INVERSE PROBLEM FORMULATION FOR R

EGULARITY ESTIMATION INIT  MAGES

Nelly Pustelnik, Patrice Abry, Herwig Wendt and Nicolas Dobigeoh

1 Physics Dept. - ENSL, UMR CNRS 5672, F-69364 Lyon, Frafdce,st nane. | ast name@ns- 1 yon. fr
2 |RIT, CNRS UMR 5505, INP-ENSEEIHT, F-31062 Toulouse, Fryid r st nane. | ast nane@rit.fr

ABSTRACT

The identification of texture changes is a challenging prob
lem that can be addressed by considering the local regulari
in an image. This work develops a procedure for local regu
larity estimation that combines a convex optimizationtetyst
with wavelet leaders, specific wavelet coefficients regantl
troduced in the context of multifractal analysis. To thislen
this estimation problem is formulated as an inverse proble
that jointly involves the local regularity exponents to lsti-e
mated and the regression weights required in their estimati

and solved by a convex optimization procedure. Numerical

experiments using synthetic texture indicate that thegperf

mance of the proposed approach compares favorably against

other wavelet based local regularity estimation formolagi
The method is also illustrated with an example involving nat
ural texture.

Index Terms— Local regularity, variational approach,
convex optimization, wavelet leaders

1. INTRODUCTION

Wavelet decompositions are now well recognized as sParsfions (see, a contrario, [10, 11])

fying transforms and have been widely used in contexts
image compression and restoration [1]. Another very usef
property of wavelet transforms found, so far, less widesgre
use in the field of image processing: their ability to evidenc
and measurscale invariancecf., e.g., [2, 3, 4, 5, 6]). No-

tably, wavelet transforms have been shown to be relevalst too

for the estimation ofocal regularity[4]. The earliest contri-
bution to this subject traces back to [2], where the skeleto
(maxima lines across scales) of the continuous wavelestran
formis shown to enable practitioners to identify irregla.,

m

demonstrated to precisely reproduce Holder exponents the
retically [4]. Wavelet leaders are defined as local suprefma o
Ehe coefficients of the dyadic wavelet transform and inherit
heir computational efficiency, see, e.g., [5, 6] and Sac#io
below for more precise definition.

Both the WTMM and the WL have been extensively used
to perform multifractal analysis of real-world signals and
ages (see [7, 5, 8, 9] and references therein for examples of
successful applications). In contrast to local regulagity
timation, multifractal analysis does not aim at the time- or
pace-resolved estimation afbut rather provides a global
and geometric description of the fluctuations:ah an image
in terms of the so-called multifractal spectrum. However, f
certain applications, the central information of intelisgire-
cisely the evolution along time or space of the Hdlder expo-
nent. In this case, multifractal analysis is not directhgvant.
Instead, direct estimation of the local regularity evauti
sometimes referred to as multifractional analysis, neetiet
performed. Yet, the estimation &f at a precise time/space
location suffers from poor performance that impairs itsiatt
practical use. Consequently, the estimation of the tinasisp
evolution of local regularity remains barely used in apgplic
In particular, localirest

Zﬂon of regularity suffers from a large variance and common

ost-processing techniques for variance reduction, ssifr a
cal smoothing, induce significant bias and inaccuracielsen t
localization of changes in regularity.

In a previous contribution [12], we have proposed an orig-
inal two-step procedure that addresses the bias-varisame-t
off difficulty in the specific context of images with piecesai
Qonstant regularity: (i) Unbiased estimation of the Holebe-
ponent for every position in the image using a patch-based
wavelet leaders approach, (ii) Extraction of areas with uni

non-smooth) behavior in signals. By imposing an additiona, , ys|qer exponent from these local estimates using ia var

monotonicity constraint on the skeleton, thvavelet trans-
form modulus maxim@NVTMM) formalism has been further
developed in, e.g., [3] to precisely measure Holder exptme
h. These constitute the canonical theoretical quantityter t
measurement of local regularity and for performing mudiifr

tal analysis. More recently, it has been shown that accesate
timates of local regularity can be obtained usivayelet lead-
ers (WL), specific multiresolution quantities that have been
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ational procedure relying ototal-variation (TV) [13]. In

the present contribution, we elaborate on this approach and
propose a one-step procedure that directly yields piese-wi
constant local regularity estimates. The originality af tp-
proach resides in the use of TV-regularization in a criterio
that involves directly the value of the WL coefficients irede

of the intermediary local estimates af Through this for-
mulation, an efficient local regularity estimation proceslis
designed, yielding significantly increased estimationlitya

for images with piece-wise constant texture.



