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Log wavelet Leaders cumulant based multifractal
analysis of EVI fMRI time series: evidence of
scaling in ongoing and evoked brain activity
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Abstract— Classical within-subject analysis in functional Mag-
netic Resonance Imaging (fMRI) relies on a detection step to
localize which parts of the brain are activated by a given stimulus
type. This is usually achieved using model-based approaches.
Here, we propose an alternative exploratory analysis. The origi-
nality of this contribution is twofold. First, we propose a synthetic,
consistent and comparative overview of the various stochastic
processes and estimation procedures used to model and analyse
scale invariance. Notably, it is explained how multifractal models
are more versatile to adjust the scaling properties of fMRI data
but require more elaborated analysis procedures. Second, we
bring evidence of the existence of actual scaling in fMRI time
series that are clearly disentangled from putative superimposed
non stationarities. By nature, scaling analysis requires the use of
long enough signals with high frequency sampling rate. To this
end, we make use of a Localized 3D Echo Volume Imaging (EVI)
technique, which has recently emerged in fMRI because it allows
very fast acquisitions of successive brain volumes. High temporal
resolution EVI fMRI data have been acquired both in resting
state and during a slow event-related visual paradigm. A voxel-
based systematic multifractal analysis has been performed over
both kinds of data. Combining multifractal attribute estimates
together with paired statistical tests, we observe significant scaling
parameter changes between ongoing and evoked brain activity,
which clearly validate an increase in long memory and suggest
a global multifractality decrease effect under activation.

Index Terms— Biomedical signal detection, functional Mag-
netic resonance imaging, Multifractal analysis, Wavelet Leaders,
brain activity, EVI.

I. MOTIVATION: SCALING IN FMRI?

While classical data analysis procedures in functional Mag-
netic Resonance Imaging (fMRI) rely on a model of the
expected BOLD (Blood oxygen Level Dependent) response
for localizing evoked activity i.e., specific brain regions in-
volved in the performance of cognitive or behavioral tasks,
exploratory analysis aims at finding significant components in
the data that explain most of the fluctuations in a model-free
manner. A post-hoc classification of these components is often
used to discriminate physiological trends related for instance
to cardiac beat or breathing rate from stimulus-induced (i.e.
evoked) activity. In most cases, one is interested in extracting
spatial components using multivariate methods like Principal
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or Independent Components Analysis techniques [1–3]. In the
present work, we rather concentrate on a univariate model-
free framework which is able to clearly disentangle true
scaling behaviors from non-stationary trends superimposed to
the BOLD signal irrespective of the presence of an external
stimulation (resting state or evoked activity).

The presence of scale invariance in fMRI data has been
considered as confound or noise for a long time. Indeed,
fMRI time series are known to have a colored noise structure,
the majority of which occurs at low frequency. Preliminary
evidence that fMRI time series have long memory in time
or 1/f spectral properties has been demonstrated on “rest-
ing state” motion-corrected datasets [4, 5]. Previous studies
have shown that head movement is a common source of
long memory noise caused by slow rotation or translation
of the subject’s head through an imperfectly homogeneous
magnetic field [6, 7]. Physiological factors such as cardiac
beat or breathing cycle may also contribute to this scaling
phenomenon since they may contaminate the BOLD signal
with properties depending on the sampling period of data (i.e.,
short/long time of repetition (TR)) [8–10]. Early investiga-
tions therefore considered these space-varying low frequency
components as noise, which are responsible for potential
non stationarities [11–13]. Hence, to fulfill the assumptions
underlying the classical model-based localization techniques
of brain activity, most neuropsychologists resort to high-pass
filtering to remove these trends. In the last few years, the Gen-
eralized Linear Model estimation method has been extended to
account for 1/f (or fractional Gaussian) noise using wavelet
decomposition [14]. More recently, it has been demonstrated
that a Bayesian approach incorporating nonstationary noise
models outperforms the classical GLM-based techniques in
terms of activation detection [15]. The latter actually loses
crucial dynamic features in the data.

