SCALING (OR MULTIFRACTAL) ANALYSIS

Scaling Invariance

Multiresolution Quantities $T_X(n,k)$

Discrete Wavelet Coefficients (vanishing moments N_c)

Wavelet Leaders [Affholder95]

Scale Exponents $D(n,k)$ - Multifractal spectrum

Estimation:

- Log-Cumulants $[\text{CastaingGagneMarchand09}]

- Bootstrap Test Performance

- Monte Carlo Simulations

- Scalability and Non Stationarity

- Bootstrap Time Constancy Test

- Null Distribution Estimation

- References

SCALING AND NON STATIONARITY

CONTRIVENY: Scale Invariance \Rightarrow Non Stationary

- Discrimination of true scaling against various forms of non stationary variability for multifractal processes

- Heuristic

- Objective

- Summary

- Problem

- Bootstrapping Leaders

- Procedure for obtaining T_F and T_P

- Bootstrap Test Statistic

- Bootstrap Test Performance

- Test performance under H_0

- Test performance under H_1

- Critical Value T_c under H_0

- Null Distribution Estimation

- Performance Assessment and Results

- References

REFERENCES

- Fractal Geometry and Applications

- Null Distribution Estimation

- Bootstrap Test Performance

- Monte Carlo Simulations

- BOOTSTRAP TESTS FOR THE TIME CONSTANCY OF MULTIFRACTAL ATTRIBUTES

- Monte Carlo Random Walk (MRW) $[\text{Mandelbrot99}]

- Summary

- On open and controversial issue in empirical data analysis is to decide whether scaling and multifractal properties observed in empirical data actually exist, or whether they are induced by intrinsic non stationarities. To contribute to answering this question, we propose here a non parametric bootstrap and wavelet Leaders based procedure aiming at testing the constancy along time of multifractal attributes estimated over adjacent non overlapping time windows.

- Bootstrap Tests for the Time Constancy of Multifractal Attributes

- Herwig Wendt, Patrice Abry

- Physics Lab, CNRS UMR 5672, École Normale Supérieure de Lyon, France, herwig.wendt@ens-lyon.fr, patrice.abry@ens-lyon.fr

- BOOTSTRAP TIME CONSTANCY TEST

- Test Principle

- Multifractal attribute under test: $\theta \in \{c_2\}$

- Test identical mean for independent estimates:

- $H_0: \theta = \theta_0 \Rightarrow \theta_1 \Rightarrow B$.

- Bootstrap Test Statistic

- $L_X(j,k)$ from adjacent non overlapping subsets $X_{j,k}$

- Resample from Leaders $(L_X(j,k))$ corresponding to subsets $X_{j,k} \Rightarrow \theta_0^{(n)}$

- Under H_0, distribution of T_F independent of precise mean/variances of θ_0

- $T_F = \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\hat{\theta}_0^{(n)}}{\sum_{j=1}^{J} \sum_{k=1}^{K} \hat{\theta}_0^{(n)}}$

- Bootstrap Null Distribution Estimation

- 1. Resample from complete set $(L_X(j,k))$ of Leaders

- 2. Then cut into M subsets $(L_X^{(m)},m=1,\cdots,M)$

- $\theta_0^{(m)}$ have same conditional distribution

- T_F always reproduces null distribution of T_F

- $\theta_0^{(m)}$ from double bootstrap:

- $T_F = \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\hat{\theta}_0^{(m)}}{\sum_{j=1}^{J} \sum_{k=1}^{K} \hat{\theta}_0^{(m)}}$

- Performance Assessment and Results

- Monte Carlo Simulations

- Test performance under H_0

- $\text{Constant multifractal attributes } (c_1,c_2)$

- H_1: Simplest alternative: piecewise constant multifractal attributes

- H_1: $c_2^0 = 0.75$

- H_1: $c_2^0 = 0.01$

- H_1: $N_{\text{sub}} = 10^3$

- Null Distribution Estimation

- Critical value T_c under H_0

- independent of $c_2^0 = c_2^0$

- equal T_c under $H_1(c_2)$

- REFERENCES