The remainder of this work is organized as follows. Secwhich naturally leads to the use of linear regressions acros
tion 2 recalls the notion of Holder exponent, defines wavelescales at each locatidn~ 2~7z for the estimation oh(z),
leaders and the state-of-the-art Holder exponent estmat i.e.,
procedure. Section 3 formalizes the estimation of local reg ~ ) )
ularity explicitly as an inverse problem and details the-pro h(z) = Z“’(]’E) InL(j, k). (4)
posed variational procedure. Section 4 reports experimen- J
tal results illustrating the performance of the proposed@i  Taking the expectations of (3) and (4) above yields

wise constant regularity estimation/segmentation proced R
Eh(z) = h(z) > jw(j, k) + nC(z) > w(j,k), (5)
J J

2. HOLDER EXPONENT AND WAVELET LEADERS . .
thus showing that the constraints

Loosely speaking, the Holder exponéniz) is a positive Zw(j, k)=0 and ij(j, k) =1, (6)

guantity that measures the regularity of a function at the lo j . L .
cationz € R? by comparing its amplitude evolution around ensure an unbiased estimationkofDue to their local nature

2 against a local power law behavior (see [4] for a precisénVOMng only a sr_nall number pf coefficients, the estimates
aefinition). Qualitatively, a small value of the Holder exp (4) have large variance. A straightforward attempt to reduc

nent indicates a locally highly irregular behavior, close t the variance consists in local _spaﬁial a"eraging (smogphin
discontinuous, of the function, while a large value indésat of h(z). However, local smoothing induces bias and prevents

local smoothness. A simple, efficient and theoreticallylwel TOM accurately locating changes/in the image. To over-

grounded solution to practically computiéz) relies on the come this difficulty, aofcal variation (TV) optimization pro- .

use of wavelet leaders [5], which we define in what foIIows.Cedure’ natu_rally favoring shar_p edges, has bt_aen proposed i

Note that it has recently been proven [4] that wavelet Iesider[l_z]' dlt re_qumzs th_ehufs_ € ((ij estlr(;la:}es(ijo(fg) " Whlc.hkare A?Ib-

enable to measure the Holder exponent for much more genellﬁlIne hurS]!ng ( )W'th I?(eld prel- etine Wflghbg],_>}~m|;g~|

classes of bi-dimensional functions than wavelet coefiisie t ou_g_t IS approachyieids re evantresults, it does

and with a significantly improved accuracy [4, 5, 6, 12]. j[O distinguish areas W|th.HoIder exppnents that are toseclo
Let f denote the bi-dimensional function taking bounded" value because the variance .Of (4) s too large.

values (i.e, the image) to be analyzed. keand< denote In order to reduce the variance of (4), one can attempt

respectively the scaling function and mother wavelet degini t© OPtimize the weightsu(j, k) which reflect the confidence
a 1D multiresolution analysis. The correspondi2 ten- granted to the quantitiéis L(j, k). Indeed, the variance of

sor product wavelets are defined, for every= (x;,z,) € In L(j, k) depends on the value of the Holder exponfe(at)

R?, as: v () = é(z1)d(@s), vV (x) = ¥(z1)d(z2), at Ipcatlon_g ~ 277z and the_optlmal choice of the weights
b (2) = ¢(a1)(xs), andyv® () = (x)(zs). The w(j, k) varies from one location to the ther.. Therefore, we
I _t (m) _ g—iym) 2jj &) of dilated (t propose in this paper to formulate the estimatioh@f) as an

collection ;" (z) P2 _—_) of dilated (o, erse problem involving jointly the Holder exponents:)
scales2’) and trans!ated (to space positioris:) templqtes and the weightss(j, k) (constrained only by (6)) as parame-
of ¢ form a basis ofL.?(R?) for well chosen functions ters to be estimated. The inverse problem formulation aed th
. The (L'-normalized) discrete wavelet transform (DWT) yron0sed proximal based minimization procedure for finding
coefficient at scalg, locationk and subbaneh € {1,2,3}is s solution are detailed in the following section.

defined asl™ (j, k) = (f, 2‘%;—?)-

Th’e wavelet I_eader coefficienit(, k) is defined, for each 3 INVERSE PROBLEM BASED LOCAL
scale_j _and Iocat|0n§,_ as the Iocgl supremum of all wavelet REGULARITY ESTIMATION
coefficients taken within a spatial neighborhood across all
finer scaleg’ < j “Degradation” model ~ From now on, we make use of a
LG, k)= sup [d"™ (K, (1) discrete time formalism. Lef = (f[n])i<n<n denote the
m={1,2,3} vector representation of the image to be analyzed, of size
Mgt ChAjke N = N; x No. The orthonormal wavelet transform is labeled

where; x = [k27, (k+1)27) andAjx = Uy 10132 Nikt»  F € R¥*N and the wavelet coefficients ¢f are denoted
[4, 5]. For everyz ~ 27k, the wavelet leaders reproduce thed = (d[n])i1<n<n = Ff. At each scalg € {1,...,J},

