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T exture characterization of photographic prints can 
provide scholars with valuable information regarding 
photographers’ aesthetic intentions and working 
practices. Currently, texture assessment is strictly 
based on the visual acuity of a range of scholars asso-

ciated with collecting institutions, such as museum curators and 

conservators. Natural interindividual discrepancies, intraindivid-
ual variability, and the large size of collections present a pressing 
need for computerized and automated solutions for the texture 
characterization and classification of photographic prints. In the 
this article, this challenging image processing task is addressed 
using an anisotropic multiscale representation of texture, the 
hyperbolic wavelet transform (HWT), from which robust multi-
scale features are constructed. Cepstral distances aimed at ensur-
ing balanced multiscale contributions are computed between pairs 
of images. The resulting large-size affinity matrix is then clustered 
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using spectral clustering, followed by a 
Ward linkage procedure. For proof of con-
cept, these procedures are first applied to 
a reference data set of historic photo-
graphic papers that combine several lev-
els of similarity and second to a large data 
set of culturally valuable photographic 
prints held by the Museum of Modern Art 
in New York. The characterization and 
clustering results are interpreted in col-
laboration with art scholars with an aim 
toward developing new modes of art his-
torical research and humanities-based 
collaboration. 

INTRODUCTION
Surface texture is a defining characteristic 
of a photographic print and has a signifi-
cant impact on the quality and perception 
of the image. Manufacturers of both tradi-
tional photographic paper and new-gener-
ation inkjet materials thus carefully 
engineer surfaces to meet a variety of 
functional and expressive requirements. 
Smoother surfaces typically produce 
images with greater optical saturation and tonal range. With 
good lighting, smooth, featureless surfaces can visually negate 
the picture plane. Reducing this perceptual barrier can trans-
form a two-dimensional (2-D) image into a more effective illu-
sion of objective reality. Rougher surfaces cause more scattering 
of incident light providing the viewer with a greater tactile sense 
of the print as a material object. A stronger physical presence 
can often convey heightened intrinsic value and expressive 
weight. Understanding how these qualities are manipulated pro-
vides scholars insight into artistic intent and practice. More 
practically, as an indelible physical attribute, print texture can 
help categorize preferred and anomalous papers within an art-
ist’s body of work or identify anomalies (including fakes). 
Encyclopedic reference collections of such textures, cataloged by 
manufacturer and date, are currently being assembled for both 
traditional [1] and inkjet [2] photographic materials. Likewise, 
the very beginning steps are underway to catalog surface tex-
tures used by prominent photographers such as Man Ray and 
Lewis Hine, among others [3]. While presently useful, such sur-
face texture collections are difficult to catalog and access, as 
tools for query and retrieval are only in early stages of develop-
ment. At present, experts visually and manually classify an 
unknown texture by comparing it with identified references. 
This is a tedious and challenging task due to the sheer size of 
available reference collections exposing a significant need for 
(semi)automated procedures to assist in texture assessment. 

Texture analysis and characterization are long-standing top-
ics of image processing and have been the subject of consider-
able research efforts over the past decades, cf., e.g., [4]–[8]. 
Texture characterization has relied on a variety of attributes 

(from textons or primitives, i.e., gray-level statistics or geomet-
rical features, to co-occurrence matrices or multiple spatial 
dependencies) and has proven effective for a wide range of dif-
ferent applications, e.g., in biomedical contexts [9], [10], in 
physics of surfaces and fractures [11], and in geophysics [12]. To 
a lesser extent, and only recently, texture analysis has been 
applied to art investigations (cf. [13]–[22] and the references 
therein). Among the many paradigms used for texture charac-
terization, fractal and multiscale methods have received grow-
ing attention. Fractal analysis has further been extended to 
multidimensional multifractal analysis, cf., e.g., [17] and [23]. 
However, in most formulations, (multi)fractal or multiscale 
analyses do not account for the potential anisotropy of textures. 
Recently, however, the HWT [24] has been shown to account for 
anisotropy in the multiscale analysis of textures [25].  

