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Multifractal analysis, that quantifies the fluctuations
of regularities in time series or textures, has become
a standard signal/image processing tool. It has been
successfully used in a large variety of applicative
contexts. Yet, successes are confined to the analysis
of one signal or image at a time (univariate analysis).
This is because multivariate (or joint) multifractal
analysis remains so far rarely used in practice and
has barely been studied theoretically: In view of the
myriad of modern real-world applications that rely
on the joint (multivariate) analysis of collections of
signals or images, univariate analysis constitutes a
major limitation. The goal of the present work is to
theoretically ground multivariate multifractal analysis
by studying the properties and limitations of the most
natural extension of the univariate formalism to a
multivariate formulation. It is notably shown that
while performing well for a class of model processes,
this natural extension is not valid in general. Based
on the theoretical study of the mechanisms leading
to failure, we propose alternative formulations and
examine their mathematical properties.
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1. Introduction
• Context: Multifractal Analysis. Multifractal analysis consists in analyzing functions, signals,
images, sample paths of stochastic processes, random or deterministic measures by quantifying
the size of sets of points in IRd sharing a same singularity exponent H . Theoretically, multifractal
analysis amounts to computing the multifractal spectrumD(H), which encapsulates the Hausdorff
dimensions of the sets of points where a pointwise regularity exponent takes a given value H .
Practically, Hausdorff dimensions cannot be estimated from real-world data. Instead, an indirect
estimation of D(H) that can actually be computed from data, a so-called multifractal formalism,
is used: The estimate is obtained by computing a Legendre spectrum. For univariate data (single
signal, image,. . . ), the Legendre spectrum has been shown to yield an upper bound for D(H) [1],
and to coincide with D(H) for several models of deterministic functions or stochastic processes
commonly used to model scale-free dynamics (cf. e.g., [2] and ref. therein). Thus, the derivation of
multifractal formalisms yielding appropriate Legendre spectra, i.e., spectra that are both as close
as possible to D(H) and remain practically computable, is a central issue.

Multifractal analysis and modeling have been widely used and have led to significant
successes in several applications very different in nature (cf. e.g., [2–4] and ref. therein). Yet, these
achievements were mostly obtained in a univariate setting: One signal or image is analyzed at
a time and independently of others. Such analyses miss potentially crucial information coded in
cross-dependencies. However, in most recent applications, systems are monitored through large
collections of signals or images recorded simultaneously. This critically calls for the theoretical
definition and study of multivariate multifractal analysis and the development of multivariate
multifractal formalisms, at the heart of the present work.
• Related work: Multivariate multifractal analysis. Multifractal analysis was historically
grounded in the study of hydrodynamic turbulence [5]. Therefore, the notion of multivariate
multifractal analysis was first introduced in that context as a natural extension of the univariate
formalism [6]. Multivariate multifractal analysis was then theoretically studied in an abstract
setting in [7] and in specific cases: Several pointwise exponents associated with invariant
measures of expanding dynamical systems (level sets of Birkhoff averages, pointwise dimensions,
local entropies, and Lyapunov exponents) are considered in [8]; as regards the usual local
dimension, general results for doubling measures are obtained in [9], and selfsimilar measures
associated with an IFS satisfying the Open Set Condition are studied in [10,11]; see also [12].
However, multivariate multifractal analysis remained used only in rare occasions on real-
world data, cf. e.g. [13] and references therein. This is mostly due to a lack of theoretical
understanding of the information encoded in mutivariate spectra and of theoretical constructions
for mutifractal formalisms, as well as to a lack of efficient and robust practical analysis tools.
Several theoretical issues underlying multivariate multifractal analysis were recently investigated
in [9,13–15], and the present paper is a continuation of these works. Further, the potential interests
of the multivariate Legendre spectrum to study real-world data were investigated in [16,17],
together with the definition of bivariate log-cumulants (a mandatory step for an efficient practical
implementation of multivariate multifractal analysis).
• Goals, contributions and outline. The main goals of the present paper are: 1) to discuss the
mathematical foundations of the seminal proposition of a multivariate multifractal formalism
in [6], 2) to understand its range of validity and 3) to identify the origin of its limitations and
propose theoretical solutions to overcome them. To that end, Section 2 starts by stating in a
multivariate setting the mathematical notions (pointwise regularity and multifractal spectrum)
attached to multifractal analysis. It further discusses the issues at hand in the computation of the
dimensions of intersections of fractal sets, which turn crucial in a multivariate setting.

Section 3 motivates the wavelet leader based reformulation of the multivariate multifractal
formalism proposed in [6] and establishes the theoretical conditions under which this formalism
is valid. This requires to revisit the relationships between multiscale quantities (e.g., wavelet
leaders) and pointwise regularity (e.g., Hölder exponent) and to put into light the key notion of
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compatibility; additionally, it leads to the introduction of a new notion in multivariate multifractal
analysis: synchronicity between the minimizing sequences of multiscale quantities associated with
each of the different components of the data. It will allow to establish the required conditions
under which the multivariate Legendre spectrum provides an upper bound for the multivariate
multifractal spectrum.

Since multiplicative cascades constitute the paradigm for multifractal construction, elaborating
on [6,9,10,13], Section 4 studies in depth bivariate deterministic dyadic binomial cascades. It
establishes analytically their multivariate Legendre spectra, thus complementing [13] where their
multifractal spectra were determined. These results show that the currently available formalism
proposed in [6] does not necessarily yield an upper bound for the multifractal spectrum: This
critically depends on whether minimizing sequences of multiscale quantitities associated with
cascades satisfy or not the synchronicity requirement.

Section 5 elaborates other examples of bivariate processes (bivariate scale-lacunary wavelet
series and bivariate independent Lévy processes) for which the multivariate Legendre spectrum
does not provide an upper bound for the multivariate multifractal spectrum and lays bare the
mechanisms leading to failure. They suggest an alternative, a cross-scale multivariate multifractal
formalism, of which we lay the theoretical foundations and study the general validity.

Section 6 discusses potential interpretations of the multivariate multifractal and Legendre
spectra in relation to synchronicity vs. non synchronicity and statistical dependencies vs.
independence.

The theoretical developments proposed in this work are supported by practical illustrations
of the actual numerical implementation of multivariate formalisms, obtained from a toolbox that
will be made publicly and freely available in a documented manner at the time of publication.

2. Multivariate multifractal analysis: Intuitions and definitions

(a) Pointwise regularity
Let X(x) = (X1(x), · · · , XM (x)), x∈ IRd, X ∈ IRM , denote either a multivariate deterministic
function or the multivariate sample path of a stochastic process. In essence, the multifractal
analysis of X consists in characterizing the fluctuations along x of local or pointwise regularity
indices of X , also termed singularity indices, and hereafter denoted h(x) = (h1(x), · · · , hM (x)).
These indices measure roughness ofX around location x, independently for each componentXk.

A widely used regularity index is the Hölder exponent, hf (x0) of f at x0 ∈ IRd. For a univariate
locally bounded function Xk : IR

d→ IR it is defined as follows: For α≥ 0, Xk ∈Cα(x0) if there
exist a constant C > 0 and a polynomial P of degree less than α such that, for ε small enough,

sup
|x−x0|≤ε

|Xk(x)− P (x− x0)| ≤Cεα, (2.1)

then hXk (x0) = sup{α≥ 0 |Xk ∈Cα(x0)}. Other indices are used to quantify regularity. For
example, for nonnegative measures µ, the lower and upper local dimensions are defined as:

`−µ (x0) = lim inf
ρ→0+

logµ([x0 − ρ, x0 + ρ])

log ρ
and `+µ (x0) = lim sup

ρ→0+

logµ([x0 − ρ, x0 + ρ])

log ρ
, (2.2)

and for non locally bounded functions, p-exponents replace and generalize the Hölder exponent,
cf. [3,4]. Further, to enrich the description of local regularity provided by such indices, the use
of lacunarity, cancellation and oscillation exponents, was proposed, cf. [18] and references therein.
Any of these pointwise regularity indices can be used in the following.
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(b) Multivariate multifractal spectra: Definitions and properties
A fundamental postulate of multifractal analysis is that the relevant information onX is not given
by the local evolution of h(x) as a function of x but that it is encoded globally and geometrically, in
form of the fractal (Hausdorff) dimensions of well-chosen level sets of singularity indices.

Several types of (univariate or multivariate) sets can be considered: For H = (H1, . . . , HM ),

∀m= 1, . . .M, Em(Hm) = {x∈Rd : hm(x) =Hm},

E(H) = {x∈Rd : h1(x) =H1, . . . , hM (x) =HM}, (2.3)

E≥(H) = {x∈Rd : h1(x)≥H1, . . . , hM (x)≥HM}, (2.4)

E≤(H) = {x∈Rd : h1(x)≤H1, . . . , hM (x)≤HM}. (2.5)

By definition, the multivariate singularity sets consist of intersections of univariate ones:

E(H) =E1(H1)
⋂
. . .
⋂
EM (HM ). (2.6)

For large classes of deterministic functions or sample paths of stochastic processes, such sets
are fractal. Their sizes, as functions of H , referred to as multivariate multifractal spectra, are thus
informatively quantified by their Hausdorff dimension, denoted dim :

D(H) = dim(E(H)), D≥(H) = dim(E≥(H)), and D≤(H) = dim(E≤(H)). (2.7)

By convention, dim(∅) =−∞. Though theoretical results in multifractal analysis are often
stated in terms of D(H) only, the other two spectra, D≥(H) and D≤(H), also play key
roles. For instance, in univariate settings where multifractal spectra usually satisfy D≤(H) =

supH′≤H D(H ′) and D≥(H) = supH′≥H D(H ′), the strongest versions of upper bounds for
spectra are stated in terms of D≥(H) and D≤(H), and the determination of D(H) requires such
stronger estimates as a prerequisite. More conceptually, the sets E≥(H) and E≤(H) often are
simpler to describe mathematically than E(H), and their properties are better understood.

Multivariate multifractal spectra satisfy a number of properties. By definitionE(H) is included
in any of the Ek(Hk), thus yielding

∀H = (H1, . . . HM ), D(H)≤min(D1(H1), . . . , DM (HM )). (2.8)

The support of the spectra, Supp(D) = {H : EH 6= ∅} = {H : D(H)≥ 0}, satisfies

Supp(D)⊂Supp(D1)× . . .× Supp(DM ).

