{\tau}(\boldsymbol{m})} v_{i, k'}^{-1})^{-1}) \rightarrow \text{gamma conditionals}$

$$\mathbf{v}_{i,\mathbf{m}}|\mathbf{Z}_i \sim \mathcal{IG}(8\rho_i, \rho_i \sum_{\mathbf{m}' \in \mathcal{V}_{V}(\mathbf{m})} z_{i,\mathbf{m}'}) \longrightarrow \text{inverse-gamma cond}$$

Prior: joint Gamma Markov random field (GaMRF)

- \rightarrow smooth evolution of multifractal parameters \mathbf{v} (i.e., variances of Gaussians)
- ▶ Positive auxiliary variables $Z = \{Z_1, Z_2\}, Z_i = \{z_{i,m}\}$
 - \longrightarrow induce dependence between neighbouring elements of V_i
- $v_{i,m}$: connected to 8 variables $z_{i,m'} \in \mathcal{V}_{v}(m)$

$$(z_{i,\mathbf{m}} \text{ to } v_{i,\mathbf{m}'} \in \mathcal{V}_z(\mathbf{m})$$

 $\mathcal{V}_z(\mathbf{m}) \triangleq {\{\mathbf{m} + (i_1, i_2, i_3)\}}_{i_1, i_2, i_3 = -1, 0})$

Associated density

Associated density [Dikmen10]
$$p(\boldsymbol{V}_i, \boldsymbol{Z}_i | \rho_i) \propto \prod_{\boldsymbol{m}, n} e^{(8\rho_i - 1) \log z_{i,m}} e^{-(8\rho_i + 1) \log v_{i,m}} \times e^{-\frac{\rho_i}{v_{i,m}} \sum_{\boldsymbol{m}' \in \mathcal{V}_{\boldsymbol{V}} \boldsymbol{m}} Z_{i,m'}}$$

$$z_{i,\boldsymbol{m}}|\boldsymbol{V}_i \sim \mathcal{G}(8\rho_i, \left(\rho_i \sum_{\boldsymbol{m}' \in \mathcal{V}_z(\boldsymbol{m})} v_{i,\boldsymbol{k}'}^{-1}\right)^{-1}) \rightarrow \mathsf{gamma} \; \mathsf{conditionals}$$

$$\mathbf{v}_{i,\mathbf{m}}|\mathbf{Z}_i \sim \mathcal{IG}(8\rho_i, \rho_i \sum_{\mathbf{m}' \in \mathcal{V}_v(\mathbf{m})} \mathbf{z}_{i,\mathbf{m}'}) \qquad o \text{inverse-gamma cond}$$

Prior: joint Gamma Markov random field (GaMRF)

- \rightarrow smooth evolution of multifractal parameters \mathbf{v} (i.e., variances of Gaussians)
- ▶ Positive auxiliary variables $Z = \{Z_1, Z_2\}, Z_i = \{z_{i,m}\}$
 - \longrightarrow induce dependence between neighbouring elements of V_i
- $v_{i,m}$: connected to 8 variables $z_{i,m'} \in \mathcal{V}_{v}(m)$ $V_{\nu}(\mathbf{m}) \triangleq \{\mathbf{m} + (i_1, i_2, i_3)\}_{i_1, i_2, i_3 = 0.1}$

via edges with weights ρ_i , i = 1, 2

$$\begin{aligned} (\mathbf{z}_{i,\boldsymbol{m}} \text{ to } \mathbf{v}_{i,\boldsymbol{m}'} \in \mathcal{V}_{z}(\boldsymbol{m}) \\ \mathcal{V}_{z}(\boldsymbol{m}) &\triangleq \{\boldsymbol{m} + (i_{1},i_{2},i_{3}))\}_{i_{1},i_{2},i_{3}=-1,0}) \end{aligned}$$

