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Abstract

We introduce new tools for pointwise singularity classification: We investi-

gate the properties of the two variable function which is defined at every point

as the p-exponent of a fractional integral of order t; new exponents are derived

which are not of regularity type but give a more precise description of the be-

havior of the function near a singularity. We revisit several classical examples

(deterministic and random) of multifractal functions for which the additional

information supplied by this classification is derived. Finally, a new example of

multifractal function is studied, where these exponents prove pertinent.

Keywords: multifractal analysis, wavelets, chirps, Hausdorff dimension,
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1 Introduction

A long-standing problem in the 19th century was to determine if a continuous

function necessarily has points of differentiability. In 1895, K. Weierstrass finally

settled this issue by introducing the functions

Wa,b(x) =
∞∑
n=0

an cos(bnπx),

and proving that, if a ∈ (0, 1), b is a positive odd integer and ab > 1+3π/2, then

Wa,b is continuous and nowhere differentiable. In 1916, G. Hardy sharpened this

result in several ways. First, he improved the last requirement, by showing that
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this result holds under the natural (sharp) condition ab > 1; second, he showed

that, when this condition is fulfilled, Wa,b satisfies

∀x, y ∈ R, |Wa,b(x)−Wa,b(y)| ≤ C|x− y|α where α = − log a

log b

and that, for every x0, |Wa,b(x)−Wa,b(x0)| is nowhere a o(|x− x0|α). Hardy’s

result can be restated using the following definition.

Definition 1 Let x0 ∈ R and α ≥ 0. A locally bounded function f : IR → IR

belongs to Cα(x0) if there exist C > 0 and a polynomial Px0 with deg(Px0) < α

and such that on a neighborhood of x0,

|f(x)− Px0(x)| ≤ C|x− x0|α. (1)

The pointwise Hölder exponent of f at x0 is hf (x0) = sup{α : f ∈ Cα(x0)}.

Note that, in all this paper, we only consider functions of one variable only;

most definitions and results extend without difficulty to the several variable

setting. However, most examples require arguments involving primitives that

could not be reproduced as such in several dimensions.

Thus, the pointwise Hölder exponent of Weierstrass functions is constant

and equal to α. This seminal result opened the way to the study of the regu-

larity of functions by using pointwise Hölder conditions. A milestone was the

determination of the Hölder exponent of Brownian motion. Then a key devel-

opment occurred in 1961, when Calderón and Zygmund realized that pointwise

Hölder regularity does not possess natural continuity properties under the action

of singular integral operators: For instance, the space Cα(x0) is not invariant

under the Hilbert transform. As a substitute for Hölder regularity without this

drawback, they introduced the following notion in [6].

Definition 2 Let p ≥ 1 and assume that f ∈ Lploc(R). Let α ∈ R; f belongs to

T pα(x0) if there exists a constant C and a polynomial Px0 of degree less than α

such that, for r small enough,(
1

r

∫ x0+r

x0−r
|f(x)− Px0(x)|pdx

)1/p

≤ Crα. (2)

The p-exponent of f at x0 is

hpf (x0) = sup{α : f ∈ T pα(x0)}. (3)
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The Taylor polynomial Px0 of f at x0 is unique for a given α, and is inde-

pendant of p; but its degree depends on [α] [17]; however, we introduce no such

dependency in the notations, which will lead to no ambiguity. The condition

f ∈ Lploc implies that (2) holds for α = −1/p, so that hpf (x0) ≥ −1/p.

An additional advantage is that this notion only requires that f ∈ Lploc
in order to be well defined, whereas Hölder regularity requires that f is locally

bounded. This issue is important in modeling, since large classes of experimental

signals cannot be modeled by locally bounded functions [13, 19, 21]. Despite

their early definition, p-exponents were not used in signal and image processing

until recently; a reason is that numerically efficient (wavelet based) methods

for their estimation were only proposed in 2005 [16] and used in practice in

2015 [13, 17, 20]. Instead, the problem of estimating regularity exponents for

data that are not locally bounded was implicitly resolved through a different

technique. At the end of the 1980s, A. Arneodo and his collaborators used

the wavelet transform maxima method to study the singularities of signals [25].

Such maxima are bounded if the function under investigation is locally bounded.

Typically, this is not the case for quantities modeled by singular measures,

such as the energy dissipation in turbulent fields (which motivated the early

developments of multifractal analysis [5, 26]). If these maxima were found to

diverge in the limit of small scales (a→ 0), then an extra convergence factor at

was applied to the continuous wavelet transform C(a, b) = a−t
∫
f(u)ψ

(
u−b
a

)
du,

with t large enough. This “renormalization” of the wavelet transform can be

interpreted as performing a fractional integration of order t on the data [2],

and thus as a regularization of the signal.

Definition 3 Let t > 0 and let φ be a C∞ compactly supported function satis-

fying φ(x0) = 1. Let (Id − ∆)−t/2 be the convolution operator which amounts

to multiplying the Fourier transform of the function with (1 + |ξ|2)−t/2. The

fractional integral of order t of f is the function f (−t) = (Id−∆)−t/2(φf).

Note that, though this definition depends on the function φ, the pointwise

regularity properties of f (−t) do not [2]. A drawback of using p-exponents

or fractional integration in the definition of pointwise regularity is that this

notion may depend on p or t. It is therefore important to understand this

dependency. The heuristic forged by considering the simplest type of pointwise

singularities, e.g. cusps |x − x0|α at x0 (for α /∈ 2N), makes one expect

that they are invariant under a change of p and shifted by t under a fractional

integration. This heuristic, however, does not hold in full generality, as shown
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by the following example. Let α, β > 0. The chirp Cα,β is

Cα,β(x) = |x|α sin

(
1

|x|β

)
. (4)

One easily checks that the Taylor polynomial of a chirp vanishes, so that its

Hölder exponent is α. Additionally, an integration by parts yields that the

Hölder exponent at 0 of C(−1) is α+ β + 1, so that it is increased by 1 + β after

one integration; and it is the same for a fractional integration of order 1, see [2].

Therefore, different types of singularities behave differently under the ac-

tion of a fractional integration. A new perspective, introduced in [2], is that,

far from being a drawback, this fact can be used as a way to probe into the

difference of nature between singularities that “behave like” cusps or chirps in

the neighborhood of x0. To that end, the following definition was proposed.

Definition 4 Let f : IRd → IR be a locally bounded function. If hf (x0) 6= +∞,

then the oscillation exponent of f at x0 is

Of (x0) =

(
∂

∂t
hf (−t)(x0)

)
t=0+

− 1. (5)

The choice of taking the derivative at t = 0+ is motivated by a perturbation

argument: The exponent should not be perturbed when adding to f a term

that would be a o(|x− x0|h) for an h > hf (x0).

The oscillation exponent takes the value β for a chirp; it is the first of second

generation exponents that do not measure a regularity, but yield additional

information, paving the way to a richer description of singularities. Our purpose

in this paper is to discuss this classification based on the Hölder and oscillation

exponents, show its limitations, and propose a richer description where the

oscillation exponent actually splits into two new exponents, which in turn yield

additional informations of different natures, which we will investigate.

This paper is organized as follows. In Section 2.1, we discuss several exam-

ples of toy singularities in order to put into light the limitations of using the

oscillation exponent only. In Section 2.2, we introduce the notion of fractional

exponent, which encapsulates all the available pointwise regularity information,

and show how to derive from it two relevant parameters: the lacunarity and

the cancellation exponents. At the beginning of Section 3 the properties of

the fractional exponent are derived. In Sections 3.4, 3.5 and 3.6, we revisit sev-

eral deterministic and random models of multifractal functions where lacunarity

exponents are relevant. Then, we turn to the new cancellation exponent. In
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Section 5 we show how to construct pointwise singularities with given lacunar-

ity and cancellation exponents, and in Section 6 we construct new examples of

deterministic multifractal functions where a multifractal analysis using cancel-

lation exponents can be performed.

The authors thank the referee for a careful reading of a first version of this

text and for many suggestions of improvement.

2 Motivation and definitions

To motivate the need for a more accurate classification of singularities, we com-

pare examples of oscillating singularities (i.e. singularities with a non-vanishing

oscillation exponent).

2.1 Two kinds of oscillating behaviors

We start by considering again the example of the chirp (4). An integration by

part yields also that the Hölder exponent at 0 of C(−2) is α + 2(β + 1). Since

the mapping t → h(f)(−t)(0) is concave [2], the fact that the Hölder exponents

of Cα,β, (Cα,β)(−1) and (Cα,β)(−2) at 0 are in arithmetic progression implies that

it is necessarily an affine function for t ∈ [0, 2]; it follows that OCα,β (0) = β.

The second example (already considered in [13]) is the lacunary comb. Let

ψ be the Haar wavelet: ψ = 1I[0,1/2) − 1I[1/2,1) and

θ(x) = ψ(2x)− ψ(2x− 1) (6)

(so that θ is supported by [0, 1] and its two first moments vanish).

Definition 5 Let α ∈ R and γ > ω > 0. The lacunary comb Fαω,γ, is

Fαω,γ(x) =

∞∑
j=1

2−αjθ
(
2γj(x− 2−ωj)

)
. (7)

An illustration is provided in Figure 1. We consider its singularity at x0 = 0:

Fαω,γ is locally bounded if and only if α ≥ 0, which we now assume. Denote by

θ(−1) the primitive of θ which has support on [0, 1] and by θ(−2) the primitive

of θ(−1) which has support on [0, 1]. Then the primitive of Fαω,γ is

Fαω,γ
(−1)(x) =

∞∑
j=1

2−(α+γ)jθ(−1)
(
2γj(x− 2−ωj)

)
,
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and its second primitive is

Fαω,γ
(−2)(x) =

∞∑
j=1

2−(α+2γ)jθ(−2)
(
2γj(x− 2−ωj)

)
.

Note that the Taylor polynomials of Fαω,γ
(−1) and Fαω,γ

(−2) vanish at 0 because

these functions vanish on R−; it follows that

hFαω,γ (0) =
α

ω
, hFαω,γ (−1)(0) =

α+ γ

ω
and hFαω,γ (−2)(0) =

α+ 2γ

ω
.