Since E1(H1) =
⋃
H2,...,HM

E(H1, H2, .., HM ), we have D1(H1)≥ sup
H2,..,HM

D(H1, H2, ..., HM )

(similar formulas are true for the other coordinates Dk(Hk)). Equality may fail because the union
is taken on a non-countable set, but for many multifractal models, equality holds (see Section 4).

(c) Intersection of fractal sets
While the properties of spectra in univariate settings have been widely studied, those of
multivariate spectra remain barely investigated. A key issue is to understand which information
the shape of the multivariate multifractal spectrum yields on dependencies between components.
A first extreme case consists of all components being identical ; then the multivariate multifractal
spectrum D(H) is supported by the diagonal H1 = . . .=HM and coincides with the univariate
spectra D1(H1) = . . .=DM (HM ). But in general, obtaining multivariate multifractal spectra
amounts to computing the Hausdorff dimensions of intersections of fractal sets, cf. (2.6). A
large amount of particular cases were studied, cf. e.g. [19] and references therein, yet this is
a difficult mathematical problem with no generic formula. Nonetheless, some mathematical
results characterizing intersections of sets hold with a fairly general level of validity and provide
guidelines relevant for multivariate multifractal analysis. For notational simplicity, this section is
restricted to M = 2, extensions to M > 2 are straightforward.
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A first category of generic results are based on intuitions stemming from intersections of affine
subspaces: e.g., in general, two planes in R3 intersect along a line, and more generally, in Rd,
affine subspaces intersect generically according to the sum of codimensions rule: dim(A ∩B) =

dimA+ dimB − d, i.e. the “codimensions” d− dimA and d− dimB add up (this formula can
yield a finite negative number, in which case, here and in the following, we use the convention
that the corresponding set is empty). This result holds for numerous examples of fractal sets, in
particular when the Hausdorff and Packing dimensions of one of the sets A or B coincide (as is
typically the case for general Cantor sets); in that case “generically” has to be understood in the
following sense: For a subset of positive measure among all rigid motions σ, dim(A ∩ σ(B)) =

dimA+ dimB − d. However the coincidence of Hausdorff and Packing dimensions is often not
satisfied by the level sets E(H). The only result that holds in all generality is the following: if A
and B are two Borel subsets of Rd, then, for a generic set of rigid motions σ, dim(A ∩ σ(B))≥
dimA+ dimB − d. This leads to a first guideline for multivariate multifractal spectra: When two
recordings of experimental data are derived from unrelated experiments, then their singularity
sets will be in generic position with respect to each other, and the genericity assumption will
hold, yielding D(H1, H2)≥D(H1) +D(H2)− d, whereas the stronger result

D(H1, H2) =D(H1) +D(H2)− d (2.9)

will hold only for particular models.
For important classes of fractal sets, sets with large intersection, the codimension formula is

not optimal as they satisfy dim(A ∩B) =min(dimA, dimB); while such a formula may seem
counterintuitive, fairly general frameworks where it holds were uncovered, cf. e.g., [20,21] and
references therein. This is notably commonly met by limsup sets, obtained as follows: There exists
a collection of sets An such that A is the set of points that belong to an infinite number of the
An. This is particularly relevant for multivariate multifractal analysis as singularity sets E≤(H)

are of this type for several multifractal models, notably for additive stochastic processes, e.g.
Lévy processes or random wavelet series, see [22,23] and ref. therein. For multivariate multifractal
spectra, this leads to the alternative formula

D(H1, H2) =min(D(H1), D(H2)) (2.10)

which is expected to hold in competition with (2.9), at least for the sets E≤(H), see Section 5(a)ii.

3. Multivariate extension of the multifractal formalism

(a) Minimizing sequences and compatibility
It is now well documented in the univariate setting that Hausdorff dimensions cannot be directly
computed numerically. Multifractal formalisms are procedures allowing to estimate practically
multifractal spectra from data. Additionally, they can also explain the shape of the structure
functions by the shape of multifractal spectra (this actually was the motivation of the seminal
article [5]).

Multifractal formalisms rely fundamentally on the definition of multiscale quantities dλ. These
quantities depend jointly on time x and scale 2j and are defined as a nonnegative function λ→ dλ
on dyadic cubes λ (= λ(j, k))≡

[k1
2j
, k1+1

2j

)
× · · · ×

[kd
2j
, kd+1

2j

)
, with j ∈Z and k= (k1, · · · kd)∈

Zd. We define the log-leaders of the multiscale quantities dλ as

`j(dλ) =
log dλ
log 2−j

. (3.1)

A key aspect of multiscale quantities in multifractal analysis is that they need to be tailored to the
chosen local regularity index h, according to the following general framework.

Definition 1. Let dλ be a multiscale quantity. For x∈Rd let λj(x) denote the dyadic cube of width 2−j

which contains x. A function h(x) is called a pointwise exponent compatible with the multiscale quantity
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dλ if, for any x, there exists a sequence λjn(x) (with jn→+∞) such that h(x) can be written as

h(x) = lim
n→+∞

`jn
(
dλjn(x)

)
. (3.2)

The sequence λjn(x) is called a minimizing sequence for h at x. The couple formed by a multiscale quantity
together with the associated compatible exponent is called a compatible couple.

Remarks: We use here the (standard) definition of pointwise exponents as functions that are
defined at every point, where they take a unique value. However, other choices are possible. One
can decide that h(x) is only defined at the points x where the limit of `j

(
dλj(x)

)
when j→+∞

exists; this is the option taken to study multivariate multifractal analysis in [8,9]. On the opposite,
one can consider divergence points where the limit does not exist. Obtaining information on the sets
(such as their dimensions) is an important question which, in the context of multivariate analysis,
has been addressed in [8,24,25]. One can also consider all possible limits of (3.2), in which case
the exponent is not unique, but can be a subset of the real line, see [11] where this approach is
followed. Numerous types of multiscale quantities (increments, oscillations, measures, wavelet
coefficients,. . . , cf. e.g., [2] for reviews) were used to construct multifractal formalisms, mostly
tied (sometimes incorrectly) to the choice of either the Hölder exponent or the local dimension as
pointwise regularity index.

For functions, it is however now well documented that wavelet leaders are multiscale
quantities associated with the Hölder exponent [1], and that wavelet p-leaders are associated
with p-exponents [3,4]. These multiscale quantities are constructed from the coefficients of an
orthonormal discrete wavelet transform (DWT) as follows. An orthonormal wavelet basis of
L2(Rd) can be defined from 2d − 1 compact support and regular enough functions ψ(i), referred
to as mother-wavelets, as the collection of dilates and translates 2dj/2ψ(i)(2jx− k), (for j ∈Z, and
k ∈Zd). The wavelet coefficients of the function X(x) are c(i)λ = 2dj

∫
ψ(i)(2jx− k)X(x)dx, and

the corresponding wavelet leaders are

lλ = sup
i,λ′⊂3λ

|c(i)λ′ |, (3.3)

where 3λ denotes the union of λ with the 3d − 1 closest dyadic cubes of width 2−j . Under weak
global regularity assumptions, the Hölder exponent h(x) is tied to wavelet leaders through

∀x∈Rd, h(x) = lim inf
j→+∞

`j(lλ), (3.4)

see [1], which clearly fits the general framework defined in (3.2). Similarly, p-exponents can also
be derived from p-leaders by the same formula as (3.4), see [3,4].

For measures, the lower and upper local dimensions `−µ (x) and `+µ (x), can be obtained from
the multiscale quantities dλ = µ(3λ): `−µ (x) = lim inf

j→+∞
`j
(
dλj(x)

)
and `+µ (x) = `j

(
dλj(x)

)
, which

also both fit in the general framework defined in (3.2).

(b) Multivariate multifractal formalism for synchronous exponents

(i) Synchronous exponents

The construction of multifractal formalisms in the multivariate setting requires the existence
of minimizing sequences λjn(x) shared by all exponents associated with the different data
components. This motivates the following definition.

Definition 2. Let (dkλ, h
k(x)), k= 1, · · · ,M be compatible couples. The (dkλ, h

k(x)) are synchronous if,
for any x, there exists a sequence λjn(x) (with jn→+∞) which is a minimizing sequence for all hk(x).

To illustrate this definition, let us discuss a few examples, with M = 2 for simplicity. If, for

any x the sequence `j
(
d1λj(x)

)
has a limit when j→+∞, then, any subsequence is minimizing
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for h1(x), so that, whatever the couple (d2λ, h
2(x)), it is synchronous with (d1λ, h

1(x)). This
example corresponds e.g. to fractional Brownian motion, and to many functions or processes with
continuous Hölder exponent. However, it does not correspond to classical multifractal models, for
which h(x) covers all its range when x takes values in any arbitrarily small interval.

If there exists an increasing function ω such that

`j

(
d2λj(x)

)
= ω

(
`j

(
d1λj(x)

))
+ o(1) when j→+∞

and if the two exponents are both computed by a lim inf (or a lim sup), minimizing sequences
for both exponents clearly are the same. Corresponding examples are discussed in Section 4.
Importantly, this no longer holds if ω is decreasing, as we will see in Section 4. Additionally,
the condition that d2λ is an increasing function of d1λ is not sufficient either to imply synchronicity.

(ii) Multivariate multifractal formalism and multivariate Legendre spectrum

A multifractal formalism relates multiscale quantities to the multifractal spectrum. The first one
was originally proposed in the context of hydrodynamic turbulence and was constructed using
increments as multiscale quantities [5]. Its multivariate extension was proposed several years
later, again based on increments [6]. In hydrodynamic turbulence, this multivariate formalism is
often called grand canonical in reference to thermodynamics, from where the seed intuitions and
constructions of multifractal analysis stem, see [26].

This multivariate multifractal formalism is here reinterpreted in the general setting of
synchronous exponents and compatible pairs of local regularity indices and multiscale quantities:
(dkλ, h

k(x)), k= 1, · · · ,M . It is based on the multivariate structure functions

∀r= (r1, · · · , rM )∈RM , S(r, j) = 2−dj
∑
λ∈Λj

(
d1λ

)r1
· · ·
(
dMλ

)rM
, (3.5)

where Λj denotes the collection of dyadic cubes of width 2−j . Synchronicity constitutes a
key requirement because S(r, j) couples multiscale quantities (d1λ, · · · d

M
λ ) at same scales and

locations. Further, the scaling function is defined as

ζ(r) = lim inf
j→+∞

log (S(r, j))

log(2−j)
. (3.6)

The scaling function can be related to the multifractal spectrum as follows: if x∈E(H), then
the synchronicity of the h1(x), · · · , hM (x) together with (3.4) implies that there exist an infinite
number of scales j such that for the same dyadic cubes,

d1λj(x) ≈ 2−H1j , · · · , dMλj(x) ≈ 2−HM j .