Associated density

$$p(\boldsymbol{V}_i, \boldsymbol{Z}_i | \rho_i) \propto \prod_{\boldsymbol{m}, n} e^{(8\rho_i - 1) \log z_{i, \boldsymbol{m}}} e^{-(8\rho_i + 1) \log v_{i, \boldsymbol{m}}} \times e^{-\frac{\rho_i}{v_{i, \boldsymbol{m}}} \sum_{\boldsymbol{m}' \in \mathcal{V}_v \boldsymbol{m}} z_{i, \boldsymbol{m}'}}$$

$$z_{i,m}|V_i \sim \mathcal{G}(8\rho_i, (\rho_i \sum_{m' \in \mathcal{V}_z(m)} v_{i,k'}^{-1})^{-1}) \rightarrow \text{gamma conditionals}$$

 $v_{i,m}|Z_i \sim \mathcal{IG}(8\rho_i, \rho_i \sum_{m' \in \mathcal{V}_v(m)} z_{i,m'}) \rightarrow \text{inverse-gamma cond.}$

$$ightarrow$$
 gamma conditionals

Prior: joint Gamma Markov random field (GaMRF)

- \rightarrow smooth evolution of multifractal parameters \mathbf{v} (i.e., variances of Gaussians)
- ▶ Positive auxiliary variables $Z = \{Z_1, Z_2\}, Z_i = \{z_{i,m}\}$
- \longrightarrow induce dependence between neighbouring elements of V_i
- $v_{i,m}$: connected to 8 variables $z_{i,m'} \in \mathcal{V}_{\nu}(m)$ $V_{\nu}(\mathbf{m}) \triangleq \{\mathbf{m} + (i_1, i_2, i_3)\}_{i_1, i_2, i_3 = 0.1}$

via edges with weights ρ_i , i = 1, 2

$$(z_{i,m} \text{ to } \underset{\boldsymbol{\mathcal{V}}_{z}(\boldsymbol{m})}{\boldsymbol{\mathcal{V}}_{z}(\boldsymbol{m})} \in \mathcal{V}_{z}(\boldsymbol{m})$$

 $\mathcal{V}_{z}(\boldsymbol{m}) \triangleq \{\boldsymbol{m} + (i_{1}, i_{2}, i_{3}))\}_{i_{1}, i_{2}, i_{3} = -1, 0})$

Associated density
$$p(\boldsymbol{V}_i, \boldsymbol{Z}_i | \rho_i) \propto \prod_{\boldsymbol{m}, \boldsymbol{n}} e^{(8\rho_i - 1) \log z_{i, \boldsymbol{m}}} e^{-(8\rho_i + 1) \log v_{i, \boldsymbol{m}}} \times e^{-\frac{\rho_i}{v_{i, \boldsymbol{m}}} \sum_{\boldsymbol{m}' \in \mathcal{V}_{\boldsymbol{v}} \boldsymbol{m}} z_{i, \boldsymbol{m}'}}$$

 $z_{i,\boldsymbol{m}}|\boldsymbol{V}_i \sim \mathcal{G}(8\rho_i, (\rho_i \sum_{\boldsymbol{m}' \in \mathcal{V}_z(\boldsymbol{m})} v_{i,\boldsymbol{k}'}^{-1})^{-1})$ → gamma conditionals

$$\mathbf{v}_{i,\mathbf{m}}|\mathbf{Z}_i \sim \mathcal{IG}(8\rho_i, \rho_i \sum_{\mathbf{m}' \in \mathcal{V}_{v}(\mathbf{m})} z_{i,\mathbf{m}'}) \qquad o ext{ inverse-gamma cond.}$$

Bayesian model

Posterior distribution

$$p(\mathbf{V}, \mathbf{Z}, \mathbf{M} | \mathbf{Y}, \rho_1, \rho_2) \propto \underbrace{p(\mathbf{Y} | \mathbf{V}_2, \mathbf{M}) \ p(\mathbf{M} | \mathbf{V}_1)}_{augmented \ likelihood} \times \underbrace{p(\mathbf{V}_1, \mathbf{Z}_1 | \rho_1) \ p(\mathbf{V}_2, \mathbf{Z}_2 | \rho_2)}_{independent \ GaMRF \ priors}$$