Since the mapping t→ h(f)(−t)(0) is concave, the same argument as in the chirp

case implies that OFαω,γ (0) = γ
ω − 1.

We conclude that chirps and lacunary combs are two examples of oscillat-

ing singularities. They are, however, of different nature: In the comb case,

oscillation is due to the fact that this function vanishes on larger and larger

proportions of small balls centered at the origin (this is detailed in [13], where

this phenomenon is precisely quantified through the use of accessibility expo-

nent of a set at a point). We will also see that |Fαω,γ | also displays an oscillating

singularity at the origin, with the same oscillation exponent as Fαω,γ (see the

remark after Definition 11 below). On the other hand, chirps are oscillating

singularities for a very different reason: It is due to very fast oscillations, and

compensations of signs. This can be checked by verifying that the oscillation

exponent of the absolute value of Cα,β at 0 vanishes. Thus Cα,β and Fαω,γ display

oscillating behaviors of very different natures. We will introduce new exponents

that will allow to draw a difference between these two different behaviors.

2.2 The fractional exponent

Comparing the p-exponents of chirps and lacunary combs allows to draw a

distinction between their singularities; indeed, for p ≥ 1, see [17],

hpFαω,γ (0) = α+
1

p

(γ
ω
− 1
)

(8)

whereas a straightforward computation yields that hpCα,β (0) = α. We conclude

that the p-exponent of Fαω,γ varies with p, whereas the one of Cα,β does not.

Therefore, a natural idea is to consider the whole pointwise regularity informa-

tion available, i.e. the p-exponent of a fractional integration of the data,

and investigate which information on the nature of the singularities can be de-

rived from it. We can infer from (8) that the “right” variable when considering

p-exponents is q = 1/p.
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Figure 1: Illustration of a lacunary comb Fα
ω,γ with α = 0.3, γ = 1.3 and ω = 0.9.

Definition 6 Let f be a tempered distribution. The fractional exponent of f

at x0 is the two variable function

Hf,x0(q, t) = h
1/q

f (−t)(x0)− t (9)

(where h∞f (x0) denotes the Hölder exponent at x0).

Properties of the mapping t→ hf (−t)(x0) (called the two-microlocal domain)

have been investigated by J. Lévy-Véhel and S. Seuret [22] and applications to

stochastic processes have been worked out by E. Herbin and P. Balança [3, 4].

The reason for substracting t in (9) is that Hf,x0 measures the “excess” of the

increase of regularity in a fractional integral of order t when compared with what

is “expected” in general (and is verified for cusps), i.e. t, and several properties

will be easier to state in terms of this “excess”. The domain of definition of

Hf,x0 is a subset of R+ × R studied in Section 3.2; we introduce now a notion

which allows to make precise this domain of definition for t = 0.

Definition 7 If f ∈ Lploc in a neighborhood of x0 for p > 1, the critical

Lebesgue index of f at x0 is

pf (x0) = sup{p : f ∈ Lploc(R) in a neighborhood of x0}. (10)

The p-exponent at x0 is defined on the interval [1, pf (x0)] or [1, pf (x0)). We

denote: qf (x0) = 1/pf (x0).

Note that pf (x0) can take the value +∞. Keeping at every point x0 a two-

variable function is excessive for classification purposes. So the next goal is to

extract a pertinent information that can be encapsulated into a few parameters.

On top of a regularity exponent, we will derive two additional exponents. The

first one is the lacunarity exponent, already introduced in [13].
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Definition 8 Let f ∈ Lploc in a neighborhood of x0 for a p > 1, and assume

that the p-exponent of f is finite (i.e < ∞) in a left neighborhood of pf (x0).

The lacunarity exponent of f at x0 is

Lf (x0) =
∂

∂q
(Hf,x0(q, 0))q=qf (x0)+ . (11)

This quantity may have to be understood as a limit when q → qf (x0), since

h
1/q
f (x0) is not necessarily defined for q = qf (x0). This limit always exists as a

consequence of the concavity of the mapping q → h
1/q
f (x0), and it is nonnegative

(because this mapping is increasing). We now compute the fractional exponent

and derive the lacunarity exponent for the examples already introduced.

Lemma 2.1 Let α > −γ. The fractional exponent of the Lacunary comb Fαω,γ

for t ≤ 2 and q ∈ [max(0,−α/γ), 1] is

HFαω,γ ,0(q, t) =
α

ω
+
(γ
ω
− 1
)

(q + t). (12)

Note that we no longer assume that α > 0. The proof of this lemma is

straightforward: The computation of the p-exponent is similar as the one done

in [13] for α > 0. And it is also the case for the primitive and the second

primitive. The fractional exponent follows from the usual concavity argument.

Thus, the lacunarity exponent of Fαω,γ at 0 is γ
ω −1, which puts into light the

fact that this exponent allows to measure how Fαω,γ vanishes on ”large sets” in the

neighborhood of 0 (see [13] for a precise statement). Furthermore the oscillation

exponent of Fαω,γ at 0 is γ
ω−1, so that it coincides with the lacunarity exponent.

Chirps: We only assume that α > −1 in (4), so that Cα,β can be un-

bounded. If α ≥ 0, it is a bounded function so that pCα,β (0) = +∞, whereas, if

α ∈ (−1, 0), pCα,β (0) = −1/α; Cα,β clearly satisfies ∀p < pCα,β (0), hpCα,β (0) = α,

and the integration by parts argument already mentioned shows that, ∀p ≥ 1

the p-exponent of Cα,β is increased by 1 + β after each integration. The usual

concavity argument yield that, after a fractional integration of order t, it is in-

creased by (1+β)t, so that HCα,β ,x0(q, t) = α+βt. Therefore chirps are another

example of functions with a vanishing lacunarity exponent, which reflects the

fact that, on the average, chirps do not vanish on a “large set” near 0.

Comparing lacunary combs and chirps, we see that the oscillation exponent

takes into account two quantities of different natures: the lacunarity and the

“cancellation” which encapsulates compensations between positive and negative
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values which are cancelled by a local averaging (such as taking a fractional

integral); in order to singularize this quantity, a new exponent is required.

We now consider another toy-examples of pointwise singularities, which stand

between lacunary combs and chirps: the fat combs Fαω,γ,δ, see [13].

Fat combs: Let

θN (x) =

N−1∑
k=0

θ(x− k)

(where θ was defined by (6)); the support of θN is [0, N ] and, on this interval,

it coincides with the 1-periodic periodization of θ). Let ω, γ, δ be such that

0 < ω < γ < δ; (13)

we define

Fαω,γ,δ(x) =
∑
j≥0

2−αjθ[2(δ−γ)j ]

(
2δj(x− 2−ωj)

)
. (14)

The function Fαω,γ,δ is illustrated in Figure 2.

Lemma 2.2 If α > −γ, t ≤ 2 and q ∈ [max(0,−α/γ), 1], then

HFαω,γ,δ,0(q, t) =
α

ω
+
(γ
ω
− 1
)
q +

(
δ

ω
− 1

)
t. (15)

Let us sketch the proof. First (13) implies that the different components in

the series (14) have disjoint support; so that its p-exponent at 0 is

hpFαω,γ,δ
(x0) =

α

ω
+
(γ
ω
− 1
) 1

p
,

so that (15) holds for t = 0. A computation of the two first primitives yields

that (15) also holds for t = 1 and 2, and the usual concavity arguments yield

the property for intermediate orders of integration.

It follows that the lacunarity exponent of Fαω,γ,δ at 0 is γ
ω − 1, and its oscil-

lation exponent is δ
ω − 1, which is larger. We infer that a new cancellation

exponent should be the difference of theses two quantities, and would take the

value (δ − γ)/ω for fat combs; this motivates the following definition.

Definition 9 Let f ∈ Lploc in a neighborhood of x0 for a p > 1, and assume

that the pf (x0)-exponent of f (−t) is finite for small enough t. The cancellation

exponent of f at x0 is

Cf (x0) =
∂

∂t
(Hf,x0(qf (x0)− t, t))t=0+ . (16)
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Figure 2: Illustration of a fat comb Fα
ω,γ,δ with α = 0.3, γ = 1.3, ω = 0.9 and δ = 2.

Note that the number of pulses in each block increases as x→ 0.

Remarks:

• For consistency, the derivative is computed at the same point as for the

lacunarity exponent. Note however that it needs not always exist, either because

Hf,x0 is not defined at (qf (x0), 0) or because qf (x0) = 0 (which is the case if f

is locally bounded). In such cases Cf (x0) should be understood as the limsup

of the quantity ∂
∂t (Hf,x0(q − t, t)) when q → qf (x0)+.

• Cf (x0) is non-negative, as a consequence of Theorem 1 below.

• If Hf,x0(q, t) has a differentiable extension in a neighborhood of (qf (x0), 0),

Of (x0) = Cf (x0) + Lf (x0) (17)

(as a consequence of the relationships between partial derivatives). Equality will

hold in several examples; however, it needs not hold in all cases (cf. the end of

Section 5). In order to describe the properties of the cancellation exponent, we

first need to investigate the properties of the fractional exponent.

3 Properties of the fractional exponent

In signal and image processing, one often meets data that cannot be modeled

by functions in L1
loc, see [13, 19]. It is therefore necessary to set the analysis in

a wider functional setting. One possibility is to consider real Hardy spaces Hp

(with p < 1), instead of Lp spaces, see [12]. We will therefore consider the whole

collection of p-exponents (for p > 0) of fractional integrals of f of arbitrary or-

der. First, we need to extend definitions to the range p ∈ (0, 1] (i.e. q ≥ 1).

A key point is that the wavelet characterization of Lp remains unchanged for

Hp; it follows that T pα regularity can be extended to this setting while retain-

ing the same wavelet characterization, see [12]. Therefore, all definitions and

wavelet characterizations introduced previously extend to this setting, and it is
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in particular the case of the fractional exponent (see Definition 6). We start by

recalling classical properties of orthonormal wavelet expansions.