Because D(H) is the fractal dimension of E(H), the number of cubes of size 2−j

required to cover E(H) is ∼ 2jD(H). Therefore S(r, j) can also be rewritten as S(r, j)'∑
h 2
−dj2jD(H)2−(H1r1+···+HMrM )j . When j→+∞, the dominant contribution stems from the

smallest exponent; indeed, the other contributions are exponentially smaller as a function of j and
will ultimately be negligible in the limit j→+∞, thus yielding

ζ(r) = inf
H∈RM

(d−D(H) +H · r), where H · r=H1r1 + · · ·+HMrM . (3.7)

This leads to define the multivariate Legendre spectrum as the M -variable Legendre transform of
the multivariate scaling function:

∀H ∈RM , L(H) = inf
r∈RM

(d− ζ(r) +H · r). (3.8)

General properties of L(H) (without assuming synchronicity) are proved in [13,14]. Important
results of [14,15] (and refs. therein) state that the multifractal formalism is satisfied for couples of
generic functions (both in the sense of Baire and prevalence) in given Besov or oscillation spaces.
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(c) Upper bound: multivariate multifractal and Legendre spectra
In a univariate setting, i.e. M = 1, under weak global regularity assumptions, the Legendre
spectrum systematically yields an upper bound for the multifractal spectrum: L(H)≥D(H) [1].
Theorem 1 establishes that this inequality extends to a multivariate setting in the synchronous
case (the informal derivation sketched above does not constitute a mathematical proof).

Theorem 1. Let (dkλ, h
k(x)), k= 1, · · · ,M , denote a collection of compatible couples which are

synchronous. The multivariate Legendre and multifractal spectra satisfy:

∀H ∈RM , D(H)≤L(H). (3.9)

Additionally, the spectra D≤ and D≥ satisfy

D≤(H)≤ inf
r∈(R+)M

(d− ζ(r) +H · r), and D≥(H)≤ inf
r∈(R−)M

(d− ζ(r) +H · r). (3.10)

Remark: Inequalities (3.10) bound D≤ (resp. D≥) by functions that are increasing
(resp. decreasing) in all variables. In practice, for concave spectra, it yields a bound for the part of
the spectrum that is increasing (resp. decreasing) in all variables H1, . . . Hm.

Proof: Let H = (H1, . . . , HM ) be fixed, and let ε > 0. For j ≥ 0, we denote by F (H, j, ε) the set
of dyadic cubes of width 2−j defined by the conditions

2(−H1−ε)j ≤ dλ1
≤ 2(−H1+ε)j , . . . , 2(−HM−ε)j ≤ dλM ≤ 2(−HM+ε)j ; (3.11)

we denote by N(H, j, ε) the cardinality of this set. By restricting the sum in (3.5) to the elements
of F (H, j, ε), and using (3.11) it follows that

∀r ∈RM , 2−djN(H, j, ε)2−(r1H1+ε|r1|)j . . . 2−(rMHM+ε|rM |)j ≤ S(r1, . . . rM , j);

and from (3.6) we obtain that, for j large enough, S(r, j)≤ 2−j(ζ(r)−ε); thus

N(H, j, ε)≤ 2j(d−ζ(r)+ε+r1H1+ε|r1|+···+rMHM+ε|rM |). (3.12)

It follows from (3.4) and the synchronicity hypothesis that

if x∈E(H), then ∀ε > 0, x∈ lim sup
j→+∞

F (H, j, ε).

Thus,

∀J > 0, E(H)⊂
⋃
j≥J

F (H, j, ε).

Let A= d− ζ(r) + ε+ r1H1 + ε|r1|+ · · ·+ rMHM + ε|rM |; because of (3.12), F (H, j, ε) is
composed of at most 2Aj dyadic cubes of width 2−j . Using these cubes as 2−j -covering of E(H),
(3.12) yields ∑

j≥J

∑
λ∈F (H,j,ε)

(diam(λ))δ ≤
∑
j≥J

2Aj(2−j)δ

which is finite as soon as δ >A. It follows that the Hausdorff dimension of E(H) is bounded by
A. Since this is true ∀ε > 0, we obtain that D(H) is bounded by d− ζ(r) + r1H1 + · · ·+ rMHM .
Since this holds for any r ∈RM , the first statement of the theorem is proved. The proofs of the
other two statements are similar.

Remarks: A similar argument is used by M. Ben Slimane in [14] in order to derive the
multivariate multifractal spectra of generic functions in a product of function space. Additionally,
in the setting of selfsimilar measures satisfying the Open Set Condition, L. Olsen introduced a
related quantity [11]: x being fixed, he considers the sets A(x) of exponents (H1, · · ·HM ) which
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are accumulation points of subsequences of the multivariate quantities(
`j(d

1
λj(x)), · · · , `j(d

M
λj(x))

)
.

Then, for any fixed set C ⊂RM , he derives the Hausdorff dimension of the set of points x for
which A(x)⊂C.
For a given multiscale quantity (dλ), several exponents can be associated through Definition 1,
each leading to a different definition of E(H). However, some subsets, which only depend on the
multiscale quantity (and not on the way that the subsequence is picked in (3.2)) play an important
role in theoretical multifractal analysis: the regular points defined as the points where log-leaders
have a limit when j→+∞, i.e. when the limit in (3.2) is the same for any subsequence. We define
the corresponding sets as

∀H = (H1, . . . HM ), EReg(H) =
{
x : ∀k= 1, . . .M, `j

(
dkλj(x)

)
→j→+∞ Hk

}
. (3.13)

By construction, the exponents hk are synchronous at these points, so that Theorem 1 applies, and

∀H ∈RM , dim(EReg(H))≤L(H). (3.14)

Clearly EReg(H)⊂E(H); in some situations, the information supplied by their dimension is
poor; e.g., in the counterexample worked out in Section 5(a)i, all sets EReg(H) are empty. On
the other hand, they can also be “large”, i.e. have the same Hausdorff dimension as E(H): it
is the case e.g. for univariate binomial cascades (see Section 4(c)ii). Regular points are considered
in [9], in particular in order to perform the multivariate analysis of couples of selfsimilar measures
satisfying Hutchinson’s separation condition.

4. Deterministic bivariate dyadic binomial cascades
Univariate multiplicative cascades, consisting of measures supported by [0, 1] and obtained from
a recursive construction, constitute archetypal multifractal constructions [27]. It is thus natural
to consider multivariate extensions and to investigate the multivariate multifractal spectrum,
formalism and Legendre spectrum. In this section we consider the example of bivariate cascades
supplied by binomial cascades.

Note that the bivariate (and even multivariate) spectra of large classes of measures (including
binomial cascades) have extensively been studied, and many key results have already been
obtained. For instance, L. Olsen in [9,11] considered selfsimilar and multiplicative measures
associated with an IFS satisfying the Open Set Condition, and the dimension of sets of divergence
points (i.e. points x at which the limit of mutivariate log-leaders -following our terminology-
does not exist) have been calculated for such measures. The multifractal analysis of Gibbs
measures associated with continuous potentials invariant under smooth dynamical systems was
performed, e.g. in [8], and it has been shown that the support of the multifractal spectrum can be
nonconvex. Our approach is quite different, and complementary, to theirs. First, these authors
mainly focus on local exponents (that can be Birkhoff averages, local entropies, or Lyapunov
exponents) defined as limits, while we always work with liminf exponents (see formulas (3.4)
and (2.2)). Many (surprising) behaviors are not observed when restricting the study to limits, as
will be illustrated in this section and the next. Second, in the above references, the Hausdorff
dimension of divergence points is computed, but the question of the dimension of the level sets
associated with these divergence points is not addressed as directly as in the present paper. Third,
the validity of the multifractal formalism is tackled only through the prism of limit exponents,
whereas the use of exponents defined by liminfs reveals some new remarkable phenomena (which
led us to study in details variations of the multifractal formalism, see Section 5(b) for instance).
Indeed, if one disregards the points at which the limits do not exist, the phenomenon described
below cannot be put into light (Theorem 3, with very different shapes for the scaling functions
and the Lq-spectra of a bivariate binomial cascade according to the choice of the parameters of the
cascades); and indeed, it has never been observed before. In particular, the fact that the Legendre
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transform of the Lq-spectrum (which serves as upper bound for the multifractal spectrum in all
the references above) lies below the multifractal spectrum of the bivariate cascade, was clearly
not detected previously.

The exponent considered in this section is the lower local dimension, see Section 2(a). To
simplify computations we drop the 2−j in the definition of structure functions and, accordingly,
Legendre transforms are defined by L(H) = infr(r ·H − ζ(r)).

(a) Univariate cascades
Dyadic intervals are indexed by “dyadic words” (i.e. finite sequences) with “letters” εi ∈ {0, 1}:
If j ≥ 1, Σj = {0, 1}j denotes the set of words of length j with letters ∈ {0, 1}. A word w ∈Σj of
length |w|= j is written w= ε1ε2 · · · εj . The corresponding dyadic interval λw of generation j is

λw = [xw, xw + 2−j), where xw is the real number xw =

∞∑
k=1

εk2
−k. (4.1)

This defines a mapping between Σ and [0, 1] (which is not one to one, since dyadic points are
encoded by two different words). If w is a (possibly infinite) word longer than j, we define

N0
j (w) =#{εi : 1≤ i≤ j and εi = 0} ∈ {0, 1, ..., j},

i.e. N0
j (w) is the number of 0s among the first j digits of w.

Let p∈ [0, 1]. The binomial measure µp is the probability measure supported by [0, 1] and
constructed iteratively as follows: µp([0, 1]) = 1; if λw is a dyadic interval, since λw0 and λw1 are
respectively the left and right half of λw , then µp(λw0) = pµp(λw) and µp(λw1) = (1− p)µp(λw);
µp is thus defined on all dyadic intervals and extends to Borel sets of [0, 1]. If w has length j, then

µp(λw) = pN
0
j (w)(1− p)j−N

0
j (w). (4.2)

Note that µ1/2 is the Lebesgue measure, and µ0 and µ1 are the Dirac masses at 1 and 0,
respectively. The scaling function of µp is ηµp(r) =− log2(p

r + (1− p)r), and µp verifies the
multifractal formalism: Dµp(H) = infr∈R(rH − ηµp(r)).