DATA SETS

TEXTURE IMAGE ACQUISITION
Presently, the simplest means to catalog surface texture is through 
images made using magnification and raking light. This imaging 
system, referred to as the TextureScope, has been extensively 
described in [19] and is shown in Figure 1. It is noncontact and 
nondestructive and can therefore be easily adapted for use on 
photographic prints of high intrinsic value. The method is rela-
tively quick and requires minimal specialized handling so that 
large image sets can be produced rapidly. Created under repeatable 
and standardized conditions, the resulting images provide an 
important visual record and serve as a basis for computational 
analysis. The TextureScope depicts . .1 00 1 35#  cm2 of a paper 
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[FIG1] The TextureScope. 
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surface. This scale is selected since it reveals some microscopic 
features, such as matting agents occasionally used by manufactur-
ers, but also depicts attributes recognizable to a human observer. 
Samples are digitized at 153.6 pixel/mm, resulting in 
, ,1 536 2 080#  images, with each pixel thus corresponding to 
. . .6 51 42 4 m2 2- n

PHOTOGRAPHIC PAPER TEXTURE DATA SETS
Data set 1 consists of 120 nonprinted photographic paper sam-
ples. Aside from the texture images, the data set includes man-
ufacturer-applied semantic descriptions of the samples 
(manufacturer, brand, texture, and reflectance) and an approx-
imate date of production. Three levels of similarity are built 
into the data set (cf. Figure 2): 1) samples from one same sheet 
(three subsets of ten samples each), 2) samples from sheets 
taken from one same package (three subsets of ten samples 
each), and 3) samples from papers made to the same manufac-
turer specifications over a period of time (three subsets of ten 
samples each). In addition, 30 sheets representing a fuller 
diversity of photographic paper textures are included. The data 
set and its documentation have been prepared by an expert 
familiar with the technical and aesthetic history of photo-
graphic paper to include both commonly used surfaces and 
some outliers. Data set 1, further described in [19], is publicly 
available within the framework of the Historic Photographic 

Paper Classification Challenge (http://papertextureid.org) 
developed by Paul Messier and C.R. Johnson. 

Data set 2 gathers 2,491 samples that fall into two subset 
categories. The first and largest subset (2,031 samples) consists 
of silver gelatin (traditional black and white paper) surface tex-
ture samples that were taken directly from manufacturer pack-
ages or sample books spanning the 20th century. These 
samples are representative of the full range of surface textures 
available to 20th century photographers and is carefully docu-
mented using the same manufacturer-applied metadata 
described for data set 1. The second subset in data set 2 con-
tains textures from finished photographic prints. Within this 
group, 346 samples derive from the Thomas Walther collection 
held by the Museum of Modern Art  in New York and contains 
work by leading modernist photographers primarily active in 
Central and Eastern Europe between World War I and World 
War II. This group is joined by a small but important collection 
of textures from 11 prints belonging to the Museum of Fine 
Arts, Houston. Each one of the 11 prints are by the same artist 
and depict the same image as 11 prints from the Walther col-
lection in the Museum of Modern Art. Comparing the textures 
of these twin prints offers the possibility of determining if they 
are made on exactly the same, similar, or completely different 
papers. Discovering a shared material history between the print 
pairs can have significant ramifications for art historical 

[FIG2] Data set 1 with nine groups of ten samples, each representing three levels of similarity (same sheet, same packet, same 
manufacturer) and 30 samples representing the diversity of art photographic papers.
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scholarship, especially if this link can be established remotely 
through data analysis versus often impractical side-by-side 
comparison. Data set 2 thus offers rich opportunities for cross-
referencing discovered affinities and anomalies across time 
periods, manufacturers, collections, and individual makers. 
Typical samples from data set 2 are represented in Figure 3, 
spanning a variety of photographic papers. 