3.1 Wavelet characterizations

3.1.1 Wavelet bases

An orthonormal wavelet basis is generated by a couple of functions (ϕ, ψ),

which will either be in the Schwartz class, or compactly supported and smooth

enough (the required smoothness depends on the considered space, and will

always be assumed to be “large enough”). The functions ϕ(x − k), (for k ∈ Z)

together with the 2j/2ψ(2jx − k), (for j ≥ 0, and k ∈ Z) form an orthonormal

basis of L2(R). Thus any function f ∈ L2(R) can be written

f(x) =
∑
k∈Z

ck ϕ(x− k) +
∑
j≥0

∑
k∈Z

cj,k ψ(2jx− k),

where the wavelet coefficients of f are given by

ck =

∫
ϕ(t− k)f(t)dt and cj,k = 2j

∫
ψ(2jt− k)f(t)dt.

These formulas also hold in many different functional settings (such as the Besov

or Sobolev spaces), if the selected wavelets are smooth enough.

Instead of using the indices (j, k), we will use dyadic intervals: Let

λ (= λ(j, k)) =

[
k

2j
,
k + 1

2j

)
(18)

and, accordingly, cλ = cj,k and ψλ(x) = ψ(2jx−k). Indexing by dyadic intervals

will be useful because λ indicates the localization of the corresponding wavelet.

3.1.2 Wavelet characterization of Lp spaces

We denote indifferently by χj,k or χλ the characteristic function of the interval

λ defined by (18). The wavelet square function of f is

Wf (x) =

 ∑
(j,k)∈Z2

|cj,k|2χj,k(x)

1/2

.

Then f ∈ Lp(R) when p > 1 (resp. f ∈ Hp(R) when p ≤ 1) if and only if∫
(Wf (x))p dx < ∞. One associates a norm (resp. a semi-norm) to Lp (resp.
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Hp): ‖ f ‖p=‖ Wf ‖p, see [24]. The elements of Hp are no more functions

but can be distributions; therefore the restriction of f to an interval cannot be

done directly. If I is an open interval, one defines ‖ f ‖Hp(I)= inf ‖ g ‖p where

the infimum is taken on the g ∈ Hp such that f = g on I. The T pα condition

for p ≤ 1 is then defined by f ∈ T pα(x0) if ‖ f ‖Hp(B(x0,r))≤ C · rα+1/p. This

extension of the p-exponent still takes values in [−1/p,+∞], as shown below.

In order to define the lacunarity, oscillation and cancellation exponent, we

assumed that f ∈ L1. We can now replace this assumption by f ∈ Hp for a

p > 0, and these definitions remain unchanged. From now on, we will often use

a slight abuse of notation and denote by Lp the space Hp when p < 1.

Examples of distributions for which the p-exponent is constant (see Proposi-

tion 3.2 below) and equal to a given α < −1 are supplied by the cusps, which are

defined for α ≤ −1 as follows. First, note that cusps cannot be defined directly

(as distributions) for α ≤ −1 by Cα(x) = |x|α because they do not belong to

L1
loc so that their integral against a C∞ compactly supported function ϕ is not

well defined; instead, we note that, if α > 1, then C′′α = α(α− 1)Cα−2. Thus we

can define Cα by recursion, when α < −1 and α /∈ Z, by

if α < 0, Cα =
1

(α+ 1)(α+ 2)
C(2)
α+2,

where the derivative is taken in the sense of distributions. The Cα are thus

defined as distributions when α is not a negative integer. It can also be done

when α is an integer, by taking C0 = log(|x|) and C−1 = C′0 = P.V.(1/x).

The following result will prove useful for the characterization of the two-

variable functions that are fractional exponents.

Proposition 3.1 Let p, q ∈ (0,+∞], and suppose that f ∈ T pα(x0)∩T qβ (x0); let

θ ∈ [0, 1]. Then f ∈ T rγ (x0), where

1

r
=
θ

p
+

1− θ
q

and γ = θα+ (1− θ)β.

Proof: When p, q < ∞, the result will be a consequence of the wavelet

characterization of T pα(x0), see [12]. Let λ be a dyadic interval; 3λ will denote

the interval of same center and three times wider (it is the union of λ and its

two closest neighbors). For x0 ∈ Rd, denote by λj(x0) the dyadic cube of width

2−j which contains x0. The local square functions at x0 are

Wj
f (x) =

 ∑
λ⊂3λj(x0)

| cλ|2χλ(x)

1/2

.
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Recall, see [12], that

f ∈ T pα(x0) if and only if
∥∥∥Wj

f

∥∥∥
p
≤ 2−(α+1/p)j . (19)

By interpolation,
∥∥∥Wj

f

∥∥∥
r
≤
∥∥∥Wj

f

∥∥∥θ/p
p

∥∥∥Wj
f

∥∥∥(1−θ)/q

q
, hence the result holds for

p, q <∞. The case when p or q = +∞ does not follow, because there exist no

wavelet characterization of Cα(x0) = T∞α (x0); however, when p, q > 1, one can

use the initial definition of T pα(x0) and Cα(x0) through local Lp and L∞ norms

and the result follows from Hölder’s inequality; hence Proposition 3.1 holds.

If f ∈ Hp, then ‖ Wf ‖p≤ C. Since Wj
f ≤ Wf , ‖ Wj

f ‖p≤ C, so that (19)

holds with α = −1/p. Thus p-exponents are always larger that −1/p. The

following result shows that they can take values down to −1/p (its proof follows

from the estimation of wavelet coefficients, using the selfsimilarity of cusps).

Proposition 3.2 If α ≥ 0, the cusp Cα belongs to L∞loc and its p-exponent is α.

If α < 0, the cusp Cα belongs to Lploc for p < −1/α and its p-exponent is α.

3.1.3 p-leaders

We will derive T pα regularity from simpler quantities than the local square func-

tions. The p-leaders of f are defined by

dpλ =

( ∑
λ′⊂3λ

|cλ′ |p2−(j′−j)

)1/p

(20)

(they are finite if f ∈ Lploc(R
d), see [16]). Note that, if p = +∞, the correspond-

ing quantity (called the wavelet leaders) is

dλ := d∞λ = sup
λ′⊂3λ

|cλ′ |. (21)

The notion of T pα regularity can be related to p-leaders (which are local lp

norms of wavelet coefficients) as follows (see [14,16]) :

If ηf (p) > 0, then hpf (x0) = lim inf
j→+∞

log
(
dpλj(x0)

)
log(2−j)

. (22)

3.2 The fractional exponent domain

Let Df,x0 denote the domain of definition of Hf,x0(q, s); it is the set of points

(q, t) ∈ R+×R such that f (−t) locally belongs to L1/q (resp. H1/q if q ≥ 1) in a
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neighborhood of x0. Note that we allow the fractional integration parameter t

to take positive and negative values (i.e. we consider both fractional integrals

and fractional derivatives of f). If f is a tempered distribution, it has a finite

order, so that for t large enough f (−t) ∈ L∞loc. It follows that Df,x0 is never

empty. In order to investigate the properties of Df,x0 , we recall the definition

of the local scaling function at x0. The Sobolev space Lp,s is defined by

∀s ∈ R, ∀p > 0, f ∈ Lp,s ⇐⇒ f (s) ∈ Lp

The local scaling function at x0, ηf,x0(p), is

ηf,x0(p) = p · sup{s : f ∈ Lp,sloc in a neighborhood of x0}. (23)

The uniform Hölder exponent of a tempered distribution f is

Hmin
f = sup{s : f ∈ Csloc(Rd)}.

Proposition 3.3 The boundary of Df,x0 is the graph of the function

Bf,x0(q) := −q ηf,x0

(
1

q

)
.

Furthermore:

1. Bf,x0 is convex;

2. ∀q ≥ 0, B′f,x0
(q) ≤ −1.

3. Bf,x0(qf (x0)) = 0 and Bf,x0(0) = −Hmin
f .

We will refer to the function Bf,x0 as the p-boundary of f at x0. Note

that most examples of multifractal functions that have been studied are ho-

mogeneous, i.e. their local scaling function does not depend on x0. In such

situations, though the fractional exponent may strongly differ from point to

point, its domain of definition does not depend on x0.

Proof of Proposition 3.3: For a given p, Hf,x0 is well defined at (1/p, t)

if t > −ηf,x0(p)/p. Therefore, the first assertion of the proposition holds.

As regards Point 1, recall that the function ηf,x0 is concave; and, for func-

tions defined on R+, the mapping I is defined for concave functions on R+ by

(Iη)(q) = qη (1/q) which maps concave functions to concave functions [10].

Point 2 follows from the Sobolev interpretation of the p-boundary. Indeed,

the Sobolev embeddings state that (see [28], Section 2.7.1 which covers p < 1),

14



if f ∈ Lp,s and if p < p̃, then f ∈ Lp̃,t where t is such that 1
p −

1
p̃ = s − t. It

follows that, if (q, t) ∈ Df,x0 , then the segment {(q − s, t+ s) : 0 ≤ s ≤ q} is

included in Df,x0 , i.e. the p-boundary satisfies B′f,x0
(q) ≤ −1.

The p-boundary does not necessarily cross the q axis; assume that it does, so

that f /∈ L∞loc, but f ∈ Lploc for a p > 0. Coming back to the definition of pf (x0)

given by (10), we see that if p < pf (x0), then f ∈ Lploc, so that ηf (p) > 0, and if

p > pf (x0), then f /∈ Lploc, so that ηf (p) < 0; it follows that ηf (pf (x0)) = 0, so

that Bf,x0(qf (x0)) = 0. Another important point is the initial value, at q = 0,

of the p-boundary: Recall that the function Hf,x0 is well defined at (q, t) if and

only if f (−t) locally belongs to L1/q; for q = 0 this means that f locally belongs

to the Hölder space C−t. It follows from the definition of the uniform Hölder

exponent that Bf,x0(0) = −Hmin
f . These properties imply that the fractional

exponent is well defined on the half-line (q = qf (x0), t > 0), a property used in

the definition of the oscillation exponent. Proposition 3.3 is completely proved.

3.3 Fractional exponent characterization

After investigating the properties of the domain of definition of Hf,x0 , we now

turn to the properties of this function itself.

Theorem 1 Let f be a tempered distribution, and x0 ∈ R. The mapping

(q, t)→ Hf,x0(q, t) has the following properties:

1. It is concave on its domain of definition;

2. it is increasing in the first variable;

3. it is increasing in the direction of the second bissector, i.e., ∀(q, t) where

Hf,x0 is defined, the mapping s→ Hf,x0(q − s, t+ s) is increasing;

4. ∀(q, t) where Hf,x0 is defined, Hf,x0(q, t) ≥ −q − t.