(b) Bivariate multifractral spectrum
We introduce the exponents

Hp,min =− log2(1− p), Hp,m = (− log2(p)− log2(1− p))/2, Hp,max =− log2(p). (4.3)

When p < 1/2, Hp,min <Hp,m <Hp,max, while the order is reversed when p > 1/2. We use the
exponents Hp,min, Hq,min, ..., with two parameter values p and q. We study the joint spectrum of
two binomial measures (µp, µq) when p, q < 1/2 and p < 1/2< q. These two situations yield very
different spectra: Intuitively, the two cascades are correlated when p, q < 1/2 and anti-correlated
when p < 1/2< q (cf. Figs. 1 and 2). Let us introduce the affine function

Gp,q(x) = ρp,q(x+ log2(1− p))− log2(1− q), where ρp,q =
log2 q − log2(1− q)
log2 p− log2(1− p)

. (4.4)

Gp,q has positive slope when p, q < 1/2, and negative slope when p < 1/2< q. The following
result of [13] yields the bivariate multifractal spectrum of the couple (µp, µq).

Theorem 2. Let p, q ∈ (0, 1), and let µp and µq be two binomial measures on [0, 1].

(a) If 0< p, q < 1/2, the joint spectrum D(µp,µq) of (µp, µq) is supported by the segment
{(H,Gp,q(H)) :H ∈ [Hp,min, Hp,max]} where

D(µp,µq)(H,Gp,q(H)) =Dµp(H) (=Dµq (Gp,q(H)). (4.5)
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(b) If 0< p< 1/2< q < 1, then the joint spectrum D(µp,µq) is supported by the triangle

T =
{
(H,H ′) :H ∈ [Hp,min, Hp,max] and H ′ ∈ [Hq,min, Gp,q(H)]

}
where

∀(H,H ′)∈ T D(µp,µq)(H,H
′) =min(Dµp(H), Dµq (H

′)).

(c) Bivariate multifractal formalism and Legendre spectrum
In this section we determine the Legendre spectrum of bivariate binomial cascades. For that
purpose, we calculate the scaling function ζp,q (3.6) based on the structure functions S((r1, r2), j).
As a first step, we compute the following simpler “one box” scaling function ηp,q , where the
multiscale quantity considered is µ(λ) instead of the usual µ(3λ)

ηp,q(r1, r2) = lim inf
j→+∞

1

−j log2 T ((r1, r2), j), where T ((r1, r2), j) =
∑
w∈Σj

µp(λw)
r1µq(λw)

r2

and its Legendre transform Lp,q(H1, H2) = infr1,r2(r1H1 + r2H2 − ηp,q(r1, r2)).

Proposition 4.1. The “one box” scaling function of (µp, µq) is ηp,q(r1, r2) =− log2(p
r1qr2 + (1−

p)r1(1− q)r2) and

Lp,q(H1, H2) =

{
Dµp(H1) when H1 ∈ [Hp,min, Hp,max] and H2 =Gp,q(H1)

−∞ otherwise.
(4.6)

Proof. An immediate computation shows that

T ((r1, r2), j) =
∑
w∈Σj

(pr1qr2)N
0
j (w)((1− p)r1(1− q)r2)j−N

0
j (w)

=

j∑
k=0

(
j

k

)
(pr1qr2)k((1− p)r1(1− q)r2)j−k = (pr1qr2 + (1− p)r1(1− q)r2)j ,

so that ηp,q(r1, r2) =− log2(p
r1qr2 + (1− p)r1(1− q)r2).

Moving to the 2-dimensional Legendre transform of ηp,q , we compute the partial derivatives

∂ηp,q
∂r1

(r1, r2) =
−pr1qr2 log2(p)− (1− p)r1(1− q)r2 log2(1− p)

pr1qr2 + (1− p)r1(1− q)r2

and
∂ηp,q
∂r2

(r1, r2) =
−pr1qr2 log2(q)− (1− p)r1(1− q)r2 log2(1− q)

pr1qr2 + (1− p)r1(1− q)r2 .

Note that ∂ηp,q∂r2
(r1, r2) =Gp,q

(
∂ηp,q
∂r1

(r1, r2)
)

. This affine relationship shows that the Legendre
spectrum Lp,q of (µp, µq) (based on the scaling function ηp,q) is supported by the straight line
(H1, Gp,q(H1)). This yields (4.6).

We call ζp,q the scaling function associated with (µp, µq), and L(µp,µq) its Legendre transform.
When 0< p< 1/2< q < 1, we introduce the following notations: for (H1, H2)∈ T , we call

(H̃1, Hq,max) (resp. (Hp,min, H̃2)) the intersection points of the straight line passing through
(H1, H2) and slope ρp,q (recall (4.4)) with the line {(H,H ′) :H ′ =Hq,max} (resp. with the line
({(H,H ′) :H =Hp,min}). Namely, H̃1 =H1 +

Hq,max−H2
ρp,q

and H̃2 =H2 + ρp,q(H1 − H̃1).

Theorem 3. Let p, q ∈ (0, 1), and let µp and µq be two binomial measures on [0, 1].

(a) If 0< p, q < 1/2, the couples (µp(3λ), `
−
µp) and (µq(3λ), `

−
µq ) are synchronous and the couple

(µp, µq) satisfies the multifractal formalism: ∀H , Lp,q(H) =L(µp,µq)(H) =D(µp,µq)(H).
(b) If 0< p< 1/2< q < 1, the couples (µp(3λ), `

−
µp) and (µq(3λ), `

−
µq ) are not synchronous, and

the multifractal spectrum is not bounded by the Legendre spectrum. More precisely, lhe joint
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scaling function ζp,q(r1, r2) of (µp, µq) is given by:

ζp,q(r1, r2) =

−r1 log2(1− p)− r2 log2(q) if
(

p
1−p

)r1
+
(
1−q
q

)r2
≤ 1

ηp,q(r1, r2) otherwise .
(4.7)

The corresponding Legendre transform L(µp,µq) is the following: for (H1, H2), set r=

H̃1−Hmin,p

Hmax,p−Hmin,p
and r′ = ‖(H1,H2)−(H̃1,Hmax,q)‖

‖(H̃2,Hmin,p)−(H̃1,Hmax,q)‖
. Then for every (H1, H2)∈ T ,

L(µp,µq)(H) = r ×Dµp
(
Hmax,p + r′ · (Hmin,p −Hmax,p)

)
. (4.8)

The map L(µp,µq), though based on unpleasant formulas, is simply interpreted in geometric
terms: it is the surface on T defined as the semi-cone with extremity (− log2(1− p),− log2(q))

and with border the Legendre transform Lp,q of ηp,q .
Theorem 3 illustrates the necessity of the synchronicity requirement for the upper bound

given by Theorem 1. Figures 1 and 2 illustrate Theorem 3, showing the corresponding theoretical
Legendre spectra and their numerical estimations. The proof of this theorem is detailed in the
next subsections.

(i) The case 0< p, q < 1/2

We check that, when p, q are both less than 1/2, the two cascades are synchronous. First, note that,
for any measure ν, ν(3λ) can be replaced (up to a factor 3) by the maximum of ν(λ), ν(λ− 2−j)

and ν(λ+ 2−j). We will prove that this maximum is reached at the same interval for the two
measures µp and µq . Indeed, if λw denotes this interval of largest measure, then (4.2) implies that

µp(λw) = pN
0
j (w)(1− p)j−N

0
j (w) and µq(λw) = qN

0
j (w)(1− q)j−N

0
j (w)

from which it follows that the corresponding log-leaders are related by an affine relationship

log2(µq(λw)) = ρp,q log2(µp(λw)) + jθp,q where θp,q = log2(1− q)− ρp,q log2(1− p).

Since ρp,q is positive when p and q are on the same side of 1/2, this implies synchronicity.
We now check that the joint scaling function of (µp, µq) is ζp,q(r1, r2) = ηp,q(r1, r2). Letw ∈Σj

and λw . Clearly, µp(3λw) = µp(λw − 2−j) + µp(λw) + µp(λw + 2−j). Denote by λ the interval
with the largest µp-mass in these three terms; then µp(λ)≤ µp(3λw)≤ 3µp(λ). As noticed before,
the same interval has the largest mass for µp and µq , and µq(λ)≤ µq(3λw)≤ 3µq(λ). As a
conclusion, µp(3λw)r1µq(3λw)r2 ∼ µp(λ)r1µq(λ)r2 for one λ∈ {λw − 2−j , λw, λw + 2−j}; thus,
if r1, r2 > 0, then

S((r1, r2), j) =
∑
w∈Σj

µp(3λw)
r1µq(3λw)

r2 ≤C
∑
w∈Σj

µp(λw)
r1µq(λw)

r2 =CT ((r1, r2), j).

Let us now focus on one product µp(λw)r1µq(λw)r2 for a given word w ∈Σj . Considering
the word w′ =w01∈Σj+2, we remark that p−2µp(λw)≤ µp(3λw′)≤ µp(λw), and similarly
q−2µq(λw)≤ µq(3λw′)≤ µq(λw). Hence,

Cµp(3λw′)
r1µq(3λw′)

r2 ≤ µp(λw)r1µq(λw)r2 ≤C′µp(3λw′)r1µq(3λw′)r2 ,

for two constants C,C′ > 0 that depend only on p, q, r1 and r2. In particular,

T ((r1, r2), j) :=
∑
w∈Σj

µp(λw)
r1µq(λw)

r2 ≤C′′
∑

w′∈Σj+2

µp(3λw′)
r1µq(3λw′)

r2 = S((r1, r2), j + 2).

Thus S((r1, r2), j)≤ T ((r1, r2), j)≤C′′S((r1, r2), j + 2), so that ηp,q(r1, r2) = ζp,q(r1, r2). The
argument is the same if r1 or r2 are negative, exchanging upper and lower bounds.

Keeping Theorem 2 in mind, this proves that the bivariate multifractal formalism holds for the
pair (µp, µq) in that case. The situation is illustrated numerically in Fig. 1, where it is shown that
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.
Figure 1. Multifractal analysis of bivariate binomial cascades if p, q < 1/2. Left: The measures (µp, µq)

and their cumulative density functions (M = 2). Right: theoretical bivariate multifractal spectrum D(H) (blue), estimated

Legendre spectrum L(H) (red surface) and the corresponding marginal spectra (red and blue curves in the H1 and

H2 planes). In this case, the support of the multivariate multifractal spectrum D(H) collapses to a line in the (H1, H2)

plane. The numerically estimated Legendre spectrum is found to tightly follow D(H), in agreement with the fact that the

synchronicity assumption is satisfied and the multifractal formalism holds.

the numerical estimate for L(H) is in excellent agreement with the theoretically predicted shape,
and therefore with the bivariate multifractal spectrum D(H).