Bayesian estimator → marginal posterior mean

$$oldsymbol{V}_i^{\mathrm{MMSE}} = \mathbb{E}[oldsymbol{V}_i | oldsymbol{Y},
ho_i] pprox (N_{mc} - N_{bi})^{-1} \sum_{q=N_{bi}}^{N_{mc}} oldsymbol{V}_i^{(q)}$$

with $\{\boldsymbol{V}^{(q)}, \boldsymbol{Z}^{(q)}, \boldsymbol{M}^{(q)}\}_{q=0}^{N_{mc}}$ generated via MCMC algorithm

 \triangleright Hyperparameters ρ_i not estimated here, fixed manually

[Robert05]

Gibbs sampler: independent \mathcal{IG} priors (univariate)

Sampling of M and parameters V $p(\mu_{m}|V,Y)$ closed-form Gaussian distribution $p(\mathbf{v}_{i,m}|V_{j\neq i},M,Y)$ closed-form inverse-gamma distributions

all standard distributions \rightarrow no Metropolis-Hasting moves

→ efficient sampling scheme, tailored for large datasets

Gibbs sampler: joint GaMRF prior

- Sampling of M and parameters V $p(\mu_m|V,Y,Z,\rho)$ closed-form Gaussian distribution $p(\mathbf{v}_{i,m}|V_{j\neq i},M,Y,Z,\rho)$ closed-form inverse-gamma distributions
- ► Sampling of auxiliary variables Z $p(z_{i,m}|V,M,Y,\rho)$ closed-form gamma distributions

all standard distributions → no Metropolis-Hasting moves

→ efficient sampling scheme, tailored for large datasets

Numerical simulations

- ▶ Synthetic multifractal time series: Multifractal Random Walk
 - \sim Mandelbrot's celebrated multiplicative cascades
- cube of 32^3 voxels of length N = 512
 - 3 zones with constant $c_2 \in \{-0.01, -0.03, -0.06\}$

▶ Comparison of estimators for c_2

$$(N_{\psi}=2, j \in [2,4])$$

- LF univariate linear regression based estimation
- IG univariate Bayesian estimation
- GaMRF joint Bayesian estimator

Illustration for single realization:

estimates

Illustration for single realization:

estimates for c₂

estimates

Illustration for single realization: histogram thresholding k-means classification

Estimation performance

	LF	IG	GaMRF
b	0.0158	0.0051	0.0092
std	0.0800	0.0255	0.0020
rmse	0.0819	0.0262	0.0094

$$b = \widehat{\mathbb{E}}[\hat{c}_2] - c_2$$
, $std = \sqrt{\widehat{\mathsf{Var}}[\hat{c}_2]}$, $rmse = \sqrt{b^2 + std^2}$ (100 independent realizations)

Estimation performance

	LF	IG	GaMRF
b	0.0158	0.0051	0.0092
std	0.0800	0.0255	0.0020
rmse	0.0819	0.0262	0.0094

$$\mathbf{b} = \widehat{\mathbb{E}}[\hat{c}_2] - c_2$$
, $\mathbf{std} = \sqrt{\widehat{\mathsf{Var}}[\hat{c}_2]}$, $\mathbf{rmse} = \sqrt{\mathbf{b}^2 + \mathbf{std}^2}$ (100 independent realizations)

Computation time:

fMRI data experiment (with P. Ciuciu, CEA NeuroSpin, Paris)

Experimental design: verbal *n*-back working memory task (n = 3).

- serially presented upper-case letters (displayed 1s, separation 2s)
 - ightarrow determine whether letter is same as that presented 3 stimuli before
- each run: alternating sequence of 8 blocks

Data acquisition.

- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany).
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, b=2) sequence (CMRR, USA), 3-mm isotropic resolution, FOV of $192 \times 192 \times 144$ mm³
- resting-state fMRI images: participant at rest, with eyes closed
- 543 scans (9min10s) / 512 scans (8min39s) for resting state / task

Analysis setting.