Furthermore, these conditions are optimal, i.e. if H is any function defined

on a convex subset of R+×R of the form t > B(q) with B convex and satisfying

∀q ≥ 0, B′(q) ≤ −1, and if H satisfies the above conditions; then H is the

fractional exponent at x0 of a tempered distribution.

Note that the statement of the third result requires the property asserted in

Point 2 of Proposition 3.3.

Proof of Theorem 1: The first statement follows from Proposition

3.1. The second statement holds because, locally, Lp ⊂ Lp̃ if p > p̃; thus,
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if f (−t) ∈ T pα(x0), then ∀p̃ < p, f (−t) ∈ T p̃α(x0). When p ≥ 1, the third state-

ment is a reformulation of Theorem 4 in [6], which we now recall: Assume that

f ∈ T pα(x0), and that t ≤ 1/p; then f (−t) ∈ T p̃α+t(x0), provided that 1
p −

1
p̃ = t

(this is a pointwise equivalent of the Sobolev embeddings). This is extended

in Annex 7, covering the cases p < 1 and q < 1. This result, applied to f (−t),

exactly means that the mapping s→ Hf,x0(q−s, t+s) is increasing. The fourth

statement is a reformulation of the fact that the p-exponent is larger than −1/p.

The optimality requires the construction of new toy-examples defined through

their wavelet expansion, and will be proved in Section 5.2.

Theorem 1 leaves room for a large variety of possible functions Hf,x0 . A

natural question is to find sufficient conditions under which it is constant, thus

yielding cases where the regularity exponent is canonically defined. In this

respect the following notion plays an important role.

Definition 10 Let f be a tempered distribution on R; f has a canonical

singularity of index (qf (x0), t0) at x0 if (qf (x0), t0) ∈ Df,x0 and

∂

∂t
(Hf,x0)q=qf (x0),t=t0

= 0.

This definition is motivated by the following result.

Proposition 3.4 Let f be a tempered distribution with a canonical singularity

of index (qf (x0), t0) at x0; then Hf,x0 is constant in the domain defined by the

conditions: q ≥ 0, t ≥ t0, and q + t ≥ qf (x0) + t0.

Proof of Proposition 3.4: First, note that the function

t→ Hf,x0(qf (x0), t) (24)

is concave so that its derivative is decreasing. Since this derivative vanishes at

t0, it is nonpositive for t > t0, so that (24) is decreasing. Since, on other hand,

it is increasing, we obtain that it is constant (note that, strictly speaking, the

considered function may not be differentiable everywhere; however, as a con-

cave function, it has everywhere right and left derivatives, and the argument is

correct using this slightly more general setting). Let q > qf (x0); Hf,x0 is in-

creasing on the segment of ends (qf (x0), t0) and (q, t0), and it is also increasing

on the segment of ends (q, t0) and (qf (x0), t0 +(q−qf (x0))). Since it is constant

on the vertical axis, it cannot have increased, and it follows that it is constant
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on the two mentioned segments. Since q > qf (x0) is arbitrary, it follows that

Hf,x0 is constant in the first quadrant (q ≥ qf (x0), t ≥ t0). The same argument

can be reproduced starting from (qf (x0), t0) and going first in the direction of

the second bissector, and then in the direction of the q axis, and it follows that

Hf,x0 is also constant in the next half quadrant issued from (qf (x0), t0) which

corresponds to the directions π/2 ≤ θ ≤ 3π/4. Hence Proposition 3.4 holds.

A first important class of singularities are canonical singularities, for

which the oscillation exponent vanishes; the key example being cusps. Having

now at our disposal two new exponents, it is therefore natural to introduce two

other kinds of singularities, by requiring that one of these exponents vanishes.

Definition 11 Let f be a tempered distribution on R:

• f has a balanced singularity at x0 if Lf (x0) = 0 and Cf (x0) 6= 0.

• f has a lacunary singularity at x0 if Cf (x0) = 0 and Lf (x0) 6= 0.

Chirps are typical examples of balanced singularities and lacunary combs

are typical examples of lacunary singularities.

Remarks: Proposition 3.4 implies that, if f has a canonical singularity at

x0, then Lf (x0) = Cf (x0) = 0. More precisely, Properties 2 and 3 of Theorem 1

imply that, though (17) needs not always hold, one has: Of (x0) ≥ Lf (x0) and

Of (x0) ≥ Cf (x0). Let us now come back to the lacunary comb (7). Since its

Taylor polynomial vanishes, the p-exponent of Fαω,γ and |Fαω,γ | coincide, so that

it is also the case for their lacunarity exponents. It follows that the cancellation

exponent of |Fαω,γ | is larger that the one of Fαω,γ . One easily checks that it cannot

be larger, so they necessarily coincide, as mentioned in Section 2.1.

We now revisit some classical multifractal functions and investigate what

this new classification allows to say about their singularities.

3.4 The Brjuno function

Let x be an irrational number in ]0, 1[, and let x = [0; a1, · · · an, · · · ] denote its

continued fraction expansion. The convergents pn/qn of x are [0; a1, · · · an] with

pn ∧ qn = 1. The Brjuno function at x is

B(x) =

∞∑
n=0

|pn−1 − qn−1x| log

(
pn−1 − x qn−1

qnx− pn

)
, (25)
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where, by convention, (p−1, q−1) = (1, 0), (p0, q0) = (0, 1), and (p1, q1) =

(1, a1), so that the first term in (25) is log(1/x). The Brjuno function is extended

by periodicity on IR−Q.

The Brjuno function is nowhere locally bounded; however, since it belongs

to BMO, see [23], it follows that it is locally in Lp for any p < ∞, and one

can consider its p-exponent at any point x0, and for all values of p < ∞. It is

related with the (Diophantine) irrationality exponent of x0.

Definition 12 Let x0 /∈ Q, and pn/qn the sequence of convergents of the con-

tinued fraction expansion of x0. Let τn(x0) be defined by∣∣∣∣x0 −
pn
qn

∣∣∣∣ =
1

q
τn(x0)
n

. (26)

The irrationality exponent of x0 is τ(x0) = lim supn→+∞ τn(x0).

If x0 is irrational, then |x0 − pn
qn
| < 1

q2
n

, so that τn(x0) > 2, and τ(x0) ≥ 2.

The following result is proved in [15].

Theorem 2 Let p ∈ [1,+∞). If x0 ∈ Q, then hpB(x0) = 0. Otherwise,

hpB(x0) = 1/τ(x0). Additionally, the Hölder exponent of the primitive of B is

given by hB(−1)(x0) = 1 + 1/τ(x0).

It follows that the fractional exponent of the Brjuno function is ∀(q, t) ∈
R+ × R+ − (0, 0), HB,x0(q, t) = 1

τ(x0) . This is an example where the fractional

exponent is not defined at (qB(0), 0) = (0, 0). Nonetheless, the “second gen-

eration” exponents are well defined as limits and satisfy: OB(x0) = LB(x0) =

CB(x0) = 0. Therefore B has a canonical singularity at every point.

An open problem concerns the fractional derivatives of B: For which values

of s and p does B(s) locally belong to Lp? And, when such is the case, what

is the corresponding p-exponent? A natural conjecture is that the fractional

exponent of B is constant where it is defined (i.e. also for negative values of t).

3.5 The Riemann function

According to the tradition, Riemann would have proposed the function

R(x) =

∞∑
1

1

n2
sin(πn2x)
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as an example of a continuous nowhere differentiable function. Unlike lacunary

series, the regularity of this function varies strongly from point to point. Let

x0 /∈ Q, pn/qn be its continued fraction expansion and

ρ(x0) = sup

{
τ :

∣∣∣∣x0 −
pm
qm

∣∣∣∣ ≤ 1

qρm

}
for infinitely values of m such that pm and qm are not both odd (note that

ρ(x0) usually differs from τ(x0) because of the additional parity constraint that

we impose here). The Hölder exponent of R is hR(x0) = 1
2 + 1

2ρ(x0) , see [8] and

at such points, the Hölder exponent is shifted by s under a fractional integral

of order s, if s ∈ (−1/2,+∞) (Corollary 2 of [8]). It follows that these points

are canonical singularities of R. At rational points explicit local expansions

yield that these rationals are balanced singularities [18]. It follows that the

Riemann function has no lacunary singularities.

It also follows from Corollary 2 of [8] that, if s < 1/2, then the Hölder

exponent of R(s) at a point x0 which is not of the form (2p + 1)/(2q + 1)

is 1
2 + 1

2ρ(x) − s; thus the domain where HR,x0 is constant includes [0,+∞) ×
(−1/2,+∞). The regularity of R(s) for s > 1/2 is much more difficult to handle

since R(s) is no more locally bounded. S. Seuret and A. Ubis proved that, at

these points, h2
R(s)(x) = 1

2 + 1
2ρ(x) − s, thus providing an additional extension

of the domain where HR,x0 is constant, see [27]. A natural conjecture is that it

takes the constant value 1
2 + 1

2ρ(x) at every couple (q, t) where it is defined.

3.6 Lacunary wavelet series

In this section, we revisit the model of lacunary wavelet series introduced in [9]

and extended to a p-exponents setting in [13], and we prove that such models

only display canonical or lacunary singularities.

We assume that ψ is a wavelet in the Schwartz class. Lacunary wavelet series

depend on a lacunarity parameter η ∈ (0, 1) and a regularity parameter

α ∈ R. The stochastic process Xα,η is of the form

∞∑
j=0

∑
k

2j
∈Kj

2−αjψj,k(x), (27)

where the Kj are random sets defined as follows:

∀l ∈ Z, Card(Kj) ∩ [l, l + 1) = [2ηj ]
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and the locations of the points in Kj are picked at random: In each interval

[l, l + 1) (l ∈ Z), all drawings of [2ηj ] among the 2j possibilities k
2j
∈ [l, l + 1)

have the same probability. Such a series is called a lacunary wavelet series

of parameters (α, η). The sample paths of Xα,η are locally bounded if and only

if α > 0. The case considered in [9] dealt with α > 0, and was restricted to the

computation of Hölder exponents. Considering p-exponents in [13] allowed to

extend the model to negative values of α, and also to see how the global sparsity

of the wavelet expansion is related with the pointwise lacunarity of the sample

paths. A sample path of this process is illustrated in Figure 3 (top row).