(ii) The case 0< p< 1/2< q

Let w ∈Σj be a word ending with a 0; denote by w′ ∈Σj the binary word such that xw′ =
xw − 2−j , so that w′ ends with a 1. Obviously, µp(3λw) = µp(λw′) + µp(λw) + µp(λw + 2−j)

and µp(3λw′) = µp(λw′ − 2−j) + µp(λw′) + µp(λw). Since the last letter of w′ is 1, µp(λw′ −
2−j) = p

1−pµp(λw′), and similarly µp(λw) =
p

1−pµp(λw + 2−j). We conclude that µp(3λw) and

µp(3λw − 2−j) have the same order of magnitude: The ratio µp(3λw)/µp(3λw′) is bounded above
and below by constants depending only on p. The same holds for µq(3λw)/µq(3λw′). It follows
that µp(3λw)r1µq(3λw)r2 and µp(3λw′)r1µq(3λw′)r2 have the same order of magnitude.

Subsequently, in the sum (3.5) defining S((r1, r2), j), it is sufficient to study the terms
corresponding to words w ending with a 1. Notice that Σj can be encoded as

Σj = {1(j)} ∪
j−1⋃
`=0

⋃
w∈Σ`

{w · 0 · 1(j−`−1)},

where 1(`) (resp. 0(`)) stands for the word of length ` containing only 1s (resp. 0s), andΣ0 contains
only the empty word. In this decomposition, words ending with a 1 correspond to `= 0, ..., j − 2.
The discussion above tells us that it remains to study the asymptotic behavior of

S((r1, r2), j)∼
j−2∑
`=0

∑
w∈Σ`

µp(3λw·0·1(j−`−1))
r1µq(3λw·0·1(j−`−1))

r2 .

If a word w′ ∈Σj is written as w′ =w · 0 · 1(j−`−1) for some w ∈Σ`, then the dyadic point
xw′′ = xw′ + 2−j (recall (4.1)) is associated with the binary word w′′ =w · 1 · 0(j−`−1). So,
µp(3λw′) = µp(λw·0·1(j−`−1)) + µp(λw·0·1(j−`−1)) + µp(λw′′) with

µp(λw′′) = µp(λw·0·1(j−`−1))

(
p

1− p

)j−1−`
. (4.9)

the same being true for µq (with q replacing p).
The relative positions of p and q imply that the word λ for which the maximum is reached in

(4.9) is not the same for µp and for µq . Indeed, in (4.9), the first two terms are equivalent, and
the third one is smaller since p < 1/2< 1− p. On the opposite, when considering (4.9) for µq , the
first two terms are equivalent, but the third one is the largest since q > 1/2> 1− q. Consequently,
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Figure 2. Multifractal analysis of bivariate cascades for the case p< 1/2< q. Left: The measures (µp, µq)

and their cumulative density functions (M = 2). Superposition of the theoretical (blue) and estimated (red) Legendre

spectra L(H) (center) and of the theoretical bivariate multifractal spectrum D(H) (green) and the estimated Legendre

spectrum L(H) (red) (right); the corresponding marginal spectra are plotted in the H1 and H2 planes. The numerical

estimate of the Legendre spectrum L(H) (in red) is in excellent agreement with the theoretical prediction (in blue) but,

as a consequence of the failure of synchronicity, it does not give an upper bound for the multifractal spectrum D(H) (in

green), and the multifractal formalism does not hold.

µp(3λw′)∼ µp(λw)p(1− p)j−`−1 and µq(3λw′)∼ µq(λw)(1− q)qj−`−1. We can now estimate

S((r1, r2), j)∼
j−2∑
`=0

∑
w∈Σ`

µp(λw01(j−`−1))
r1µq(λw·1·0(j−`−1))

r2

∼
j−2∑
`=0

∑
w∈Σ`

µp(λw)
r1pr1(1− p)r1(j−`−1)µq(λw)r2(1− q)r2qr2(j−`−1)

= pr1(1− q)r2(1− p)r1(j−1)qr2(j−1)
j−1∑
`=0

((1− p)−r1q−r2)`
∑
w∈Σ`

µp(λw)
r1µq(λw)

r2

= pr1(1− q)r2(1− p)r1(j−1)qr2(j−1)
j−1∑
`=0

((1− p)−r1q−r2)`(pr1qr2 + (1− p)r1(1− q)r2)j

= pr1(1− q)r2(1− p)r1(j−1)qr2(j−1)
j−1∑
`=0

((
p

1− p

)r1
+

(
1− q
q

)r2)j
.

The sum above behaves differently according to whether
(

p
1−p

)r1
+
(
1−q
q

)r2
≤ 1 or > 1, hence

there is a phase transition in the values of ζp,q . A quick computation yields (4.7).
The Legendre transform of the scaling function −r1 log2(1− p)− r2 log2(q) is the Dirac mass

(with value 0) at (H1, H2) = (− log2(1− p),− log2(q)), and −∞ otherwise. Thus, the Legendre
transform L(µp,µq) of ζp,q is the surface in IR3 defined by the semi-cone with extremity
(− log2(1− p),− log2(q)) and with border the Legendre transform of ηp,q . The formula (4.8) is
simply the analytic formula corresponding to this semi-cone.

The verification that the multifractal formalism does not give an upper bound of the
multifractal spectrum is now straightforward and, as a consequence, it follows that (in
contradistinction with the case 0< p, q < 1/2), the two couples (µp(3λ), `

−
µp) and (µq(3λ), `

−
µq )

are not synchronous if p and q are not on the same side of 1/2 (otherwise Theorem 1 would imply
that the upper bound holds). An illustration is provided in Fig. 2, which plots the theoretical
multifractal spectrum D(H), the theoretical Legendre spectrum L(µp,µq)(H) and its a numerical
estimate. Clearly, both the theoretical and the numerically estimated function L(µp,µq)(H) are
smaller than D(H) and hence do not provide an upper bound for D(H). This motivates a careful
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study of the validity of the multifractal formalism when synchronicity fails. In the next section we
will see other occurrences of this phenomenon.

Remark: For both univariate cascades, the regular points (see (3.13)) are exactly the points
where N0

J (ω)/j has a limit. The dimensions of these sets are the same as for those where the limit
is a lim inf . It follows that, for each cascade dim(EReg(H)) =Dµp(H), and the bivariate spectrum
associated with regular points is given by (4.5) in both cases. Therefore, the bivariate spectrum
associated with regular points satisfies the upper bound (3.14) (even when p and q are not on the
same side of 1/2).

5. The failure of the multivariate multifractal formalism
Section 4 provided a first and yet simple multifractal construction where the multivariate
multifractal formalism developed in Section 3 fails to yield an upper bound for the multivariate
multifractal spectrum (binomial cascades with p < 1/2< q). This Section elaborates on the
importance of synchronicity put forward in Section 3: First a pedagogical counter-example
(bivariate scale-lacunary wavelet series) is devised that is designed to preclude synchronicity and
hence to explain the origin and nature of the failure of the multivariate multifractal formalism
(cf. Section 5(a)). Then a second example where the multivariate multifractal formalism fails
(independent bivariate Lévy processes), better suited to real-world data modeling, is theoretically
studied and numerically illustrated. Finally, the construction of a new multivariate multifractal
formalism is proposed in Section 5(b). The theoretical general validity of this cross-scale formalism
is proven, even when synchronicity is not assumed a priori.

(a) Counterexamples

(i) Scale-lacunary wavelet series

We consider a pair of lacunary “Weierstrass-type” wavelet series, for which the scales j1n and
j2n of nonvanishing wavelet coefficients are farther and farther away from each other. Let
a> 1 be the “lacunarity” parameter of the construction; the scales for which f1 and f2 have
nonvanishing wavelet coefficients are respectively j1n = [a2n] and j2n = [a2n+1]. Let (ψj,k) be a
smooth orthonormal wavelet basis; we define

f1(x) =

∞∑
n=0

∑
k∈Z

2−αj
1
nψj1n,k(x) and f2(x) =

∞∑
n=0

∑
k∈Z

2−βj
2
nψj2n,k(x). (5.1)

As a direct consequence of the wavelet characterization of pointwise regularity,

∀x∈R, hf1(x) = α and hf2(x) = β,

so that the joint multifractal spectrum of (f1, f2) is reduced to the point (α, β) where it takes the
value 1 (and it is equal to −∞ everywhere else).

We now estimate the corresponding structure functions. The largest contributions to the
structure functions are obtained when the leaders are either the largest (for r1 or r2 > 0) or the
smallest (for r1 or r2 < 0). Thus, they are the largest for j = j1n or j2n, and they are the smallest for
j = j1n + 1 or j2n + 1 (so that we can limit the computation of structure functions to these cases).

• At scale j1n, there are 2j
1
n wavelet leaders d1λ of size 2−αj

1
n and 2j

1
n leaders d2λ of size

2−βj
2
n ∼ 2−βaj

1
n (where∼means that the terms are equal up to factors that do not depend

on the scales, but may depend on a, α, β,...). Therefore

S(r1, r2, j
1
n)∼ 2−j

1
n
∑
λ∈Λj1

2−αr1j
1
n2−βar2j

1
n ∼ 2−(αr1+βar2)j

1
n .
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• At scale j1n + 1, there are 2j
1
n+1 wavelet leaders d1λ of size 2−αj

1
n+1 ∼ 2−αa

2j1n and 2j
1
n+1

leaders d2λ of size 2−βj
2
n ∼ 2−βaj

1
n , so that

S(r1, r2, j
1
n + 1)∼ 2−j

1
n−1

∑
λ∈Λj1

2−αa
2r1j

1
n2−βar2j

1
n ∼ 2−(αa

2r1+βar2)j
1
n .

• At scale j2n, there are 2j
2
n leaders d1λ of size 2−αj

1
n+1 ∼ 2−αaj

2
n and 2j

2
n wavelet leaders d2λ

of size 2−βj
2
n , so that

S(r1, r2, j
2
n)∼ 2−j

2
n
∑
λ∈Λj1

2−αr1aj
2
n2−βr2j

2
n ∼ 2−(αr1a+βr2)j

2
n .