METHODOLOGY
A texture-clustering procedure relies on the selection, design, 
and combination of three key ingredients: 1) features represen-
tative of the texture, 2) the distances between features provid-
ing relevant measurement of resemblance between pairs of 
paper surfaces, and 3) the classification procedure. 

FEATURES: HYPERBOLIC WAVELET TRANSFORM
We propose to extract surface features using the HWT [24]. 
HWT consists of one of the many variations in image multi-
scale analysis, that expands on the classical 2-D-discrete wave-
let transform (2-D-DWT). HWT explicitly accounts for the 
potential anisotropy of an image texture, as it relies on the use 
of two independent dilation factors a 2 j

1 = 1  and a 2 j
2 = 2  

along the horizontal and vertical axes. In [25], HWT is favor-
ably compared against the 2-D-DWT, the former permitting to 
disentangle actual multiscale properties from the potential 
anisotropy of the analyzed texture, while the latter yields 

Glossy-Smooth (1) Glossy-Filigran (2) Glossy-Soft(3)

Matte-Fine Grained (4) Matte-Rough (5) Luster-Silk (6)

Luster-Canvas (7) Chamois-Velvet (8) Satin-None (9)

[FIG3] Photographic paper textures. Examples of raking light photographic paper samples spanning a variety of different reflectance-
texture characteristics.
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[FIG4] HWT-based features. (a) A surface sample with its (b) HWT-
based anisotropic multiscale representation  .( , , )S j j q 2X 1 2 =  The 
estimated anisotropy angle ,q0 2a =t  (solid line) indicates a 
departure from isotropy 1/a  (dashed line).
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strongly biased estimates of multiscale properties when 
 textures are anisotropic. 

The HWT coefficients of an image ( , )X x x1 2  are obtained by 
comparing it, by means of inner product, against a collection of 

dilated [at scales ( , )]a 2 2j j= 1 2  and translated [at locations 
( , )]k k2 2j j

1 21 2  templates 

 ( , ) ( , )x x x k x k2 2 2, , ,
( )/

j j k k
j j j j

1 2
2

0 1 1 2 21 2 1 2
1 2 1 2} }= - -- + - -  (1)

of a reference mother-wavelet ( , ),x x0 1 2}  ( , ) :j j R1 2
26 ! +  

 ( , , , ) ( , ), ( , ) .T j j k k X x x x x, , ,X j j k k1 2 1 2 1 2 1 21 2 1 2G H}=  (2)

The mother-wavelet ( , )x x0 1 2}  is classically defined as a tensor-
product of one-dimensional (1-D)-multiresolution mother-wave-
lets (cf., e.g., [28]). A multiscale representation of ( , )X x x1 2  is 
further obtained by computing space averages (lq-norms) of the 

( , , , )T j j k kX 1 2 1 2  at fixed scale pairs ( , ),j j1 2  :q 02

 ( , , ) ( , , , ) ,S j j q n T j j k k1
,X

a
Xk k

q
1 2 1 2 1 2

1 2
= /  (3)

where na  stands for the number of coefficients actually com-
puted and not degraded by image border effects. 

It was shown in [25] that the anisotropy of the texture can 
be quantified by an index [ , ]0 2!a ( 1a =  corresponding to 
isotropy) and that SX  often behaves as a power law, 

( , ( ), ) ,S j j q C2 2X q q
j q H

q
q-a a- at t t
t

 where ( , )argmax qqa c a= at  is 
an estimate for ,a  ( , ) /H q qq c a=-t  is an estimate for the 
(anisotropy robust) self-similarity, or Hurst, or fractal, parame-
ter ,H  with ( , ) ( ( , ( ) , )) / .lim inf logq S j j q j2j X2c a a a= -  An 
example of ( , , )S j j q 2X 1 2 =  is shown in Figure 4. 