We first recall the global regularity of the sample paths [13]: a.s., ∀x0,

pXα,η(x0) = η − 1/α if α < 0 and pXα,η(x0) = +∞ if α > 0. Note that pXα,η(x0)

always exists and is positive, even if α takes arbitrarily large negative values. We

recover the fact that p-exponents allow to deal with singularities of arbitrarily

large negative order. Let now p ∈ (0, η − 1/α), so that the sample paths of

Xα,η belong to Lploc and the p-exponent of Xα,η is well-defined everywhere. The

following result is proved in [13].

Theorem 3 Let α ∈ R, η ∈ (0, 1) and let Xα,η be a lacunary wavelet series of

parameters (α, η); the p-spectrum of almost every sample path of Xα,η (i.e. the

multifractal spectrum associated to the p-exponent) is supported by the interval

[α,Hmax] where Hmax = (α+ 1/p)/η − 1/p, and, on this interval,

a.s. ∀p < pXα,η(x0), ∀H, dp(H) = η
H + 1/p

α+ 1/p
.

Furthermore, its lacunarity spectrum is given by

a.s. ∀L ∈ [0, 1/η − 1], dL(L) = η(L+ 1).

We recall how the pointwise regularity of Xα,η is determined. For each j, let

Ejω denote the subset of [0, 1] composed of intervals 3λ (λ ∈ Λj) inside which

the first nonvanishing wavelet coefficient is attained at a scale l ≤ [ωj]; let

Eω = lim supEjω and Hω =
⋂
ω′>ω

Eω′ −
⋃
ω′<ω

Eω′ .

It is shown in [13] that the sets Hω are the sets with a given p-exponent, and,

if x0 ∈ Hω, then hpXα,η(x0) = αω +
ω − 1

p
. (28)

Additionally, the Hausdorff dimension of Hω is ηω.
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Let us now consider the fractional integral X
(−t)
α,η ; it is of the form

∞∑
j=0

∑
k

2j
∈Kj

2−(α+t)jψ
(−t)
j,k (x); (29)

it is therefore another lacunary wavelet series, using the “pseudo-wavelet”ψ(−t).

Pointwise regularity results are the same as for orthonormal wavelet bases [2].

Thus, if x0 ∈ Hω, then ∀(q, t) ∈ R+ ×R+, HXα,η ,x0(q, t) = αω + (ω − 1)(q + t).

Thus, the cancellation exponent vanishes everywhere and Xα,η only dis-

plays canonical singularities (case ω = 1) and lacunary singularities.

4 Heuristic derivation of new multifractal

formalisms

4.1 Multiscale quantities for lacunarity and cancel-

lation exponents

We now derive new multiresolution quantities based on p-leaders and suitable for

the estimation and characterization of the second generation exponents that we

introduced. We build on arguments developed in [13,14] for the lacunarity and

oscillation exponents. In this section, let us denote with dpλ,f the p-leaders of f .

Note that these exponents can also be defined for functions that do not belong

to L1, but to an Hp space for p < 1; indeed Definitions 8 and 9 immediately

extend without modification to this setting (which we assume from now on).

Lacunarity exponent. We use the same method as in finite difference

schemes for the numerical resolution of PDEs. Using (22) and a discrete ap-

proximation for the derivative in (11) we approximate ∂
∂q (Hf,x0(q, 0))q=qf (x0)+

by
(
h

1/(qf (x0)+∆q
f (x0)− h1/qf (x0)

f (x0)
)
/∆q, where ∆q is a fixed (small enough)

quantity. Using the properties of the p-leader defined by (21),

h
1/(qf (x0)+∆q
f (x0)− h1/qf (x0)

f (x0)

∆q
= lim inf

j→∞

1

j∆q
log2

d1/(qf (x0)+∆q)

λ(x0),f

d
1/(qf (x0))

λ(x0),f

 .

Thus, we define the numerical L-leaders dLλ as

dLλ =

d1/(qf (x0)+∆q)

λ(x0),f

d
1/(qf (x0))

λ(x0),f

 1
∆q

. (30)
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We expect dLλ to be of the order of magnitude of 2−jLf (x0) (when j → +∞).

Oscillation exponent. Again using (22) and a discretization of the deriva-

tive in (5), we pick ∆t small enough, and approximate
(
∂
∂th

1/qf (x0)

f (−t) (x0)
)
t=0+
−1

by
h

1/qf (x0)

f(−∆t)
(x0)−h

1/qf (x0)

f (x0)

∆t − 1. We have

h
1/qf (x0)

f (−∆t) (x0)− h1/qf (x0)
f (x0)

∆t
− 1 = lim inf

j→∞

1

j∆t
log2

2−j
d

1/qf (x0)

λ(x0),f (−∆t)

d
1/qf (x0)

λ(x0),f

 .

Thus, we define the O-leaders dOλ as

dOλ =

d1/qf (x0)

λ(x0),f (−∆t)

d
1/qf (x0)

λ(x0),f


1

∆t

, (31)

and we expect dOλ to be of the order of magnitude of 2−jOf (x0) (when j → +∞).

Cancellation exponent. Using (22) and a discrete approximation for the

derivative in (16) yields

h
1/(qf (x0)−∆t)

f (−∆t) (x0)− h1/qf (x0)
f (x0)

∆t
− 1 = lim inf

j→∞

1

j∆t
log2

2−j
d

1/(qf (x0)−∆t

λ(x0),f (−∆t)

d
1/qf (x0)

λ(x0),f


Then, we define the C-leaders dCλ as

dCλ =

d1/(qf (x0)−∆t)

λ(x0),f (−∆t)

d
1/qf (x0)

λ(x0),f


1

∆t

(32)

We expect that dCλ ∼ 2−jCf (x0) (when j → +∞).

Thus, the rates of decay of the quantities dLλ , dOλ and dCλ are controlled by

the lacunarity, oscillation and cancellation exponents. Moreover, (30), (31) and

(32) indicate that dLλ , dOλ and dCλ fulfill the basic requirement for a multifractal

analysis ( [11], see Section 4.2).

4.2 Multifractal formalism formulas

We consider the general setting where a signal is characterized by several point-

wise exponents hm(x0) for m = 1, · · ·M , which can be for instance a p-exponent,

a lacunarity exponent, a cancellation exponent, ... and we additionally assume
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that we dispose of multiresolution quantities dmλ associated with each of these

quantities and such that a log-log plot regression property such as (22) holds

for each of them. The Grand-canonical spectrum associated with these

quantities is the function d(H1, · · · , HM ) defined as the Hausdorff dimension

of the set of points x such that h1(x) = H1, · · · , hM (x) = HM . The structure

function associated to the whole vector of these multiresolution quantities is:

∀r = (r1, · · · rM ) ∈ RM , S(r, j) = 2−j
∑
λ∈Λj

M∏
m=1

(dmλ )rm ∼ 2−jζ(r); (33)

the function ζ thus defined is called the scaling function. In practice, scaling

functions are determined through log-log plot regressions (one estimates the

slope of the log2 of the structure function as a function of j), see Figs. 3 and 7.

The derivation of an upper bound for the spectrum from the scaling function

is referred to as the multifractal formalism; it was initially proposed in the semi-

nal work of G. Parisi and U. Frisch [26]), reformulated using the wavelet maxima

method in [25], and then reinterpreted in the wavelet leader setting in [11], and

later extended to several exponents in [14]. It is based on a (multidimensional)

Legendre transform of the scaling function, according to :

d(H) ≤ inf
r∈RM

(1− ζ(r) + r ·H). (34)

The multifractal formalism conjecture is that (34) is actually an equality, which

is used to derive the spectrum d(H) numerically.

Results on lacunary series are shown. Theorem 3 is illustrated numerically in

Figure 3. Numerical estimations were performed using the multifractal formal-

ism described just above. The left column shows the logscale diagrams for order

r = 2 and all four exponents. The scaling behavior at coarse scales (j < 13)

is remarkable, and allows for an efficient computation of the estimates through

linear regressions. Further, Figure 3 (right column) shows that estimations of dp

and dL (second and third row, respectively), are in good agreement with those

predicted by Theorem 3. Moreover, Figure 3 also shows that dC (fifth row)

collapses at the point (0, 1), as expected for a process that has no cancellating

singularities and, thus, dO (fourth row) is remarkably similar to dL.
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the regression lines.

1

Figure 3: Lacunary wavelet series. A typical sample path of a lacunary wavelet

series (α = 0.3, η = 0.7, top row), estimated structure functions (left column), and

estimated spectra (right column), for the p, oscillation, lacunarity and cancellation

exponents (from second to fifth rows, respectively). The dashed lines with crosses

indicate the theoretical spectra. The dash-dotted lines indicate the regression lines.
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5 Functions with prescribed exponents at

a point

We introduce new examples of pointwise singularities for the following purposes:

• In contradistinction with the previous examples, both their lacunarity and

cancellation exponents will be allowed to take arbitrary values.

• They will be the building blocks that will allow to construct examples

showing the optimality of Theorem 1.

5.1 Thin chirps

Since the definition that we use of Hp spaces is based on wavelet coefficients,

it is easier to work with examples that are defined directly by their wavelet

coefficients on a smooth wavelet basis. The thin chirp Ta,b,α is defined by its

wavelet coefficients as follows (we assume that the wavelet ψ belongs to S(R)).

Definition 13 Let a, b ∈ (0, 1) satisfying 0 < b < 1 − a, and let α ∈ R.

At a given scale j, all wavelet coefficients of Ta,b,α vanish, except for k ∈
[2(1−a)j , 2(1−a)j + 2bj ], in which case cj,k = 2−αj .