• At scale j2n + 1, there are 2j
2
n+1 wavelet leaders d1λ of size 2−αj

1
n+1 ∼ 2−αaj

2
n and 2j

2
n+1

leaders d2λ of size 2−βj
2
n+1 ∼ 2−βa

2j2n , so that

S(r1, r2, j
2
n + 1)∼ 2−j

2
n−1

∑
λ∈Λj1

2−αr1aj
2
n2−βa

2r2j
2
n ∼ 2−(αr1a+βa

2r2)j
2
n .

Thus the Legendre spectrum L(H1, H2) is the characteristic function of the quadrilateral defined
by the four points (α, βa), (αa2, βa), (αa, β), (αa, βa2). The point (α, β) (which is the support
of the multifractal spectrum) is not included in it. Therefore, in this case, the Legendre spectrum
does not yield an upper bound for the multifractal spectrum (their supports are even disjoint).

(ii) Lévy processes

We now perform the bivariate multifractal analysis of two independent Lévy processes. LetXt be
a Lévy process with no Brownian component, and denote by β its upper index of Blumenthal and
Getoor (which in the case of stable processes, coincides with the selfsimilarity exponent), then the
multifractal spectrum of a.e. sample path is

D(H) =

{
βH if H ∈ [0, 1/β]

−∞ else,
(5.2)

see [23]. Lévy processes are examples of processes where the irregularity sets E−(H) have the
large intersection property, see [28]; the next result follows from this remark.

Corollary 5.1. Let X1
t and X2

t be two independent Lévy processes of upper indices respectively β1 and
β2; then the joint spectrum of a.e. couple of sample paths satisfies

D≤(H1, H2) =

{
min (β1H1, β2H2) if (H1, H2)∈ [0, 1/β1]× [0, 1/β2]

−∞ else.

The Legendre spectra of each Lévy process satisfy (5.2), and the assumptions under which (6.1)
holds are verified, so that the codimension formula holds, and

L(H1, H2) =

{
β1H1 + β2H2 − d if (H1, H2)∈ [0, 1/β1]× [0, 1/β2]

−∞ else.

Therefore (3.10) fails. Additionally, since E1(H1) and E2(H2) are empty if H1 < 0 or if H2 < 0,
E≤(0, 0) =E(0, 0), so that D(0, 0) =D≤(0, 0) and (3.9) also fails: In conclusion, independent
Lévy processes constitute another example where the Legendre spectrum does not give an upper
bound for the joint multifractal spectrum. Thus the multivariate multifractal formalism fails for
these important classes of stochastic processes, commonly used in real-world data modeling. Fig.
3 illustrates this numerically and plots the bivariate multifractal spectrum D≤(H), the point
D(H = (0, 0)), the predicted Legendre spectrum and a numerical estimate of it: indeed, theory
and estimate for L(H) practically collapse but are not upper bounds forD≤(H) orD(H = (0, 0)).
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. .

Figure 3. Multifractal analysis of independent Levy stable processes. Left: increments (∆Xm) of sample

paths (Xm) of two independent Levy processes time series (M = 2). Superposition of the predicted (blue) and estimated

(red) Legendre spectra L(H) (center), and of the theoretical bivariate multifractal spectrum D≤(H) (green), the point

D(H = (0, 0)) (pink symbol) and the estimated Legendre spectrum L(H) (red, right); the corresponding marginal

spectra are plotted in the H1 and H2 planes. The numerical estimate of the Legendre spectrum L(H) (in red) tightly

follows the theoretical prediction (in blue), yet L(H) is found to be below the multifractal spectrum D≤(H) (in green).

Even more, the support of L(H) covers only half the support of D≤(H) and misses the point D(H = (0, 0)).

(b) Generalized cross-scale multivariate formalism
We have shown a major drawback of the multifractal formalism supplied by (3.8): In general, it
does not yield an upper bound for the multifractal spectrum; it is the case when the exponents
are synchronous, an assumption which, however, cannot be verified on real-life signals. This
restriction raises the question of an alternative multifractal formalism which would yield in all
generality an upper bound for the multivariate multifractal spectrum. The counterexamples that
we studied clearly show that the multiresolution quantities that are used should incorporate
leaders at different scales. The purpose of this section is to propose such quantities and show
that the corresponding multifractal formalism satisfies the upper bound requirement that we
mentioned. However, a full analytical and numerical analysis of this formalism would be far
beyond the scope of the present paper and it will be performed in a future study.

We assume that M = 2. Here again extensions to arbitrary M are straightforward. The above
counter-examples show that the problem with the structure functions (3.5) is that they “couple”
leaders at the same scale only, thus missing possible interactions between different scales. A way
to turn this drawback is to consider “richer” structure functions in which the couplings between
leaders at different scales are incorporated. Note however that the coupling should be done
between leaders that contribute to singularities at the same point. Thus, it has to be restricted
to couples (λ1, λ2) of dyadic cubes such that one is included in the other. A first possibility is to
consider structure functions of the following form: Suppose that j1 ≤ j2; then

T (r1, r2, j1, j2) = 2−dj2
∑

λ1∈Λj1

∑
λ2∈Λj2 and λ2⊂λ1

|d1λ1
|r1 |d2λ2

|r2 . (5.3)

However, these structure functions depend on the two scales j1 and j2; therefore their order
of magnitude cannot be derived through a single log-log plot regression. One way to turn this
problem is to come back to the starting point of the derivation of the multifractal formalism: If
a point x belongs to E(H1, H2), then, there exist an infinite number of scales j1, j2 such that
d1λ1
≈ 2−H1j1 and d2λ2

≈ 2−H2j2 , so that,

|d1λ1
|r1 |d2λ2

|r2 ≈ 2−H1r1j12−H2r2j2 . (5.4)

One way to transform this two-scales relationship into a single-scale relationship is therefore to
replace d1λ1

by (d1λ1
)j2/j1 , which yields |d1λ1

|r1j2/j1 |d2λ2
|r2 ≈ 2−(H1r1+H2r2)j2 , and new structure
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functions for which one can draw log-log plot regressions versus j2 only,

if j1 ≤ j2, S(r1, r2, j1, j2) = 2−dj2
∑

λ1∈Λj1

∑
λ2∈Λj2 and λ2⊂λ1

|d1λ1
|r1j2/j1 |d2λ2

|r2 ; (5.5)

it is further natural to symmetrize the formula by switching the roles of j1 and j2 which yields

S̃(r1, r2, j1, j2) = 2−dj2
∑

λ1∈Λj1

∑
λ2∈Λj2 and λ2⊂λ1

|d1λ2
|r1 |d2λ1

|r2j2/j1 .

The corresponding scaling function is

η(r1, r2) = lim inf
(j1,j2)→+∞ and j1≤j2

log
(
S(r1, r2, j1, j2) + S̃(r1, r2, j1, j2)

)
log(2−j2)

. (5.6)

The cross-scale Legendre spectrum is obtained through a 2-variable Legendre transform

∀(H1, H2)∈R2, L(H1, H2) = inf
(r1,r2)∈R2

(d− η(r1, r2) +H1r1 +H2r2). (5.7)

Note that η(r1, r2)≤ ζ(r1, r2) because the lim inf in the definition of ζ is taken on a smaller set
(the scales such that j1 = j2). It follows that L(H1, H2)≤L(H1, H2). Proposition 5.2 below shows
that, in contradistinction with the Legendre spectrum (3.8), L(H1, H2) yields an upper bound for
D(H1, H2).

Proposition 5.2. For any couple (h1(x), h2(x)) of exponents satisfying (3.4),

∀(H1, H2) D(H1, H2)≤L(H1, H2). (5.8)

Proof: Let (H1, H2) be fixed, and let ε > 0. For j1, j2 ≥ 0, we denote by F (H1, H2, j1, j2, ε) the
subset of Λj1 × Λj2 defined by the conditions

λ2 ⊂ λ1, 2(−H1−ε)j1 ≤ dλ1
≤ 2(−H1+ε)j1 and 2(−H2−ε)j2 ≤ dλ2

≤ 2(−H2+ε)j1 ; (5.9)

and we denote by N(H1, H2, j1, j2, ε) the cardinality of this set. By restricting the sum in (5.5) to
the elements of F (H1, H2, j1, j2, ε), and using (5.9) it follows that

∀r1, r2 ∈R, 2−dj2N(H1, H2, j1, j2, ε)2
−(r1H1+ε|r1|)j22−(r2H2+ε|r2|)j2 ≤ S(r1, r2, j1, j2);

and from (5.6) we obtain that, for j1 and j2 large enough, S(r1, r2, j1, j2)≤ 2−j2(η(r1,r2)−ε); thus

N(H1, H2, j1, j2, ε)≤ 2j2(d−η(r1,r2)+ε+r1H1+ε|r1|+r2H2+ε|r2|). (5.10)

It follows from (3.4) that, if x∈E(H1, H2), then x belongs to an infinite number of cubes
λ2 such that (λ1, λ2)∈ F (H1, H2, j1, j2, ε) (indeed λ2 ⊂ λ1, so that x also belongs to λ1). If
we denote by G(H1, H2, j1, j2, ε) the collection of these cubes λ2, then its cardinality also is
N(H1, H2, j1, j2, ε); thus, if x∈E(H1, H2), then

∀ε > 0, x∈ lim sup
j1,j2→+∞

G(H1, H2, j1, j2, ε).

Thus,

∀J1 > 0, E(H1, H2)⊂
⋃

j2≥j1≥J1

G(H1, H2, j1, j2, ε).

Let A= d− η(r1, r2) + ε+ r1H1 + ε|r1|+ r2H2 + ε|r2|; because of (5.10), G(H1, H2, j1, j2, ε) is
composed of less than 2Aj2 dyadic cubes of width 2−j2 . We use these cubes as ε-covering of
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E(H1, H2) and we obtain∑
j2≥j1≥J1

∑
(λ1,λ2)∈G(H1,H2,j1,j2,ε)

2Aj2(2−j2)δ ≤
∑
j2≥J1

(j2 − J1 + 1)2(A−δ)j2

which is finite as soon as δ >A. It follows that the Hausdorff dimension of E(H1, H2) is
bounded by d− η(r1, r2) + ε+ r1H1 + ε|r1|+ r2H2 + ε|r2|. Since this is true ∀ε > 0, D(H1, H2)

is bounded by d− η(r1, r2) + r1H1 + r2H2. Since this holds for any couple (r1, r2), the theorem
is proved.

Note that (2.8) yields another upper bound for the bivariate spectrum. Therefore (5.7) is of
interest only if it yields a sharper upper bound.