Holder exponent,(z) as follows: L; : RV — R2"¥N denotes the non-linear transform
‘ that associates the wavelet coefficients to the wavelet lead
L(j, k) =~ C(z)2/"@ (2) ersL; = (Ljk])i<p<o2n (as defined in (1)) such that

_ _ L; = L;(Ff). Amatrix formulation of (4) leads to:
when2’ — 0 and whereC'(z) denotes a constant. This rela-

tion can be rewritten as:

J2
InL(j, k) ~ jh(z) + In C(z), 3) > W;DjlnL;=h+e @)

Jj=J1



with 1 < j; < jo < J and where models the uncertainties Proximal algorithm  The minimization problem (8) is con-
in the estimation, mostly due to data discretization and thuvex but non-smooth. In the recent literature dedicated t& no
the finite range of available scales. Foregeh{j1,...,72},  smooth convex optimization, several efficient algorithrageh
W, € RN*N denotes a diagonal matrix whose diagonal val-been proposed. For instance, when a Lipschitz data fidelity
ues are the regression weights, il®; = diag(w;) with  termisinvolved, such as a quadratic data fidelity term, ds we
w; = (w;[n])1<n<n € RN, andD; € RV*2 “N denotesa  as several regularization terms, such as TV regularization
matrix that duplicates the signal such that, for everyv) € distance to convex sets, one suited algorithm is referred to
R2 N « RN, if we denoten € R2 Nix27'Nz (resp.v € C\_/ (for Condat-Vi) [14, 15]..The corre§pon_ding iterations
RN %N2) the matrix representation af (resp.v), v = Dju tailored to solve the problem in (8) are given in Algo. 1, that
means that, for everfi,, ns) € {1,..., N} x {1,..., No},  ensures convergence of the sequefice, W) ey to a so-
v[ny, no] = uHQijnﬂ, (27]'”2“_ lution of (8).

The model in (7) underlies an inverse problem in which i i i
h = h([n])1<n<n need to be recovered from the logarithm Algorithm 1 Algorithm for solving (8)

of the wavelet leaders coefficients: ;) j, <j<j,. This in- Initialization )

verse problem resembles a denoising problem, yet including Seto > 0andr € ]O’ 172, D;nL;|2+1+20 [

the additional challenge that a part of the observatiors (th Set h% € RN, w0 = (¥ wl%) € RNG2=51+1)
; ; ; ; ’ Jic 0 g2 )

regression weights matricé$?;),, <;<;,) iS unknown and |l = (ug-?]7 B .7u£]) € RNG2=519D) gndy 0 ¢ R2N.

must satisfy constraints (6). Fort — 0.1
or{=0,1,...

I . Forj =ji,...,7
Variational approach  We propose to estimate the local ‘7[(,] ) ) ‘72[[]
\\ U;" = diag(u;”)

regularityh and the regression weight matridg¥’; ) ;, <<, [ @
b . . S . = W = diag(w; ")
y solving the following minimization problem: J

J
i * Gradient descents steps
o~ o~ 2 4 j 13
(h,W) € Argmin H S WD InL, — hH FATV(R) W = pl — 27 (h — 322 . WD, InL;) — 77Tyl
h,W =7 2 Forj:jl,...,jg
7l 2 U D L
Wi =W;" —27(X2, W, D;InL;—
W) (D;InL;)" — U}

* Proximity operator step based aly, *
whereW = (W, ..., W,) and thusw(n] = (wj, [n],..., For everyj, we denotes. the diagonal values |
wj,[n]) belongs toR72~71 1. The first term denotes a data wo @9, .., @9 n)))
fidelity term. Distances to the convex sétsandCs, denoted AR J2 T 1snsN

. ) S * Proximity operator step for TV oh x
de, anddc,, are introduced to provide some flexibility in the Pl = 10 1 o (2n Y _ pld)

+m Z dC1 (w[n]) + 2 Z dCz (w[n]) (8)

w1 = (prox

hyperplane constraints; andCs: Yyl = plI — oprox, 1y, (0P
o ‘12,1
J2 * Proximity operator step fodc., *
Cr={(wjy,...,wj) ERX...XR| Z w; = 0}, g9 = ol § (20 — w[e])2
Jj=J1 - 4 4
, ul ) = g oprox g, (07 (gl 0], -4l ) ey