Proposition 5.1 The thin chirp Ta,b,α is bounded if and only if α ≥ 0. If

α < 0, its critical Lebesgue index at x0 = 0 is given by pTa,b,α(0) = (1− b)/−α.
Furthermore, at x0 = 0, BTa,b,α, 0(q) = −α− q(1− b) and

HTa,b,α,0(q, t) =
1− a− b

a
q +

α

a
+

1− a
a

t, (35)

so that: LTa,b,α(0) = 1−a−b
a , CTa,b,α(0) = b

a , and OTa,b,α(0) = 1−a
a .

Proof of Proposition 5.1: If α 6= 0, the first result follows directly from

the wavelet characterization of the Cα(R) spaces. If α = 0, then we note that,

for a given j, each block
∑

k cj,kψj,k is bounded by a constant independent of

j. If the wavelets are compactly supported, then the result follows because, for

a given x, the number of blocks that do not vanish at x is finite, and bounded

by a constant which depends only on a and b. The result also holds if wavelets

have fast decay, using the corresponding decay estimates.

We denote by T ja,b,α the wavelet series of Ta,b,α restricted to the scale j. Then∫
|T ja,b,α(x)|pdx ∼ 2bj2−αpj2−j , (36)
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and it follows that Ta,b,α belongs to Lp if and only if b− αp− 1 < 0; the value

of the critical Lebesgue index follows.

In order to determine the p-boundary of Ta,b,α, we use the fact that a

fractional integral of order t amounts to replacing the wavelet coefficients 2−αj

by 2−(α+t)j , and to replacing the orthonormal wavelet basis by a bi-orthogonal

wavelet basis, for which the same characterizations hold, see [2]. Therefore, the

previous result implies that the condition for T (−t)
a,b,α to belong to Lp is b− (α+

t)p− 1 < 0; and the value of p-boundary follows.

Finally, it follows from (36) that the integral of |T (−t)
a,b,α |

p on a ball of radius

r ∼ 2−aj is of the order of magnitude of 2bj2−(α+t)pj2−j , so that the p-exponent

h of T (−t)
a,b,α satisfies a+ b(α+ t)− 1 = −ahp and (35) follows. The values of the

other exponents follow immediately.

The numerical estimation of the pointwise exponents of a thin chirp is illus-

trated in Figure 4. The top row shows the sample path of the function. The

second and third rows display the decay with the scales of the multiresolution

quantities corresponding to each exponent, as defined in Section 4.1. They all

show an excellent scaling behavior at coarse scales (j < 13) that enables an

accurate estimation of the exponent by means of linear regressions.

5.2 Functions with prescribed exponents

We now turn to the last statement of Theorem 1, i.e. the conditions enumerated

in this theorem characterize the functions H that are fractional exponents at

x0 of a tempered distribution f . We now describe a first method to generate

functions with a general fractional exponent at 0. Denote by Cj(a,b,α) the mapping

which associates to (j, (a, b, α)) the sequence (cj,k)k∈Z defined by Definition 13.

To a given sequence (an, bn, αn) we will associate a whole collection of wavelet

coefficients such that, for each n, the Cj(an,bn,αn) show up for an infinite number of

values of j. This can be obtained by the classical diagonal procedure as follows:

Recall that each j ≥ 1 can be written in a unique way as j = 2m(2n− 1) for an

m ≥ 0 and n ≥ 1. We pick the coefficients (cj,k)k∈Z such that

for j = 2m(2n− 1), (cj,k)k∈Z = Cj(an,bn,αn).

The collection of wavelet coefficients thus constructed yields a function f such

that the fractional exponent of its the p-boundary is

Bf, 0(q) = sup
n

(−αn − q(1− bn)) ,
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row, left), oscillation exponnet (middle row, right), lacunarity exponent (bottom
row, left) and cancellation exponent (bottom row, right).

1

Figure 4: Thin chirp. Graph (top row), and estimation of p-exponent (middle row,

left), oscillation exponent (middle row, right), lacunarity exponent (bottom row, left)

and cancellation exponent (bottom row, right).

and which, on its domain of definition, is given by

Hf,0 = inf
n

(
1− an − bn

an
q +

αn
an

+ t
1− an
an

)
.

Picking for (an, bn, αn) a sequence that satisfies the conditions of Definition

13 yields a rather general construction, but does not allow to reach the level

of generality stated in Theorem 1. Indeed, all the fractional exponents of the

Ta,b,α take the minimal possible value −q − t at the boundary of its domain of

definition, so that this construction also yields a fractional exponent satisfying

the same restriction. In order to perform a more general construction, we now

introduce new examples, which are a degenerate case of thin chirp.

Degenerate thin chirps. In the above construction of thin chirps sup-

plied by Definition 13, we fix b ∈ (0, 1), and α ∈ R, but the parameter a now de-

pends on the scale j and tends slowly to 0; we can pick for instance the sequence

a(j) = 1/ log j. We thus obtain a degenerate thin chirp Db,α: At a given scale

j, all wavelet coefficients ofDb,α vanish, except for k ∈ [2(1−a(j))j , 2(1−a(j))j+2bj ],
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in which case cj,k = 2−αj . The proof of the following proposition is similar to

the one of Proposition 5.1.

Proposition 5.2 The degenerate thin chirp Db,α is bounded if and only if α ≥
0. If α < 0, then pDb,α(0) = (b− 1)/α. The p-boundary of Db,α at the origin is

BDb,α, 0(q) = −α − q(1 − b), and, if t > −α − q(1 − b), the fractional exponent

of Db,α at the origin is HDb,α,0(q, t) = +∞.

We now come back to the proof of the last statement of Theorem 1. First,

using the diagonal trick already mentioned, we can alternate at different scales

the wavelet coefficients of degenerate thin chirps, thus obtaining a new pointwise

singularity, the p-exponent of which will have any arbitrary convex p-boundary

(provided that it satisfies the conditions of Proposition 3.3), and the value taken

by the p-exponent inside the domain of definition being +∞.

LetH be a function defined on a convex subset of R+×R of the form t > B(q)

with B convex and satisfying ∀q ≥ 0, B′(q) ≤ −1; and assume furthermore that

H satisfies the four conditions of Theorem 1. First, we construct a degenerate

thin chirp D whose p-boundary is the function B; we will actually use a slight

modification, namely, the function whose wavelet coefficients dj,k are defined

by dj,k = cj,−k (where the cj,k are the wavelet coefficients of the thin chirp); of

course this modification does not modify the pointwise properties of D. Next,

since the function H satisfies H(q, t) ≥ −q−t, we extend it outside of its domain

of definition into a function which still satisfies the three first conditions of

Theorem 1, but which will be defined on a larger domain, where, at its boundary,

H(q, t) = −q − t. Because of this condition, we know that there exists a thin

chirp T the p-exponent of which is precisely this extended function H(q, t). It

suffices now to consider the function which has the wavelet coefficients of D for

k < 0 and those of T for k > 0: The domain of definition of its p-exponent at

0 is the intersection of the domains of D and T . Since D has the smallest one,

its p-boundary therefore is the function B; and, inside its domain of definition,

the value taken by the p-exponent is the infimum of the p-exponents of D and

T ; but since the one taken by T is +∞, it follows that it is exactly the function

H; and the last statement of Theorem 1 follows.

Remark: A way to construct examples for which (17) fails is to derive

them from the construction of functions with prescribed exponents. It suffices

to notice that a function of two variables can satisfy the conditions enumerated

in Theorem 1 and, nonetheless, its partial derivatives at a “corner-point” where

the exponents are computed do not satisfy (17).
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6 Examples of multifractality for the can-

cellation exponent

In this section we will study new multifractal functions whose regularity and

cancellation exponents change from point to point.

6.1 Definition of the model

We define a family of functions f on [0, 1] as a modification of a model in [7].

The functions in this family depend on three parameters η, β and γ, with β ≥ 1

integer, 0 ≤ b ≤ β − 1, η = b/β and γ ∈ IR a non integer. We set

f(x) =
∑

λ∈Λ(β)

2−γjψλ(x). (37)

In (37), Λ(β) =
⋃
m≥1 Λ

(β)
m , where Λ

(β)
m is the set of λ = (j, k) such that j = βm,

m > 1, 2−jk = K
2m + n

2j
, K odd, n ≤ 2ηj .

We denote by cλ the wavelet coefficients of f . Each m > 1 generates 2ηj2m−1

non vanishing coefficients identified by the dyadics K
2m + n

2j
, K odd, n ≤ 2ηj ,

and their scale βm. Their values are all equal to 2−γβm.

If β = 1, then the cj,k 6= 0 appear on dyadics which are irreducible at scale

j − 1. If β > 1, then the fraction of type K/2m is no more irreducible at scale

j = βm. The coefficient will appear at a finer scale than scale m. Figure 5 gives

an insight of this situation for β = 3 and η = 0, whereas the case β = 3 and

η = 1/β is presented in Figure 6 .
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Figure 5: Case β = 3 and η = 0. The two non vanishing wavelet coefficients • appear

on dyadic points k
2j

= K
2m

and k
2j

= K
2m

+ 1
2j

with K odd and j = βm.
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Figure 6: Case β = 3 and η = 1/β. For j = βm exactly 2m−1(2m + 1) non vanishing

wavelet coefficients • appear on dyadic points k
2j

= K
2m

+ n
2j

with K odd and 0 ≤ n ≤
2m.

The wavelet characterization of Cγ(IR) implies that f ∈ Cγ(IR) (for any

γ ∈ R − Q). If γ < 0, we now derive pf (x0) from the local scaling function; it

is clearly independent of x0 and given by

ηf (p) = lim inf
m→+∞

log
(
2−βm(2ηβm + 1)2m−12−pγβm

)
log(2−βm)

= pγ − 1

β
− η + 1 (38)

and Proposition 3.3 implies that pf (x0) = 1
γ

(
η − 1 + 1

β

)
.

A similar computation for fractional integrals and derivatives yields that the

fractional exponent domain at any point isDf,x0 =
{

(q, t) : > γ − q
(
η − 1 + 1

β

)}
.

We will suppose in the following that (q, t) ∈ Df,x0 .

6.2 Regularity exponents of f

Recall that the rate of approximation by dyadics of a real number x0 ∈ [0, 1] is

r(x0) = lim sup
j→∞

log(|Kj(x0)2−j − x0|)
log(2−j)

, (39)

with Kj(x0) = argmink∈{0,..2j−1}(|x0 − k2−j |). Clearly, r(x0) ≥ 1.