Proposition 5.3. If the dλ are bounded, then, for any couple of data,

L(H1, H2)≤min(L1(H1), L2(H2)), (5.11)

and in general both quantities differ.

Proof: If d1λ ≤C, then

S(r1, r2, j1, j2)≤C2−dj2
∑

λ1∈Λj1

∑
λ2∈Λj2 and λ2⊂λ1

|d2λ2
|r2 =C2−dj2

∑
λ2∈Λj2

|d2λ2
|r2 = S2(r2, j2).

It follows that η(r1, r2)≥ η2(r2), so that L(H1, H2)≤L2(H2). the same argument with S̃ yields
that S̃(r1, r2, j1, j2)≤ S1(r1, j1), from which we conclude that L(H1, H2)≤L1(H1), and hence
(5.11) by exchanging the roles of H1 and H2.

We now give an example showing that this new formalism can yield a sharper upper bound
than the trivial one supplied by min(L1(H1), L2(H2)). We consider the interval [0, 1], and define
the d1λ and d2λ by

• If λ⊂ [0, 1/2] then d1λ = 2−α1j and d2λ = 2−α2j .
• If λ⊂ [1/2, 1] then d1λ = 2−β1j and d2λ = 2−β2j .

Then S(r1, r2, j1, j2) =
1
2

(
2−(α1r1+α2r2)j2 + 2−(β1r1+β2r2)j2

)
. It follows that the scaling

function is η(r1, r2) =min(α1r1 + α2r2, β1r1 + β2r2), and its Legendre transform L(H1, H2) is
the characteristic function of the segment of ends (α1, α2) and (β1, β2). This is to be compared
with the trivial bound supplied by (5.11) which, in this case is the characteristic function of
the rectangle delimited by the four points (α1, α2), (α1, β1), (β1, α2), (β1, β2) (we compare the
diagonal of the rectangle with the rectangle itself).

6. Interpreting the multivariate multifractal and Legendre spectra
Of central interest in multivariate multifractal analysis is to understand which information the
shape of a multivariate multifractal spectrum yields on data, and on the relationships between
their different components. Again, the discussion is conducted in a bivariate setting for simplicity,
but extends straightforwardly to M ≥ 2. By definition, the multifractal spectrum D(H1, H2)

quantifies the co-occurences of Hölder exponents taking jointly values H1 for component 1 and
H2 for component 2. This holds both for deterministic functions and sample paths of stochastic
processes. The interpretation of the Legendre spectrum L(H1, H2) requires more attention and
can be discussed along two lines: synchronicity vs. non synchronicity and, in a stochastic process
setting, dependence vs. independence.

Remark: In [29], for a function f : IRd→ IR, a comparison between the (wavelet) large deviations spectrum
and the multifractal spectrum was used to detect the presence of oscillating singularities for f . It is certainly
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worth investigating whether some similar conclusions could be obtained for multivariate functions, i.e.
what conclusions can be deduced from the non-coincidence between the multifractal, the large deviations
and the Legendre spectra.

(a) Synchronicity vs. non synchronicity
When the synchronicity assumption (cf. Section 3) is satisfied, the Legendre spectrum L(H1, H2)

yields an upper bound of D(H1, H2). The interpretation as cooccurrence of Hölder exponents
associated with D(H1, H2) thus also holds for L(H1, H2).

When the synchronicity assumption is not satisfied, the interpretation of L(H1, H2) must be
weakened as follows. The wavelet leaders (d1λ, d

2
λ) associated with the sample paths of the two

components can be seen as random variables whose distributions are controlled by the bivariate
large deviation spectrum: D(H1, H2), limε→0 lim supj→∞Nj(H1, H2, ε), where Nj(H1, H2, ε) =

card
{
λ∈Λj : H1−ε≤ `j(d1λ)≤H1+ε and H2−ε≤ `j(d1λ)≤H2+ε

}
. Indeed, D(H1, H2)

quantifies the number of couples (d1λ, d
2
λ) such that jointly d1λ ∼ 2−H1j and d2λ ∼ 2−H2j .

The univariate relationship between the large deviation spectrum and the Legendre spectrum
can be extended to the multivariate setting, and states that L(H1, H2) is the concave hull
of D(H1, H2). Therefore, if the large deviation spectrum is concave, the Legendre spectrum
L(H1, H2) can be given the interpretation of cooccurrences of the multiscale quantities (d1λ, d

2
λ).

These discussions and interpretations are to be understood sample-path wise and are thus valid
both in deterministic and stochastic settings. Note that techniques to estimate large deviations
spectra have recently been developed, see [30] and ref. therein.

(b) Legendre spectrum in a stochastic setting

(i) Stationarity and independence

To gain insights into the properties of the multivariate Legendre spectrum in a stochastic setting,
let us consider bivariate stochastic processes, with stationary wavelet coefficients at each scale.
This is for instance the case for stationary processes, or processes with increments of a given
order that are stationary. Under stationarity of the wavelet coefficients, the structure functions
defined in (3.5) can be interpreted as sample moment estimators of the random variables dλ

S(r1, r2, j) = 2−dj
∑
λ∈Λj

|d1λ|
r1 |d2λ|

r2 ∼ IE
(
|d1λ|

r1 |d2λ|
r2
)
.

Further, assuming independence of the components, the wavelet coefficients and wavelet
leaders d1λ and d2λ are also independent, yielding S(r1, r2, j)∼ IE

(
|d1λ|

r1
)
IE
(
|d2λ|

r2
)

and hence
S(r1, r2, j) = S1(r1, j)S

2(r2, j).

Assuming that the liminf in (3.6) is a true limit, the assumption of stationarity and
independence thus leads to ζ(r1, r2) = ζ1(r1) + ζ2(r2) and (3.8) becomes

L(H1, H2) = inf
(r1,r2)∈R2

(d− ζ1(r1) + ζ2(r2) +H1r1 +H2r2)

= inf
r1

(d− ζ1(r1) +H1r1) + inf
r2

(d− ζ2(r2) +H2r2)− d,

which leads to
L(H1, H2) =L(H1) + L(H2)− d. (6.1)

This derivation follows the one proposed in [6], rewritten in the framework of multiscale
quantities, and shows that under the joint assumptions of stationarity and independence, the
codimension rule (2.9) applies for the multivariate Legendre spectrum. This is valid irrespective
of whether synchronicity holds or not. A practical outcome is that any departure of the Legendre
spectrum from (6.1) indicates that either of the assumptions (stationarity or independence)
required to yield (6.1) does not hold.
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(ii) Dependence vs. independence

Let us now discuss the relations between the shape of L(H1, H2) and statistical dependencies.
We first assume stationarity of the multiscale quantities. It has been documented in [6], using
a formalism dedicated to measures, that the dependence amongst components of cascades
controls the shape of the corresponding bivariate Legendre spectrum, that is, the departures of
L(H1, H2) from L(H1) + L(H2)− d. Elaborating on these results, and using a wavelet leader-
based multifractal formalism, it has further been shown and illustrated that the higher-order
statistical dependencies amongst components of a bivariate multifractal random walk also control
the bivariate Legendre spectrum [16,17]. More generally, let µ1 and µ2 denote two non-atomic
stationary probability measures on [0, 1] (as in [31,32]) with pointwise correlation ρMF , and let
F1 and F2 be their respective cumulative density functions (i.e. F (x) = µ[0, x]). These results
suggest that LF1,F2

(H1, H2) 6=LF1
(H1) + LF2

(H2)− d, and this deviation of LF1,F2
(H1, H2)

from LF1
(H1) + LF2

(H2)− d is due to the dependence of µ1 and µ2 that is controlled by ρMF .
We now drop the stationarity assumption for µ1 and µ2; being continuous and monotonously

increasing functions, F1 and F2 can be used as a time-change for stochastic processes, and permit
to extend this discussion to bivariate fractional Brownian motions in multifractal time, as defined
in [33] in a univariate setting. Let Bα and Bβ denote two fractional Brownian motions, with
exponents α and β, with pointwise correlation ρSS . Then, we construct Bα,µ1(t) =Bα(F1(t))

and Bβ,µ2
(t) =Bα(F2(t)), whose pointwise correlation ρ is a function of both ρMF and ρSS . For

functions or processes whose Hölder exponents take values in [0, 1], or for which the polynomial
in (2.1) always consists of a constant, standard uniform estimates on increments of fBm yield

a.s. ∀x0, hBα(X)(x0) = αhX(x0), (6.2)

see e.g. [33]. It follows that, a.s.:

DBα,µ1 (H) =DF1

(
H

α

)
, DBβ,µ2 (H) =DF2

(
H

β

)
DBα,µ1 ,Bβ,µ2 (H1, H2) =DF1,F2

(
H1

α
,
H2

β

)
, (6.3)

and LBα,µ1 ,Bβ,µ2 (H1, H2) =LF1,F2

(
H1

α
,
H2

β

)
. (6.4)

This illustrates the following key features of the multifractal and Legendre spectra that are valid
generically in a stochastic setting. The shapes of the bivariate multifractal and Legendre spectra
are independent of the correlation ρSS ; further, they depend on the parameters α and β of the
fractional Brownian motionsBα andBβ only trivially, by contraction along theH1 andH2 axes of
the marginal and thus the joint spectra. Any non-trivial deformation of the spectra is hence due to
dependence not quantified by correlation: In other words, the bivariate multifractal and Legendre
spectra yield information on higher order statistical dependencies amongst components, beyond
the correlation coefficient. For example, ρSS ≡ 0 obviously implies ρ≡ 0, while the bivariate
Legendre spectrum can be tuned by ρMF from LBα,µ1 ,Bβ,µ2 (H1, H2)≡LF1

(H1
α ) + LF2

(H2
β )− 1

when ρMF ≡ 0 to LBα,µ1 ,Bβ,µ2 (H1, H2)≡LF1
(H1
α )1H1±αH2/β when ρMF ≡±1, independently

of ρSS . Therefore, the existence of higher order statistical dependencies beyond correlation
amongst components do induce and control departures of L(H1, H2) from the codimension rule
prediction: L(H1) + L(H2)− 1.