- $-N_{\psi}=2$
- -j = [2, 5]
- $-N_{mc} = 1600$
- regularization parameter: $\rho = 1$ (preliminary analysis
- shown here: single subject (arbitrarily chosen from 40 participants)

fMRI data experiment (with P. Ciuciu, CEA NeuroSpin, Paris)

Experimental design: verbal n-back working memory task (n = 3).

- serially presented upper-case letters (displayed 1s, separation 2s)
- ightarrow determine whether letter is same as that presented 3 stimuli before
- each run: alternating sequence of 8 blocks

Data acquisition.

- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany).
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, b=2) sequence (CMRR, USA), 3-mm isotropic resolution, FOV of $192 \times 192 \times 144$ mm³
- resting-state fMRI images: participant at rest, with eyes closed
- 543 scans (9min10s) / 512 scans (8min39s) for resting state / task

Analysis setting.

- $-N_{\psi}=2$
- -j = [2, 5]
- $-N_{mc} = 16000$
- regularization parameter: $\rho = 1$ (preliminary analysis)
- shown here: single subject (arbitrarily chosen from 40 participants)

Resting state $(-c_2)$ -maps

LF

IG

GaMRF

a estimation of multifractal parameters for multivariate time series

 \longrightarrow increased multifractality. working memory network. occipital cortex.

0.028

- ▶ Bayesian estimation for c_2 of multivariate time series
 - hierarchical Bayesian model with smoothing priors:

```
\left\{ \begin{array}{ll} \mathsf{data} \ \mathsf{augmented} \ \mathsf{Fourier} \ \mathsf{domain} \ \mathsf{likelihood} & (\sim \mathcal{CN}) \\ \mathsf{GaMRF} \ \mathsf{joint} \ \mathsf{prior} \ \mathsf{for} \ \mathit{c}_2 \ \mathsf{of} \ \mathsf{different} \ \mathsf{data} \ \mathsf{components} \end{array} \right.
```

- efficient inference via a Gibbs sampler
- \rightarrow significantly improved estimation performance (gain: factor $\sim 10)$
- ightharpoonup Alternative regularization for c_2 (not shown here)
 - simultaneous autoregression (SAR) smoothing prior
 - enables sampling of regularization parameter
 - similar estimation performance, but (much) less efficient algorithm
- ▶ Joint Bayesian estimation for c_1 (not shown here)
 - can be incorporated at little extra cost (using a SAR prior for c_1)
- ► Can also handle missing data (not shown here)

- ▶ Bayesian estimation for c_2 of multivariate time series
 - hierarchical Bayesian model with smoothing priors:

```
\left\{\begin{array}{ll} \text{data augmented Fourier domain likelihood} & (\sim \mathcal{CN}) \\ \text{GaMRF joint prior for } c_2 \text{ of different data components} \end{array}\right.
```

- efficient inference via a Gibbs sampler
- ightarrow significantly improved estimation performance (gain: factor \sim 10)
- \triangleright Alternative regularization for c_2 (not shown here)
 - simultaneous autoregression (SAR) smoothing prior
 - enables sampling of regularization parameter ρ
 - similar estimation performance, but (much) less efficient algorithm
- ▶ Joint Bayesian estimation for c_1 (not shown here)
 - can be incorporated at little extra cost (using a SAR prior for c_1)
- ► Can also handle missing data (not shown here)

- ▶ Bayesian estimation for c_2 of multivariate time series
 - hierarchical Bayesian model with smoothing priors:

```
\left\{\begin{array}{ll} \text{data augmented Fourier domain likelihood} & (\sim \mathcal{CN}) \\ \text{GaMRF joint prior for } \textit{c}_2 \text{ of different data components} \end{array}\right.
```

- efficient inference via a Gibbs sampler
- ightarrow significantly improved estimation performance (gain: factor \sim 10)
- ightharpoonup Alternative regularization for c_2 (not shown here)
 - simultaneous autoregression (SAR) smoothing prior
 - enables sampling of regularization parameter ρ
 - similar estimation performance, but (much) less efficient algorithm
- ▶ Joint Bayesian estimation for c_1 (not shown here)
 - can be incorporated at little extra cost (using a SAR prior for c_1)
- ► Can also handle missing data (not shown here)