Other authors have pointed out that the BOLD signal
itself contains power at virtually all frequencies, notably in
randomized event-related designs [16]. Interestingly, recent
studies have reported that low-frequency spatial fluctuations in
cortical BOLD signals may be indicative of synchronized long
memory neuronal oscillations rather than merely noise [17–
19]. Concomitantly, greater persistence during brain activation
has been found in normal subjects in [18]. This confirms that
high-pass filtering may potentially remove parts of the signal
of interest. Also, higher predictability summarized in terms of
scaling exponent (controlling the power law decrease of 1/f
spectra) has been reported in patients with Alzheimer diseaseSubmission date: 03/15/2008
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or with major depressive disorder, especially in brain regions
implicated in the early stages of the degeneracy process [19,
20].

Inspired by the connection between 1/f and long range
dependence, several groups have argued that the analysis
of fMRI time series should be performed in the wavelet
domain [5, 12, 14, 15, 19]. Then, a first attempt to identify
stimulus-induced signal changes from scaling parameters has
been proposed in [18, 21]. These authors have developed
voxel-based fluctuation analysis (FA), compared it to wavelet
multiresolution analyses (e.g., the wavelet transform modulus
maxima method [22, 23]), and applied it to high temporal
resolution fMRI data. Interestingly, they have shown that
the fractal feature of voxel time series can be utilized to
separate active and inactive brain regions [18, 21]. Also, to
decide whether scaling analysis can help distinguish motion
artifacts from true BOLD responses, complementary analyses
have been conducted in [24]. They are based on detrended
fluctuation analysis (DFA) and conclude that DFA succeeds
in distinguishing among three types of voxels, noise, motion
artifacts, and true BOLD responses when classical FA fails
to robustly recognize which active regions in the brain are
truly involved in certain tasks. However, it has been argued
in [25] that wavelet tools perform better than DFA. Therefore,
in the present contribution, the voxel-based analysis of scaling
properties is based on wavelet decompositions. To enrich the
description of scaling properties of data, the model of 1/f
processes has been associated to that of long range depen-
dence. These classes of models have then been embodied into
that of self-similar processes. Further, multifractal processes
were proposed has another versatile class of models for scale
invariance. All these notions are often confusingly taken one
for the other.

Therefore, the first goal and contribution of the present
article is of tutorial nature. It is intended to give a brief yet
precise and tutorial introduction to the concepts, stochastic
models and analysis tools tied to scale invariance. Scale
invariance can be fruitfully described with a nested suite
of stochastic models, (2nd order stationary) 1/f -processes,
self-similar processes and multifractal processes. This col-
lection of models possesses an increased versatility (mostly
a larger number of parameters) to capture the richness of
scaling properties in data; at the price, though, of substantially
increased difficulties both in their definitions and analysis
methodologies. The use of self-similar processes provides the
practitioners with a better mathematically grounded framework
to perform scaling exponent estimation of data. The use of
multifractality rather than self-similarity to model data implies
two major conceptual changes: i) the single scaling parameter
defining self-similar processes is replaced with a collection
(multi-fractal) of scaling parameters, ii) scaling analysis can
no longer be based on classical multiresolution quantities,
such as increments or (discrete or continuous) wavelet coef-
ficients [26], and should rather rely on new multiresolution
quantities bringing significant robustness and gains in esti-
mation performance: the wavelet Leaders [27]. Also, instead
of the classical structure function based procedures [26, 28],
MF attributes are estimated from the logarithm of the wavelet

Leaders. These theoretical elements are introduced in Section
II whose aim and originality consist of guiding the reader,
in a self-consistent and homogeneous manner, through the
declinations of the refined stochastic models that can be used
to describe scaling as well as through the necessary adaptation
of the analysis tool. The second goal and contribution of the
present article consists of applying scaling analyses to high
temporal resolution BOLD fMRI data acquired during a 3D
parallel localized Echo Volumar Imaging (EVI) sequence [29]
(cf. Section III). As opposed to conventional EPI, this new
imaging technique makes multi-slice acquisition in a few
hundreds of milliseconds feasible. Our goal is therefore to
analyze whether such data collected during resting state and
under a slow event-related visual protocol do possess scaling
or not and what their nature is (self-similarity or multifractal).
Results are reported in Section IV-A. It is shown that this log-
cumulant wavelet-Leader based approach enables us to bring
evidence for the existence of scaling in fMRI time series for
both kinds of data and to characterize their nature. Also, we
illustrate that such scaling cannot be confused with putative
non stationary trends superimposed to data. A set of statistical
tests enable us to conclude that activation induces a clear
and systematic increase of the long memory parameter with
a (less strong and systematic) decrease in multifractality. This
is discussed in Section V.