Theorem 4 Suppose x0 ∈ [0, 1], and let η, β and γ such that β ≥ 1 integer,

0 ≤ b ≤ β − 1, η = b
β and γ ∈ IR

1. If r(x0) ≤ (1− η)β, then Hf,x0(q, t)) = (γ+t)β
r(x0) − t+ q

(
β(1−η)
r(x0) − 1

)
so that

Of (x0) = β
r(x0) − 1, Lf (x0) = β(1−η)

r(x0) − 1, and Cf (x0) = βη
r(x0) .
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2. If (1− η)β < r(x0) ≤ β, then Hf,x0(q, t)) = (γ+t)β
r(x0) − t so that

Of (x0) = β
r(x0) − 1, Lf (x0) = 0, and Cf (x0) = β

r(x0) − 1.

3. If r(x0) > β, then Hf,x0(q, t)) = (γ + t)β − t + q((1 − η)β − 1) so that

Of (x0) = β − 1, Lf (x0) = β(1− η)− 1 and Cf (x0) = ηβ.

Corollary 6.1 If γ > 0, then:

• the Hölder spectrum of f is defined on [γ, γβ], where df (h) = h/βγ.

• The p-spectrum is defined on [γ, βγ + q(β(1− η)− 1)] where

– If γ ≤ u ≤ γ/(1− η), then df,p(u) = u
βγ .

– If γ/(1− η) ≤ u ≤ γβ + q(β(1− η)− 1), then df,p(u) = u+q
γβ+q(β(1−η)) .

If γ < 0 the p spectrum is the function df,p defined on the interval

[ γ
1−η , βγ + q(β(1− η)− 1)] where df,p(u) = u+q

γβ+qβ(1−η) .

Remark: One may wonder why the two p-spectra in case γ > 0 and γ < 0

are different even if the computation of the p exponent is the same. This is

because, if γ < 0, then −1
p < γ

1−η < γ < βγ + β(1−η)−1
p . Thus the cases

(1− η)β < r(x0) yield the same range γ
1−η ≤ h

p
f (x0) ≤ βγ + β(1−η)−1

p for the p-

exponents as in case r(x0) ≤ (1− η)β. The true dimension is thus derived from

the formula 1
r(x0) =

hpf (x0)+ 1
p

γβ+
(1−η)β

p

which corresponds to the case r(x0) ≤ (1− η)β.

As above we can define the s-wavelet leader for s > 0 by

dsj(x0) = sup
λ′⊂3λj(x0)

|2−sj′cλ′ |, (s− leader). (40)

The following characterization holds [1].

Proposition 6.2 Let f be in Cε(IR) for ε > 0. Then hf (−s)(x0) = lim inf
j→∞

ln(dsj(x0))

ln(2−j)

and Of (x0) = ∂
∂s

(
hf (−s)(x0)

)
t=0+

− 1.

Corollary 6.3 • The Oscillation spectrum of f is the function dof defined

on the interval [0, β − 1] such that dof (s) = s+ 1/β.

• The Lacunarity spectrum of f is the function dlf defined on the interval

[0, (1− η)β − 1] such that dlf (s) = s+ 1/β(1− η).

• The Cancellation spectrum of f is the function dcf defined on the interval

[0, βη] such that

– if 0 ≤ s ≤ η/(1− η) then dcf (s) = s+ 1/β,
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– if η/(1− η) ≤ s ≤ ηβ then dcf (s) = s/βη.

Corollaries 6.1 and 6.3 are illustrated numerically in Figure 7. Numerical

estimations were performed using the multifractal formalism described in Sec-

tion 4.2. The left column shows the logscale diagrams for order r = 2 and all

four exponents. The scaling behavior at coarse scales (j < 10) is remarkable,

and allows for an efficient computation of the estimates through linear regres-

sions. Note that the oscillations on the structure functions for SO and for SL

are due to the choice β = 2, which implies that one every two scales have no

nonvanishing wavelet coefficients. Further, Figure 7 (right column) shows that

estimations of all multifractal spectra are in remarkable agreement with those

predicted by theory. Note that the estimate for dC is expected to yield only

the concave hull of the true non-concave spectrum since it is computed from a

Legendre-transform-based multifractal formalism [11].

6.3 Pointwise regularity of f

We now prove Theorem 4. We will need the following quantities:

Dλ,p =

(∑
λ′⊂λ
|cλ′ |p2−(j′−j)

)1/p

, and Dλ = sup
λ′⊂λ
|cλ′ |, (41)

Note that the sum in the definition of dpλ is taken as in Dλ,p except that it

is extended to the two nearest neighboors. We start by computing the wavelet-

leaders and p-leaders at a point x0. From this information we will be able to

compute the Hölder exponent if γ > 0 and p-exponents in all cases with the

restriction that p < p0 if γ < 0. We will not recall these restrictions which will

be implicit in all computations.

6.3.1 Wavelet and p leaders

Let λ be a dyadic interval indexed by (j, k). Let m0,m1 be integers such that

β(m0− 1) ≤ j < βm0 and (1− η)β(m1− 1) ≤ j < (1− η)βm1. Since 0 ≤ η < 1

we have always m1 ≥ m0. We have the following cases:

Case 1: k
2j

= K
2m with m ≥ m1. Thus m ≥ m0 and the coefficients

associated with the irreducible fraction K
2m appear at scale βm ≥ βm0 ≥ j.

These coefficients will be the first non vanishing coefficients and we have the

2ηβm + 1 of them inside the dyadic cube
[
K
2m ,

K
2m + 1

2j

]
since 2ηβm

2βm
≤ 2−j .
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Figure 1: Multifractal function. A typical sample path of the multifractal
function in eq. XX ( top row), estimated structure functions (left column), and
estimated spectra (right column), for the p, oscillation, lacunarity and cancel-
lation exponents (from second to fifth rows, respectively). The dashed lines
with crosses indicate the theoretical spectra. The dash-dotted lines indicate the
regression lines.

1

Figure 7: Multifractal function. Graph of f given by (37) ( top row), structure

functions (left column), and estimated spectra (right column), for hp, O, L and C
(from second to fifth rows, respectively). The dashed lines with crosses indicate the

theoretical spectra.

The first irreducible fraction at scale j′ > m is k
2j

+ 1
2j+1 . Since η < β−1

β we

have 2ηβ(j+1)

2β(j+1) ≤ 2−(j+1) and thus we have the all 2ηβ(j+1) + 1 of them inside the

cube
[
K
2m ,

K
2m + 1

2j

]
. At each scale j′ ≥ j+1 we will have 2j

′−j−1 such irreducible
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fractions which will give coefficients at scale βj′. Thus: Dλ = sup
λ′⊂λ
|c′λ| = 2−γβm,

and the p-leader satisfies

2ηβm2−pγβm2−βm+j ≤ Dp
λ,p ≤

≤ (2ηβm + 1)2−pγβm2−βm+j +
∑

j′≥j+1

2j
′−j−1(2ηβj

′
+ 1)2−pγβj

′
2−βj

′+j

and C2(ηβ−pγβ−β)m2j ≤ Dp
λ,p ≤ C”2(ηβ−pγβ−β)m2j .

indeed
∑

j′≥j+1

2(1+ηβ−pγβ−β)j′ < +∞ since ηf (p) > 0 (see (38)). Remark also

that since m < j we have 2(ηβ−pγβ−β)m2j > 2(1+ηβ−pγβ−β)j .

Case 2: k
2j

= K
2m with m1 ≥ m ≥ m0. This means that 2ηβm

2βm
≥ 2−j

since m ≤ m1. Since m ≥ m0 the coefficients associated with the irreducible

fraction K
2m appear at scale βm ≥ βm0 ≥ j. These coefficients will be the first

non vanishing coefficients in the dyadic cube λ and we have 1+2−j+βm of them.

Again the coarsest scale j′ > m such that an irreducible fraction appears in the

dyadic cube
[
K
2m ,

K
2m + 1

2j

]
is j + 1. Following the same proof than in Case 1

we will have at each scale j′ ≥ j + 1 2j
′−j−1 such irreducible fractions, which

will give 2ηβj
′
+ 1 wavelet coefficients in the dyadic cube

[
K
2m ,

K
2m + 1

2j

]
. Thus,

the leader has the same value than in Case 1 Dλ = sup
λ′⊂λ
|c′λ| = 2−γβm and the

p-leader satisfies

2−j+βm2−pγβm2−βm+j ≤ Dp
λ,p

≤ 2−j+βm2−pγβm(2−βm+j + 1) +
∑

j′≥j+1

2j
′−j−1(2ηβj

′
+ 1)2−pγβj

′
2−βj

′+j

and C2−pγβm ≤ Dp
λ,p ≤ C

′2−pγβm + C2(1+ηβ−pγβ−β)j ≤ C”2−pγβm.

Case 3: k
2j

= K
2m and m < m0. The coefficients associated to this fraction

already appeared at the scale βm < j.

The first ones to be seen inside the cube
[
K
2m ,

K
2m + 1

2j

]
are the ones re-

lated to the irreducible fraction
[
k
2j

+ 1
2j+1 ,

k
2j

+ 1
2j

]
. Since η ≤ β−1

β we have

2ηβ(j+1) such coefficients inside the cube
[
k
2j

+ 1
2j+1 ,

k
2j

+ 1
2j

]
, thus inside the

cube
[
K
2m ,

K
2m + 1

2j

]
, the leader is Dλ = sup

λ′⊂λ
|c′λ| = 2−γβ(j+1), and, using similar

upper and lower bounds as previously, Dλ,p is estimated by

C2(ηβ−pγβ−β)j2j ≤ Dp
λ,p ≤ C

′2(ηβ−pγβ−β)j2j .
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Computation of the local regularity of f Let x0 ∈ IR, p > 0 or p < p0

in case γ < 0. Let δ > 0; there exists mn → +∞ such that

|Kmn(x0)2−mn − x0| ≤ 2−mn(r(x0)−δ). (42)

Let jn = [mn(r(x0)− δ)], kn be such that λjn(x0) = (jn, kn) = λn, and let m
(n)
0

be defined by

β(m
(n)
0 − 1) ≤ jn < βm

(n)
0 i.e. β(m

(n)
0 − 1) ≤ mn(r(x0)− δ) < βm

(n)
0 . (43)

Let m
(n)
1 be defined by (1− η)β(m

(n)
1 − 1) ≤ jn < (1− η)βm

(n)
1 , i.e.