To ensure balanced contributions from all scales despite 
such power law behaviors, features are computed from 

( ( , , )),log S j j qX 1 2  after a normalization across scales that 
ensures that the features do not depend upon a change in the 
intensity of the raking light and exposure variables that influ-
ence overall image brightness 

 ( , , ) ( ( , , ) / ( , , )) .logS j j q S j j q S j j q,X X Xj j1 2 1 2 1 2
1 2

= l l
l l

u /  (4)

In this article, the selected analysis scales are ,j j1 71 2# #  
and correspond to physical scales ranging from 13 mn  

,a a2 2 830 mj j
1 2

1 2# # n= =  .0 83/  mm (i.e., seven octaves) 
thus yielding a matrix of 7 7 49# =  multiscale features for 
texture characterization. 

A cepstral-type distance (i.e., a log-transformed normalized 
Lp  norm) between the multiscale representations ( , , )S j j qX 1 2u  
and ( , , )S j j qY 1 2u  is used to quantify proximity between textures 
X  and Y  defined as (with ):p 02

 .( , ) ( , , ) ( , , )X Y S j j q S j j qD ,

/
X Yj j

p p
1 2 1 2

1

1 2
= -u u` j/  

In this article, q 2=  and p 1=  are used, without specific tun-
ing to obtain optimal results. The empirical distribution of the 
distances computed between all ( / )2491 2490 2#  pairs of sam-
ples in data set 2 is shown in Figure 5(a). The distances 
between some pairs among the samples in Figure 3 are super-
imposed to that distribution, and are also mapped into a 
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[FIG5] The distances between (a) photographic paper textures 
between all pairs of data set 2, to which are reported 
distances between some of the samples shown in Figure 3(a), 
and (b) a virtual 2-D space showing proximity between 
samples (see the “Methodology” section for more details).
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[FIG6] Data set 1: spectral clustering. The left plot in (a) shows 
the sorted eigenvalues (energy) and successive differences 
(gain), while the right plot shows the intra- and intercluster 
median distances. (b) A dendrogram showing seven clusters, 
with a posteriori interpretations of their contents from the 
manufacturer-applied metadata: cluster # (cluster size): 
reflectance/texture, manufacturer/brand.
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virtual 2-D space [cf. Figure 5(b)] quantifying resemblance 
and dissemblance between samples (mapping obtained by a 
standard multidimensional scaling procedure based on a 
Kruskal’s normalized stress criterion). 

Clustering is achieved via the spectral clustering procedure 
(cf., e.g., [26], [27], and [29]), which can be regarded as a spe-
cific unsupervised learning technique that aims to ensure 
robustness of the classification by reducing the dimensionality 
of the space in which samples are represented. Starting from 
the N N#  cepstral distance matrix ,D  where N  is the num-
ber of photographic paper samples, the clustering procedure 
used here operates as follows. 

1) A nonlinear transformation is applied to distance matrix 
,D  ( / )expA D e= -  (corresponding here to entry-wise 

exponentiation), yielding a (dis)similarity matrix, where e  is 
a constant assessing the typical closeness between images.
2) The eigenvalues and eigenvectors of the (random walk-type) 
Laplacian operator I DL A1= - -  associated to A  are com-
puted, where D  is the diagonal matrix ) .D (diag Aj ij= /  
3) The eigenvectors corresponding with the K  smallest 
eigenvalues of L  are assembled in the K N#  matrix ,S  
defining the set of robust K  coordinates (hence the reduc-
tion of dimensionality, )K N%  for the N  samples. 

4) Hierarchical ascendant clustering (with Ward linkage) is 
applied to the matrix .S   
5) A set of thresholds is used to produce K K#l  hierarchical 
clusters. 