- ▶ Bayesian estimation for c_2 of multivariate time series
 - hierarchical Bayesian model with smoothing priors:

```
\left\{ \begin{array}{ll} \mathsf{data} \ \mathsf{augmented} \ \mathsf{Fourier} \ \mathsf{domain} \ \mathsf{likelihood} & (\sim \mathcal{CN}) \\ \mathsf{GaMRF} \ \mathsf{joint} \ \mathsf{prior} \ \mathsf{for} \ \mathit{c}_2 \ \mathsf{of} \ \mathsf{different} \ \mathsf{data} \ \mathsf{components} \end{array} \right.
```

- efficient inference via a Gibbs sampler
- $\rightarrow\,$ significantly improved estimation performance (gain: factor $\sim 10)$
- ightharpoonup Alternative regularization for c_2 (not shown here)
 - simultaneous autoregression (SAR) smoothing prior
 - enables sampling of regularization parameter ρ
 - similar estimation performance, but (much) less efficient algorithm
- ▶ Joint Bayesian estimation for c_1 (not shown here)
 - can be incorporated at little extra cost (using a SAR prior for c_1)
- ► Can also handle missing data (not shown here)

Open issues

- current model
 - estimation of GaMRF hyperparameter
 - estimation of integral scale
 - EM algorithm
- model and algorithm with other multivariate priors
 - ▶ joint estimation-segmentation in space
 - temporal change detection and estimation
 - joint estimation-segmentation in time / space
- applications: group level

Thank you for your attention

 ${\tt herwig.wendt@irit.fr} \\ {\tt www.irit.fr}/^{\sim} {\tt Herwig.Wendt}/$

Brief bibliography

- [Parisi85] U. Frisch, G. Parisi, On the singularity structure of fully developed turbulence; appendix to Fully developed turbulence and intermittency, in Proc. Int. Summer School Phys. Enrico Fermi, North-Holland, pp. 84-88, 1985.
- [Jaffard04] S. Jaffard, Wavelet techniques in multifractal analysis, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math., M. Lapidus et al., Eds., pp. 91-152, AMS, 2004.
- [Castaing93] B. Castaing, Y. Gagne, M. Marchand, Log-similarity for turbulent flows?, Physica D, 68(34):387-400, 1993.
- [Dikmen10] O. Dikmen, A.T. Cemgil, Gamma Markov random fields for audio source modeling, IEEE T. Audio, Speech, Lang. Proces., 18(3):589-601, 2010.
- [Robert05] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New York, USA, 2005.

Brief bibliography (2)

- [TIP15] SC.HW.ND.JYT.SMcL.PA, Bayesian Estimation of the Multifractality Parameter for Image Texture Using a Whittle Approximation, IEEE T. Image Process., 24(8):2540-2551, 2015.
- [ICASSP15] SC.HW.PA.ND.SMcL.JYT, "A Bayesian approach for the joint estimation of the multifractality parameter and integral scale based on the Whittle approximation," Proc. ICASSP, Brisbane, Australia, April 2015.
- [ICASSP16] SC.HW.YA.JYT.SMcL.PA, A Bayesian framework for the multifractal analysis of images using data augmentation and a Whittle approximation, Proc. ICASSP, Shanghai, China, March 2016.
- [IWSSIP16] SC.HW.JYT.PA.SMcL.PA, A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data, Proc. IWSSIP, Bratislava, Slovakia, May 2016.
- [EUSIPCO16] SC.HW.PA.JYT.SMcL.PA, Bayesian estimation for the local assessment of the multifractality parameter of multivariate time series, Proc. EUSIPCO, Budapest, Hungary, Sept. 2016.
- [ICIP16] SC.HW.YA.JYT.SMcL.PA, Bayesian joint estimation of the multifractality parameter of image patches using Gamma Markov Random Field priors, Proc. ICIP, Phoenix, AZ, USA, Sept. 2016.