(1− η)β(m
(n)
1 − 1) ≤ mn(r(x0)− δ) < (1− η)βm

(n)
1 . (44)

Let λln = (jn, kn−1), and λrn = (jn, kn+1); then dλn(x0) = sup{Dλln
, Dλrn , Dλn}.

On other hand for ε > 0 one can find M such that for m ≥M

|Km(x0)2−m − x0| > 2−m(r(x0)+ε) (45)

Let us consider 3λj(x0) = [(kj − 1)2−j , (kj + 2)2−j [. Let m be the smallest

integer such that Km
2m belongs to 3λj(x0). It is always possible to choose j large

enough such that m ≥M . Thus
∣∣Km

2m − x0

∣∣ > 2−m(r(x0)+ε).

SinceKm2−m ∈ 3λj(x0), 3
2j+1 > 2−m(r(x0)+ε) so that ln(3)

ln(2)−1+m(r(x0)+ε) >

j. Thus j ≤ m(r(x0) + ε). Let m0 be β(m0 − 1) ≤ j < βm0, and m1 such that

(1− η)β(m1 − 1) ≤ j < (1− η)βm1.

We consider the following cases:

Case 1: r(x0) ≤ (1−η)β. Choose δ > 0, and consider the sequences (mn)n

,(m
(n)
0 )n, and (m

(n)
1 )n. Since (1−η)β(m

(n)
1 −1) < (1−η)βm(n) by (44) this yields

mn ≥ mn
1 . This falls into Case 1 and by (42) we know that Kmn

2mn ∈ 3λjn(x0)

thus dλjn ≥ 2−γβmn . Thus if γ > 0, then

hf (x0) = lim inf
j→+∞

log dλj (x0)

log(2−j)
≤ lim inf

jn→+∞

log dλjn (x0)

log(2−jn)
≤ γβmn

(r(x0)− δ)mn
(46)

We need to separate two cases.

1. Suppose r(x0) < (1−η)β. Then choose ε > 0 such that r(x0)+ε < (1−η)β.

Thus we have (1− η)β(m1 − 1) ≤ m(r(x0) + ε) < (1− η)βm. This yields

m ≥ m1 and we fall again in Case 1. We have dλ ≤ 2−γβm Thus we get

hf (x0) = γβ
r(x0) . Following the same proof we obtain

hpf (x0) =
γβ

r(x0)
+

1

p

(
β(1− η)

r(x0)
− 1

)
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2. Suppose r(x0) = (1 − η)β. Then we may have m ≤ m1 but anyway we

have dλ ≤ 2−γβm. Thus we get

log(dλ)

log(2−j)
≥ γβm

j
≥ γβm

((1− η)β + ε)m
≥ γβ

(1− η)β + ε

Together with (46) this yields hf (x0) = γβ/(1− η)β = γβ/r(x0).

Similar computations as above yield hpf (x0) = γβ/r(x0).

Case 2: (1−η)β < r(x0) ≤ β. By (43) and (44) together with the fact that

(1−η)β < r(x0)− δ ≤ β we have m
(n)
0 ≤ mn ≤ m(n)

1 . This falls into Case 2 and

yields dλjn ≥ 2−γβmn . Thus, as above, we conclude that hf (x0) ≤ γβ/r(x0),

and the p-exponent satisfies hpf (x0) ≤ γβ/r(x0).

For the lower-bound we need to distinguish two cases:

1. Suppose (1 − η)β < r(x0) < β. Thus take ε > 0 such that (1 − η)β <

r(x0) + ε < β. This yields m0 ≤ m ≤ m1. Again we have to refer to Case

2 and we have dλ ≤ 2−γβm. This yields hf (x0) = γβ/r(x0). The same

technic yields hpf (x0) = γβ/r(x0).

2. Suppose that r(x0) = β. We have r(x0) + ε > β. We have m ≤ m0 but

we have dλ ≤ 2−γβm; and again we use

log(dλ)

log(2−j)
≥ γβm

j
≥ γβm

(β + ε)m
≥ γβ

β + ε
.

Together with (46) this yields hf (x0) = γ = γβ/r(x0).

Remark that we always have 2−γpβm ≥ 2(ηβ−pγβ−β+1)j . Thus (even if

m ≤ m0) we have dpλ(x0) ≤ 2−γβm, so that hpf (x0) = γ.

Case 3: β < r(x0). Let δ > 0 be such that β < r(x0)−δ; (43) yields mn ≤ m(n)
0 .

This falls into Case 3; thus dλn ≥ 2−γβ(jn+1), so that hf (x0) ≤ γβ.

We have also in the same way hpf (x0) ≤ 1
p ((1− η)β − 1) + γβ.

The same lower bounds as in the previous cases yield hf (x0) = γβ and

hpf (x0) = 1
p ((1− η)β − 1) + γβ.

The computation of the dimensions of the set Eh and Epu is standart using

the fact that the dimensions of the sets {x0 : r(x0) = α} is 1/α for α ≥ 1.

6.3.2 Oscillating singularities

Let s > 0. Remark that computing hf (−s)(x0) and hf (x0) is similar. Indeed

f (−s) =
∑

λ∈Λ(α,β)

csλψ
s
λ(x) where ψs is the fractional integrate of ψ, and csλ =
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2−j(γ+s) if λ ∈ Λ(β) and 0 otherwise. One concludes by using again the“pseudo-

wavelet” argument already mentioned.

The location of the non vanishing coefficients is the same in f (−s) and f .

Their amplitude at scale j is respectively 2−j(γ+s) and 2−jγ . Thus we can

estimate the wavelet-leaders or p-leaders of f (−s) with the same formula which

yield the wavelet leaders or p-leaders of f taking γ + s instead of γ. Thus the

fractional exponent follows and this yields

1. If r(x0) ≤ (1− η)β, then Hf,x0(q, t)) = (γ+t)β
r(x0) − t+ q

(
β(1−η)
r(x0) − 1

)
2. If (1− η)β < r(x0) ≤ β, then Hf,x0(q, t)) = (γ+t)β

r(x0) − t

3. If r(x0) > β, then Hf,x0(q, t)) = (γ + t)β − t+ q((1− η)β − 1)

If r(x0) ≤ β, then Of (x0) = β
r(x0)−1, and if r(x0) > β, then Of (x0) = β−1.

6.3.3 Lacunarity exponents

A straightforward computation yields:

1. If r(x0) ≤ (1− η)β, then Lf (x0) = β(1−η)
r(x0) − 1

2. if (1− η)β < r(x0) ≤ β, then Lf (x0) = 0.

3. if r(x0) > β, then Lf (x0) = (1− η)β − 1.

7 Annex

We will prove the following result.

Theorem 5 Let p > 0 and 0 ≤ t ≤ 1
p with 1

p −
1
q = t. Suppose f ∈ Tαp . Then

f (−t) belongs to Tα+t
q .

Proof: By hypothesis f satisfies

∑
λ′⊂3λj(x0)

|cλ′ |p2−j
′ ≤ C2−j(αp+1) (47)

We will use the following inequalities whose proof we leave to the reader.

Lemma 7.1 Let I a set of countable indices and q > 0. We have

∑
l∈Z

(2lq − 2(l−1)q)](k : |ak| ≥ 2l) ≤
∑
k∈I
|ak|q ≤

∑
l∈Z

(2(l+1)q − 2lq)]({k : |ak| ≥ 2l})
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A fractional integration of order t amounts to a change of wavelet basis and

a multiplication of the coefficients cj,k by 2−jt. We want to compute

D
(t),q
λ =

 ∑
λ′⊂3λj(x0)

|cλ′ |q2−j
′tq2−j

′

1/q

and prove that D
(t),q
λ ≤ C2

−j(α+t+ 1
q

)
= C2

−j(α+ 1
p

)

Following Lemma 7.1, since 1
p = 1

q + t,

(D
(t),q
λ )q ≤

∑
l∈Z

(2(l+1)q − 2lq)]({λ′ ⊂ 3Λj(x0) : |cλ′ |2−j
′t2
− j
′
q ≥ 2l})

≤
∑
l∈Z

(2(l+1)q − 2lq)]({λ′ ⊂ 3Λj(x0) : |cλ′ |2−
j′
p ≥ 2l})

Remark that by (47) we have |cλ′ |2−
j′
p ≤ C2

−j(α+ 1
p

)
. Thus if 2l ≤ |cλ′ |2−

j′
p

we have 2l ≤ C2
−j(α+ 1

p
)
, which yields l ≤ −j(α + 1

p) + J0 ≤ l1 with J0 ∈ Z a

constant independant of j and j′. Following (47) we have∑
λ′⊂3λj(x0)

|cλ′ |p2−j
′ ≤ C2−j(αp+1), so that

∞∑
l=−∞

(2lp − 2(l−1)p)]({λ′ ⊂ 3Λj(x0) : |cλ′ |2−
j′
p ≥ 2l}) ≤ C2−j(αp+1).

Thus for all l ∈ Z,

(1− 2−p)2lp]({λ′ ⊂ 3Λj(x0) : |cλ′ |2−
j′
p ≥ 2l}) ≤ C2−j(αp+1)

]({λ′ ⊂ 3Λj(x0) : |cλ′ |2−
j′
p ≥ 2l}) ≤ C

1− 2−p
2−lp2−j(αp+1).

Since q − p > 0, this yields,

(D
(t),q
λ )q ≤

l1∑
l=−∞

(2(l+1)q − 2lq)]({λ′ ⊂ 3Λj(x0) : |cλ′ |2−
j′
p ≥ 2l})

≤ C(2q − 1)

1− 2−p

l1∑
l=−∞

2lq−lp2−j(αp+1) ≤ C ′2−j(αp+1)2
−j(q−p)(α+ 1

p
)

≤ C ′2
−j(αp+1+αq−pα−1+ q

p
)

= C ′2
−j(αq+ q

p
)
,

which yields the result.
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