RESULTS 

DATA SET 1: TEST DATA SET
The analysis procedure described in the section “Methodology” 
yields the following results. Sorted eigenvalues of the Lapla-
cian (and successive differences) as shown in the left plot of 
Figure 6(a) lead to conclude that K N13 120%= =  eigenvec-
tors are sufficient to represent the distances within data set 1. 
The linkage procedure yields K 7=l  clusters that are robust 
to varying the linkage threshold, as shown on the dendrogram 
in Figure 6(b). The right plot of Figure 6(a) reports the intra- 
versus intercluster median distances, showing first the robust-
ness of the achieved clustering (black diagonal squares 
indicate low intra-cluster median distance) and second the 
proximity of some clusters (e.g., 1 and 2 or 3 and 4). Inspec-
tion of the obtained clusters and comparison with the docu-
mentation available for data set 1 leads to the following 
striking conclusions: 
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 ■ All ten samples from a same sheet—and, similarly, all ten 
samples from a same package—always fall in a common clus-
ter. The median distances between the ten samples from the 
same sheet and the ten samples from different sheets of the 
same packet are found to be of the same order of magnitude, 
indicating a remarkable reproducibility of the manufacturing 
process [19], [20]. 

 ■ Samples from one given sheet or from one given packet 
correctly fall within the cluster containing different samples 
from the same manufacturer and produced to the same speci-
fications of texture and reflectance. 

 ■ From the semantic descriptions applied by the manufac-
turer, the attribute that mostly drives the clustering is reflec-
tance, e.g., luster, chamois, matte, semimatte, and glossy. For 
the same reflectance (clusters 1 and 2, 3 and 4, and 6 and 7), 
the clustering is further refined by the manufacturer-applied 
terms describing texture, e.g., smooth, grained.

 ■ The classification of the 30 samples representing the diver-
sity of photo papers is found to be clearly driven by both 
reflectance and texture. 
The contents of K 7=l  clusters are summarized on the den-

drogram in Figure 6(b) (see also [19] and [20]).

DATA SET 2: LARGE DATA SET
Application of the procedure described in the section “Methodol-
ogy” to data set 2 leads to the following comments. Inspection of 
the sorted eigenvalues of the Laplacian and their successive differ-
ences shows that the use of ,K N62 2 491%= =  eigenvectors 
yields a robust representation of distances within data set 2. 

GROSS CLUSTERING
Using classical tools to assess robustness and relevance in select-
ing the threshold of the linkage procedure applied in this 
K 62=  dimensional space leads to an initial coarse classification 
into K 6=l  large-size clusters ( ) .143 702Cluster Size# #  
Compared to the semantic terms applied by manufacturers to 
describe gloss and texture, the analysis of these clusters leads to 
conclusions, reinforcing and enriching those drawn from the 
analysis of data set 1: clustering is mostly driven by reflectance 
and then texture, as illustrated in Figure 7. Clusters 4 and 5 cor-
respond to a glossy reflectance, cluster 3 corresponds to a Luster 
reflectance, and clusters 1 and 2 correspond to matte and semi-
matte reflectances, with a rough or grained texture for the for-
mer and a velvet or smooth texture for the latter. Interestingly, 
cluster 6 gathers almost all of the unusually patterned 

[FIG8] A cluster gathering of Willi Ruge’s 1931 parachuting series. (Images courtesy of The Museum of Modern Art, New York).
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silk textures (reflectance was not documented for most of these 
samples). See Figure 3 for representative examples of such reflec-
tances and textures. 

