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Summary On open and controversial issue in empirical data analysis is to decide whether scaling and multifractal properties
observed in empirical data actually exist, or whether they are induced by intricate non stationarities. To contribute to answering
this question, we propose here a non parametric bootstrap and wavelet Leaders based procedure aiming at testing the constancy
along time of multifractal attributes estimated over adjacent non overlapping time windows.

SCALING (OR MULTIFRACTAL) ANALYSIS

Scaling
Scale Invariance

X(t), t ∈ [0, n) - Process under analysis
TX(a, k) - Multiresolution quantities of X

jointly depend on analysis scale a and time position t
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for statistical orders q ∈ [q−∗ , q
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∗ ]

for scales a = 2j ∈ [am, aM ], aM/am >> 1

ζ(q) - Scaling exponents

D(h) - Multifractal spectrum
can be obtained as the Legendre transform of ζ(q)

Multiresolution Quantities TX(a, k)

Discrete Wavelet Coefficients (vanishing moments Nψ)
dX(j, k) = 〈ψj,k|X〉

Wavelet Leaders [Jaffard04]

LX(j, k) = supλ′∈3λj,k |dλ′|
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Estimation
Log-Cumulants [CastaingGagneMarchand93]

ζ(q) =
∑∞

p=1 cp
qp

p! polynomial expansion

-∀p ≥ 1 : C(2j, p) = c0p + cp ln 2j

C(2j, p): p-th cumulant of ln |TX(2j, ·)|

Estimation Procedures

a) Calculate nj coefficients TX(2j, k)

b) Ĉ(2j, p) - standard estimate of p-th cumulant of ln |TX(2j, ·)|

c) Linear regressions: ĉp = (log2 e) ·
∑j2

j=j1
wjĈ(2j, p)

SCALING AND NON STATIONARITY
Problem

CONTROVERSY: Scale Invariance ↔ Non Stationary

Do scaling actually exist in data, or are they the consequence of non stationarities that conspire to mimic scaling behavior?

Controversy
Three categories:

1. Data scale invariant + smooth trend (mean, variance) superimposed

2. Data scale invariant + non stationary variability scaling parameters

3. Data not scale invariant → strong non stationary variability confused with
scaling property

Consequences

1. - Smooth trend likely to impair analysis (cf. [VeitchAbry99])
not further considered here

2. & 3. - Non stationary variability can correspond to many realities:
→ much more involved
→ blind analysis: misleading interpretations of scaling
→ detection of such situations of crucial practical importance

Goals
Discrimination of true scaling against various forms of non stationary variability for multifractal processes

Heuristic
Estimates over non overlapping adjacent windowed time series X(m)

• Statistically consistent =⇒ scale invariance

•Not statistically consistent =⇒ some form of non stationarity
([VeitchAbry01] for Gaussian H-sssi process)

Extension to multifractal processes

•Changes in methodology:

1. Description of processes → whole collection of attributes ζ(q), cp
2. Wavelet Leaders based estimation → non linear transform of data

•+ Additional difficulties:

3. Strongly non Gaussian, heavy tailed, correlated processes

•Analytical approach:
→ properties of statistics underlying test ??

•Proposed approach:
→ non parametric bootstrap based test procedure
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statistically consistent ?

Multifractal Process (MRW)

MFA X
(m)

Scaling Exponents ζ
(m)

(q)

BOOTSTRAP TIME CONSTANCY TEST
Test Principle

•Multifractal attribute under test: θ ∈ {cp}

•Test identical mean for independent estimates:

H0 : θ(1) = θ(2) = · · · = θ(M)

Bootstrap Test Statistic

•M Leader based estimates θ̂(m) from adjacent non overlapping subsets X(m)

•Resample from Leaders {LX(m)
(j, k)} corresponding to subsets X(m) → σ̂2∗

(m)

•Under H0, distribution of Tθ independent of precise means/variances of θ̂(m)
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Bootstrap Null Distribution Estimation

1. Resample from complete set {LX(j, k)} of Leaders

2. Then cut into M subsets {(L
∗(b)
X )(m)}

→ Bootstrap subset estimates θ̂∗(m) have same conditional distribution
→ T ∗

θ always reproduces null distribution of Tθ

• σ̂2∗∗
(m) from double bootstrap

T ∗
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∑M
n=1

θ̂∗(m)

σ̂2∗∗
(m)∑M

n=1
1
σ̂2∗∗

(m)





2

Bootstrap Test

dθ = 1 if Tθ > T ∗
θ,C and 0 otherwise

•T ∗
θ,C - critical value:

(1 − α) quantile of empirical distribution of T ∗
θ

Procedure for obtaining Tθ and T ∗
θ
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Bootstrapping Wavelet Leaders
for b = 1, · · · , B

for j = 1, · · · , j2
From {LX(j, 1), · · · , LX(j, nj)} random draw, with
replacement, circular and overlapping blocks to form
the unsorted collection {L

∗(b)
X (j, 1), · · · , L

∗(b)
X (j, nj)}

end
end

PERFORMANCE ASSESSMENT AND RESULTS
Monte Carlo Simulations
Simulation Setup

NMC = 1000 N = 215 B = B2 = 99 α = 0.1 Nψ = 3

j1 = 3 j2(M) = log2N − log2M − (2Nψ − 1)

Multifractal Random Walk (MRW) [Mandelbrot99]

• c1, c2 6= 0; p ≥ 3 : cp ≡ 0

Performance Assessment: d̄
H(·)

θ = ÊNMC
{dθ|H(·)}

Bootstrap Test Performance
Test performance under H0

•Constant multifractal attributes {c1, c2}

Test performance under H1

• Simplest alternative: piecewise constant multifractal attributes
→ concatenation of two equal-length MRW with {c

(i)
1 , c

(i)
2 }i=1,2

•H1(c1):
non constant c1: c

(1)
1 = {0.70, 0.72, · · · , 0.80}, c

(2)
1 = 0.8

constant c2: c
(1)
2 = c

(2)
2 = −0.02

•H1(c2):
constant c1: c

(1)
1 = c

(2)
1 = 0.75

non constant c2: c
(1)
2 = {−0.11,−0.10, · · · ,−0.01}, c

(2)
2 = −0.01
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Null Distribution Estimation
Critical value T ∗

cp,C
under H1(cp)
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