Recently, we showed that bootstrap procedures for scale analysis efficiently discriminate Gaussian self-similar processes from multifractal processes. In the present contribution, we propose a new joint time-scale block bootstrap and investigate the relevance of estimation and bootstrap procedures to discriminate non-Gaussian finite variance self-similar processes with stationary increments and multifractal processes.

Bootstrap Procedures

Time Block and Time-Scale Block Bootstrap

- **Bootstrap Procedure**
 - For $t_0 = 1, \ldots, B$
 - $\hat{\Theta}(t, s, 2) \sim \text{MC}$
 - $\hat{\Theta}(t, s, 2) \sim \text{MC}$

Time Block

- $\hat{\Theta}(t, s, 2)$ are obtained by time scale-level steps
- $\hat{\Theta}(t, s, 2)$ is the time-scale scale of the time block bootstrap
- $\hat{\Theta}(t, s, 2)$ capture joint time-scale dependence of coefficients

Time-Scale Block

- $\hat{\Theta}(t, s, 2)$ are obtained by time scale-level steps
- $\hat{\Theta}(t, s, 2)$ capture joint time-scale dependence of coefficients

Bootstrap Hypothesis Tests

- **Test d_k^***
 - **null**: $d_k^* \rightarrow 0$ against double-sided alternative

Monte Carlo Simulation

- **Experimental Setup**
 - Apply procedure to y_{t0} randomization of length n
 - Test d_k^*

Results

- **Bootstrap performance**
 - d_k^*: non-zero standard deviation
 - d_k^*: non-zero standard deviation
 - d_k^*: non-zero standard deviation

Performance of Estimation

- **Time Block vs. Time-Scale Block Bootstrap**
 - d_k^*: small differences for d_k^*
 - d_k^*: small differences for d_k^*
 - d_k^*: small differences for d_k^*

References