REFINED CLUSTERING
By decreasing the threshold of the linkage procedure, an increas-
ing number of small-size clusters are extracted in a hierarchical 
manner, enabling a more detailed analysis of the data set. In some 
cases, these clusters have obvious interpretations for art scholars, 
including curators and conservators. For example, one of these 
clusters gathers 14 prints from a 1931 parachuting series by Willi 
Ruge (German, 1882–1961) from the Thomas Walther collection 
at the Museum of Modern Art (Figure 8). This series depicts 
groups of sequential exposures made to document several events. 
Grouping within a single cluster indicates the groups share a 
materials history and were likely made together. Other clusters 
suggest more surprising affinities and raise unexpected questions. 
Notably, a small cluster of three samples contains a platinum print 
by Alfred Stieglitz (American, 1864–1946) from 1915 and two pal-
ladium prints by Edward Weston (American, 1886–1958) from 
1924 (Figure 9). Weston met the influential Stieglitz for the first 
time in 1922 during a short trip to New York. Weston said of this 
meeting [30, p. 5]: “Stieglitz has not changed my direction, only 
intensified it—and I am grateful.” This small cluster possibly indi-
cates that Stieglitz’s influence was not simply a matter of artistic 
encouragement but perhaps also grounded in a deliberate use of 
the same materials. Given traditional modes of scholarships, the 
implied linkage between these prints would normally not receive 
scrutiny since these are different artists, using different imaging 
metals (platinum versus palladium), separated by a large geo-
graphical distance (California and New York) and a time period 
spanning nine years. However, clustering based on surface texture 
provokes new questions that might otherwise never be asked: Is 
the dating of the Stieglitz print secure (it is) or could it have been 
made later? Was Weston making a conscious effort to emulate 
Stieglitz even after the passage of nine years? Did manufacturers 
use essentially the same paper over long periods of time, even after 
the switch from platinum to palladium imaging metal after World 
War I? Are the overall warm image tones 
and especially the low contrast of the Stieg-
litz and the Weston cloud study attributes 
of a specific brand of paper? These and 
other related questions demonstrate how 
discovery of materials-based affinities can 
open the door to new modes of study. 

TWIN PRINTS
This promise is further illustrated by data 
set 2, where 11 pairs of prints, each pair 
attributed to the same artist and each 
showing the same or very similar image, 
are compared across two large museum col-
lections, the Museum of Fine Arts, Houston, 
and the Museum of Modern Art in New 
York. The purpose of this comparison is to 

determine whether or not the pairs in the different collections 
are made on the same paper and thus have a shared materials-
based history. For this comparison, four fundamental attributes 
can be compared, print thickness, highlight color, reflectance 
(or gloss), and texture, of which only the two last may have rela-
tions with the quantitative features used here to characterize 
photo paper surfaces. Figure 10 shows the overall empirical dis-
tribution of distances between all ( / )2491 2490 2#  pairs in data 
set 2 as a reference to compare the distances between the twin 
prints of the 11 pairs of interest here. For examples, the pairs by 
Franz Roh (German, 1890–1965), Theodore Roszak (American, 
1907–1981), and Marianne Breslauer (German, 1909–2001) 
show small distances (corresponding respectively to the 5, 6, 

[FIG9] A surprising cluster gathering: one platinum print by  
A. Stieglitz from 1915 (left, © 2015 Georgia O’Keeffe Museum/ 
Artists Rights Society, New York) and two palladium prints by  
E. Weston from 1924 (right) (images courtesy of The Museum 
of Modern Art, New York).

[FIG10] Distances between twin prints for the 11 pairs of interest, compared to the 
overall distribution of distances—the solid and dashed vertical lines denote, respectively, 
the 50% (or median distance) and 25% quantiles.
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and 10% quantiles). Interestingly, the examination of print 
thickness, highlight color, reflectance, and texture had led to 
the conclusion that prints of these pairs were similar. For prints 
approaching a distance close to the distribution median dis-
tance (the solid vertical line in Figure 10), the similarities are 
less clear. In all respects (texture, reflectance, highlight color, 
and print thickness), pairs in this range by Max Burchartz (Ger-
man, 1887–1961), John Gutmann (American, 1905–1998), and 
Jaromir Funke (Czech, 1896–1945) are classified as being on 
the same paper. However, pairs in this same range by Edmund 
Collein (German, 1906–1992), Helmar Lerski (Swiss, 1871–
1956), and another Gutmann print are categorized as being on 
different paper when gloss, highlight color, and paper thickness 
are taken into account. In particular, the prints by Paul Citroen 
(Dutch, 1896–1983), though they have low texture differences 
(31% quantile), are classified as being on different paper 
mainly due to significant difference in gloss and print thick-
ness. These results are not surprising given the common 
manufacturer practice of applying the same texture to different 
papers. These results suggest that an automated solution for 
discriminating material-based affinities across collections can-
not rely on a single criterion, such as texture or reflectance, for 
determining results especially for distances around the median 
of the distribution. 