J2
Cy = {(wjl,...,wh) ERXx ... XR| ijj :1}.
J=n Algo. 1 requires the computation of the proximity oper-
For everyw € RU2=11+Y 4o (w) = ||w — Pe, (w)]], with  ators associated to the mixeg ;-pseudo norm and to the
P, (w) = argmin,ec, ||w — v||?, denotes the projection distance to convex sets. Let us recall that the proximity op-
onto the convex sef’; (resp. dc, and Pc,). The second erator associated to a convex, lower semi-continuous sonve
term TV(h) acts as a penalization that forces a solution withfunctiony from # (where? denotes a real Hilbert space) to
a minimal total variation [13] that is, for evefyc RY, ] =00, +00], denotedprox,,, is defined as, for every € #,
N prox,(u) = argmin,ey Lju — v[|? + ¢(v). Whenyp de-
TV(h) = ||[Th|21 = Z VIHR)[R]2 + [(VR)[n]]2 (9) notes the indicator function of a non-empty closed convex se
n=1 C C H, thatisic(x) = 0if x € C and+oo otherwise,

the proximity operator reduces to the projection, dendted
— Ty T T i NXxXN NXxXN
whereT = [H'V']" with H € RY*Y andV € RV~ onto the convex set.

are matrix representations of, respectively, the horiicard The proximity operators steps involved in Algo. 1 have a

vertical first-order discrete differences. The paramelers,  ¢josed-form expression. Indeed, it is shown in [16], that fo
andr- will impact directly the solution. One could note that everyu = (uln])1<n<yn With ufn] € R?

the choice of parametess= 1/ = 1/n2 = 0 leads to the
standard estimation procedure, formulated in (5).

A
oluln]]|

Juln))

PIOXa |, , U = (maX(O,l N (10)

1<n<
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a) Original imagef  b) Regularity mask

cho [6]
(MSE = 0.275)

0.5
0.4
0.3

d) T [12] e) Proposed solution
(MSE =0.052) (MSE = 0.025)

Fig. 1. Simulated data

a) Original texturef  b) Texture mask
White = Cloud
Black = Snow

cho [6]

1
0.95
0.9
0.85
0.8
0.75

d) I [12] e) Proposed solution

Fig. 2. Real data

Moreover, according to [17, Proposition 2.8](ifdenotes a
non-empty closed convex subsetRif2—71+t1) and ifn > 0,
for everyu € RU2—71+1),

u+% it do(u) >,

ProX, gt = {Pc(u) it de(u) <.
For our purpose;’ models the hyperplane constraigtsand

C, and one could note thadt, and P, have a closed form
expression given in [18].

(11)

4. EXPERIMENTAL VALIDATION

to minimize the normalizethean square errof(MSE) in this
second approach. The solution proposed in Section 3, whose
result is depicted in Fig. 1-e), achieves a smaller MSE and
better evidence of the central area.

A second experiment deals with real data, obtained by
mixing textures. The image is generated by inclusion of a
distinct ellipse-shaped zone of cloud texture in a snow tex-
ture background (cf. Fig. 2-a)). First, it is worthy to notat
the unbiased local regularity estimation in Fig. 2-c) alidive
edges of the added areas to be identified. However, without
these synthetic edges, the local regularity changes die dif
cult to identify. Similar observations are made for the solu

We first evaluate the performance of the proposed estimaion, gptained with [12], shown in Fig. 2-d) and the proposed

ing strategy on synthetic data, consisting2® multifrac-  go|ytion. However, the proposed solution provides a better
tional Brownian fields [19, 20], whose definition has beenyiscrimination with sharper edges.

slightly modified here to ensure an homogeneous variance
across the image (cf. [12] for details). The synthetic pro- 5. CONCLUSION

cess has piece-wise constant regularity according to & maap efficient local regularity estimation strategy adaptedt
shown in Fig. 1-b), withh = 0.5 in the _cen;ra| area anq multifractional framework has been devised. It enriches th
h = 0.3 for the background. A sample field is displayed in ¢|assical estimation procedure by including the estinmatib
Fig. 1-a). o _ ) the weights that enter the linear regressions. These egtra d
Analysis is conducted using a stand@f DWT with or-  grees of freedom vield local regularity estimates with iign
thonomal tensor product Daubechies mother wavelets with jcantly reduced variance. The proposed estimation praeedu
vanishing moments. Regularity is estimated using the scals formulated as an inverse problem and is solved using prox-
ing range(j1, j2) = (2,4). We compare the performance of jma| minimization. Numerical experiments indicate that th
the proposed solution against two other approaches. Birst,proposed procedure significantly outperforms the stanekrd
standard estimation procedure with a priori fixed weighfs  timation procedure and to further improve estimation perfo
chosen to achieve ordinary linear regression, labélledre-  mance compared to an earlier TV based procedure. Moreover,
sults are plotted in Fig. 1-c)). Second, we evaluate theoperf |ocal regularity is also shown to be efficient to discrimmat
mance of the technique proposed in [12] consisting in combetween visually similar textures such as cloud and snow.
puting the proximity operator of the total variation fof, i.e,
prox, 1y (ko). The solution of this latter method is labelled
I (cf., Fig. 1-d)) and the parametaris empirically tuned
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