However, and counterintuitively, the converse is not necessarily true, as can be shown from
the following example. Let µ1 ≡ µ2 ≡ µ and hence F1 ≡ F2 ≡ F ≡ µ[0, x]. Let Bα and Bβ denote
two independent fBm, with exponents α and β. Then, by construction, the compound processes
Bα,µ(t) =Bα(F (t)) and Bβ,µ(t) =Bβ(F (t)) are independent. However, their bivariate Legendre
spectrum obviously reads LBα,µ,Bβ,µ(H1, H2)≡LF (H1

α )1H1=αH2/β and hence departs from the
co-dimension formula. This is illustrated in Fig. 4 using the binomial cascades (µp, µq) with 0<

p, q < 1/2 defined in Section 4 and α= β = 1/2.
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Figure 4. Multifractal analysis of Brownian motion in multifractal time. Left: Increments (∆Xm) and

sample paths (Xm) of bivariate Brownian motion compound with bivariate binomial cascades (p1, p2 < 1/2); Right:

theoretical bivariate multifractal spectrumD(H) (blue) and estimated Legendre spectrumL(H) (red); the corresponding

marginal spectra are plotted in the H1 and H2 planes. Although the two sample paths X1 and X2 are statistically

independent, co-dimensions do not add up: The support of D(H) collapses to a line segment in this case, and the

estimate for L(H) is in better agreement with D(H) than with the ellipsoidal support of a spectrum obtained by adding

up co-dimensions (indicated in black), which it fails to cover.

7. Conclusion
In [6], a natural multivariate extension of the univariate multifractal formalism was proposed,
based on increments and in the context of hydrodynamic turbulence. Reformulating this
multivariate formalism in the wavelet leader framework, as proposed in [13,14], enabled us to
investigate its range of validity and to contribute a number of new insights and results:

i) The notions of synchronicity of multiscale quantities and minimizing sequences amongst
data components demonstrates that under synchronicity the multivariate Legendre spectrum can
be associated with co-occurences of singularities among components, and thus be formally related
to the multivariate (Hausdorff) multifractal spectrum, as its upper bound ;

ii) The construction of counterexamples, both pedagogical or realistic with respect to real-
world data, shows that the proposed multivariate extension of the univariate multifractal
formalism is not valid if synchronicity fails: the multivariate Legendre spectrum can fail to
provide an upper bound for the multivariate (Hausdorff) multifractal spectrum ;

iii) A mathematical foundation for a multivariate multifractal formalism which fulfills the
upper bound requirement has been proposed and studied theoretically ;

iv) Interpretations and usefulness of the multivariate Legendre spectrum were discussed
both in determinist and stochastic settings, in terms of synchronicity, stationarity and statistical
dependencies.

The theoretical results were validated numerically by computing multivariate Legendre
spectra from synthetic data using a Multvariate Multifractal Analysis Toolbox designed by ourselves
that will made publicly available and documented at the time of publication. Future work will
focus on addressing the practical issues related to the numerical implementation related with this
generalized formalism.

Data Accessibility. This article has no additional data.

Authors’ Contributions. All authors equally contributed to the design and implementation of the research
and to the writing of the manuscript.

Funding. Work supported by ANR-16-CE33-0020 MultiFracs, France.

Acknowledgements. The authors thank the anomymous referees for several suggestions that improved the
initial redaction of the text and for pointing to several important references.

References
1. S. Jaffard, Wavelet techniques in multifractal analysis, in: Fractal Geometry and Applications:

A Jubilee of Benoît Mandelbrot, M. Lapidus and M. van Frankenhuijsen, Eds., Proc. Symposia



23

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

in Pure Mathematics, Vol. 72(2), AMS, 2004, pp. 91–152.
2. P. Abry, S. Jaffard, H. Wendt, Irregularities and scaling in signal and image processing:

Multifractal analysis, Benoit Mandelbrot: A Life in Many Dimensions, M. Frame and N.
Cohen, Eds., World scientific publishing (2015) 31–116.

3. S. Jaffard, C. Melot, R. Leonarduzzi, H. Wendt, S. G. Roux, M. E. Torres, P. Abry, p-exponent
and p-leaders, Part I: Negative pointwise regularity, Physica A 448 (2016) 300–318.

4. R. Leonarduzzi, H. Wendt, S. G. Roux, M. E. Torres, C. Melot, S. Jaffard, P. Abry, p-exponent
and p-leaders, Part II: Multifractal analysis. Relations to Detrended Fluctuation Analysis,
Physica A 448 (2016) 319–339.

5. G. Parisi, U. Frisch, Fully developed turbulence and intermittency, in: M. Ghil, R. Benzi,
G. Parisi (Eds.), Turbulence and Predictability in geophysical Fluid Dynamics and Climate
Dynamics, Proc. of Int. School, North-Holland, Amsterdam, 1985, p. 84.

6. C. Meneveau, K. Sreenivasan, P. Kailasnath, M. Fan, Joint multifractal measures - theory and
applications to turbulence, Physical Review A 41 (2) (1990) 894–913.

7. J. Peyrière, A vectorial multifractal formalism, Proc. Symp. Pure Math. 72.2 (2) (2004) 217–230.
8. L. Barreira, B. Saussol, J. Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures

Appl. 81 (2002) 67–91.
9. L. Olsen, Mixed generalized dimensions of self-similar measures, J. Math. Anal. Appl. 306

(2005) 516–539.
10. M. Morán, Problems on self-similar geometry, in: C. Bandt, S. Graf, M. Zähle (Eds.), Fractal

Geometry and Stochastics II, Greifswald, Germany, August, 1998, Birkhäuser Verlag, 2000, p.
69–93.

11. L. Olsen, Mixed divergence points of self-similar measures, Indiana University Mathematics
Journa 52 (2003) 1343–1372.

12. M. Morán, Multifractal components of multiplicative set functions, Math. Nachr. 229 (2001)
129–160.

13. S. Jaffard, S. Seuret, H. Wendt, R. Leonarduzzi, S. Roux, P. Abry, Multivariate multifractal
analysis, Appl. Comput. Harm. Anal. 46 (3) (2019) 653–663.

14. M. Ben Slimane, Baire typical results for mixed Hölder spectra on product of continuous Besov
or oscillation spaces, Mediterr. J. Math. 13 (2016) 1513–1533.

15. M. Ben Abid, Prevalent mixed Hölder spectra and mixed multifractal formalism in a product
of continuous Besov spaces, Nonlinearity 30 (2017) 3332–3348.

16. H. Wendt, R. Leonarduzzi, P. Abry, S. Roux, S. Jaffard, S. Seuret, Assessing cross-dependencies
using bivariate multifractal analysis, in: IEEE Int. Conf. Acoust., Speech, and Signal Proces.
(ICASSP), Calgary, Canada, 2018.

17. R. Leonarduzzi, P. Abry, S. G. Roux, H. Wendt, S. Jaffard, S. Seuret, Multifractal
characterization for bivariate data, in: Proc. European Signal Processing Conference
(EUSIPCO), Rome, Italy, 2018.

18. P. Abry, S. Jaffard, R. Leonarduzzi, C. Melot, H. Wendt, New exponents for pointwise
singularity classification, in: S. Seuret, J. Barral (Eds.), Recent Developments in Fractals and
Related Fields: Proc. Fractals and Related Fields III, 19-26 September 2015, Porquerolles,
France, 2017, pp. 1–37.

19. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability,
Cambridge Studies in Advanced Mathematics, 1999.

20. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley &
Sons, West Sussex, England, 1993.

21. A. Durand, Sets with large intersection and ubiquity, Mathematical Proceedings of the
Cambridge Philosophical Society 144 (1) (2008) 119–144.

22. J. M. Aubry, S. Jaffard, Random wavelet series, Comm. Math. Phys. 227 (3) (2002) 483–514.
23. S. Jaffard, The multifractal nature of Lévy processes, Probability Theory and Related Fields

114 (2) (1999) 207–227.
24. L. Barreira, B. Saussol, Variational principles and mixed multivariate spectra, Trans. A. M. S.

353 (10) (2001) 3919–3944.
25. A.-H. Fan, D.-J. Feng, J. Wu, Recurrence, dimension and entropy, J. London Math. Soc. 11 (3)

(2001) 229–244.
26. A. Arneodo, E. Bacry, S. Jaffard, J. Muzy, Singularity spectrum of multifractal functions

involving oscillating singularities, J. Fourier analysis and Applications 4 (1998) 159–174.
27. B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high

moments and dimension of the carrier, J. Fluid Mech. 62 (1974) 331–358.



24

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

28. A. Durand, Singularity sets of Lévy processes, Probab. Theory Relat. Fields 143 (2009) 517–544.
29. S. Seuret, Detecting and creating oscillations using multifractal methods, Math. Nachr. 279 (11)

(2006) 1195–1211.
30. R. Leonarduzzi, P. Abry, H. Wendt, S. Jaffard, H. Touchette, A generalized multifractal

formalism for the estimation of nonconcave multifractal spectra, IEEE T. Signal Proces. 67 (1)
(2019) 110–119.

31. E. Bacry, J. Delour, J.-F. Muzy, Multifractal random walk, Phys. Rev. E 64: 026103 (2001).
32. J. Barral, B. Mandelbrot, Random multiplicative multifractal measures, Proc. Symp. Pures

Math., M. L. Lapidus and M. van Frankenhuysen eds 72 (2004) 1–52.
33. B. Mandelbrot, Scaling in financial prices: III. cartoon Brownian motions in multifractal time,

Quantitative finance 1 (2001) 427–440.


	1 Introduction
	2 Multivariate multifractal analysis: Intuitions and definitions
	(a) Pointwise regularity
	(b) Multivariate multifractal spectra: Definitions and properties
	(c) Intersection of fractal sets

	3 Multivariate extension of the multifractal formalism
	(a) Minimizing sequences and compatibility 
	(b) Multivariate multifractal formalism for synchronous exponents
	i Synchronous exponents
	ii Multivariate multifractal formalism and multivariate Legendre spectrum

	(c) Upper bound: multivariate multifractal and Legendre spectra

	4 Deterministic bivariate dyadic binomial cascades
	(a) Univariate cascades
	(b) Bivariate multifractral spectrum
	(c) Bivariate multifractal formalism and Legendre spectrum
	i  The case 0<p,q<1/2
	ii  The case 0<p <1/2<q


	5 The failure of the multivariate multifractal formalism
	(a) Counterexamples
	i Scale-lacunary wavelet series
	ii Lévy processes

	(b) Generalized cross-scale multivariate formalism

	6 Interpreting the multivariate multifractal and Legendre spectra
	(a) Synchronicity vs. non synchronicity
	(b) Legendre spectrum in a stochastic setting
	i Stationarity and independence
	ii Dependence vs. independence


	7 Conclusion
	References