Furthermore, such solutions should convey some level of 
confidence and context rather than returning a simple, binary 
determination of same or different. For distances significantly 
larger than the distribution median, the impact of color, thick-
ness, and particularly gloss is still not clear. A pair by Alexander 
Rodchenko (Russian, 1891–1956) has a very large texture classi-
fication distance (beyond the 84% quantile) but could not be 
classified for this study due to missing information on gloss, 
highlight color, and print thickness. An interesting next step 
for prints such as those with large texture distances would be 
to determine whether additional information on, e.g., gloss or 
highlight color, have any impact on the determination of same 
or different or if instead the very large texture differences in this 
range are solely determinative.

CONCLUSIONS AND PERSPECTIVES
This article has quantitatively and qualitatively illustrated the 
potential value of basing the surface characterization and classifi-
cation of photographic prints holding cultural value on aniso-
tropic multiscale representations (HWT), combined with cepstral 
type distances and spectral clustering. The test data set 1 assem-
bled in the framework of the Historic Photo Paper Classification 
Challenge demonstrates that the manufacturer-applied features of 
reflectance followed by texture are fundamental for the character-
ization of paper surfaces. Applied to data set 2, this methodology 
has promising results for art scholars, both by confirming existing 
conclusions and provoking new questions. 

On the methodological side, this work can be expanded along 
several directions. There is an obvious need to compare the 
achieved results against those obtained with features both com-
puted on other multiscale representations (e.g., [21]) or based on 

representations of very different natures (cf. [19] for a first 
attempt). Devising distances that better match the perceptual, 
artistic, aesthetic and manufactured nature of photographic paper 
is a clear next step and an emergent priority. Also, at the clustering 
stages, tools for developing more robust assessments of both the 
relevance of a given cluster (compared to the benefit of further 
splitting it) as well as the confidence with which a given paper can 
be assigned to a given cluster, would significantly complement this 
first work. Additional strong benefits would likely result from 
using tools aiming at assessing the relevant levels at which data 
sets should be clustered, in the spirit of multiscale community 
clustering developed in, e.g., [29]. 

On the application side, texture characterization, comparison, 
classification, and retrieval systems have great potential within the 
humanities, promoting new modes of scholarship for curators, 
collectors, and art conservators. Dating, authentication, stylistic 
development, artistic intention, and spheres of artistic influence 
are vital scholarly questions. Networked and deployed across 
museum, library, and archive collections, methods for texture 
query and retrieval can lead to new research opportunities where a 
print in one location can be meaningfully compared, based on 
physical attributes, to others held elsewhere. Such systems will 
provide the means to discover material-based (not simply image-
based) affinities across time and within and across artists’ oeuvres. 
Intrinsically valuable for enhanced scholarship in the humanities, 
such systems also would be effective for identifying anomalies, 
notably including fakes. 

A key future step lies in further developing tools permitting 
deeper and more meaningful interactions between signal and 
image processing experts and scholars working within a wide 
array of humanities-based disciplines. Besides simply making 
lists of clusters available to humanities-based experts, such tools 
must enable them to naturally apprehend the robustness of pro-
posed clustering (or its fragility), its hierarchical nature as well 
as its sensitivity to methodological choices. Developed further, 
such systems would optimally allow for qualitative input and 
the modeling of results based on other bodies of nonempirical 
knowledge. This work would present exciting opportunities 
where the fields of signal and image processing can adapt to the 
subtleties and specificities of humanities disciplines, thus 
broadening applications and cross-disciplinary relevance.
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