II. SCALING AND MULTIFRACTAL: THEORY

A. Scale invariance (or scaling)

Classically, data analysis often amounts to trying to identify
one (or a few) particular scale(s) of time that play(s) a specific
role in the data dynamics and to basing data description on
models whose key parameters are controlled by these specific
time-scale(s). Scale invariance consists of the negation of this
approach: No scale of time (or space) can be singled out
or found as having a characteristic importance. It can also
be reformulated as the fact that all the scales are equally
contributing to data dynamics. Scale invariance has primarily
been connected to (2nd order stationary) 1/f -processes and to
spectrum estimation. Let X denote the signal under analysis,
and Γ̂X(f, tk) any standard spectrum estimation procedure,
such as Welch estimator or such as average over sliding
time windows (centered around times tk) of the squared
smoothed Fourier transforms (periodograms): Scale invariance
is then associated to a power law behavior of the spectrum
estimate with respect to a wide range of frequencies, f ∈
[fm, fM ], fM/fm � 1:

1
n

n∑
k=1

Γ̂X(f, tk) ' C|f |−γ , γ > 0. (1)

However, it is now well established (e.g., [28, 30]) that 1/f -
processes and standard spectral estimation have limited ca-
pacities both for modeling and analyzing scaling. For instance,
the power law behavior of the spectrum cannot simultaneously
hold in both limits (|f | → 0 and |f | → +∞) and a 1/f spec-
trum constitutes only a rough definition for a class of models.
Along the same line, standard spectral analysis tools provide
the practitioners with poor estimates of the scaling exponent
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γ. Such tools also turn out to encounter severe limitations
in enabling to distinguish between true power law spectral
behavior and low frequency (or slow) non stationarities, trends
or drifts that may also exist in data. More specifically, in the
context of fMRI, low frequency drifts have been measured in
phantoms and cadavers [31]. It has also been observed that
high frequency physiological components can be aliased in
low frequencies. Therefore, it has often been thought that the
scaling properties that are observed in data actually only cor-
respond to artifacts caused by non stationary behaviors. This
motivated a first major change: Standard spectral estimates
Γ̂X(f, tk) are replaced with multiresolution quantities, labeled
TX(a, t), i.e., quantities describing the content of X around
a time position t, and a scale a. Qualitatively, the analysis
scale a acts as the inverse of a frequency: a ∼ f0/f (f0
being a constant that depends on the details of the definition
of TX(a, t)). Standard examples for TX(a, t) are given by
wavelet, increment or box-aggregated coefficients. Moreover,
wavelet transforms have been shown to provide practitioners
with relevant analysis of scaling properties, notably in terms
of robustness against non stationarity (see e.g. [28, 30, 32–
35]). Another significant change in scaling modeling lies in
the fact that one now commonly considers not only second
order statistical analysis but instead a collection of statistical
orders q [28]. Therefore, scale invariance is now commonly
and operationally defined as the power law behaviors of the
(time average of the q−th power of the) TX(a, t), with respect
to the analysis scale a, for a given (large) range of scales
a ∈ [am, aM ], aM/am � 1:

1
na

na∑
k=1

|TX(a, k)|q ' cqa
ζ(q). (2)

The ζ(q) are referred to as the scaling exponents and their
estimation is often the major goal in scaling analysis. The
estimated exponents are often used for data identification or
classification. In the present application to fMRI data, the goal
is to investigate whether the values of the scaling exponents
are varied under brain activity stimulation.

This new definition is made consistent by the use of new
stochastic processes to fruitfully model scale invariance: self-
similar processes [36] and multifractal processes [37]. They
are introduced in the remainder of this section together with
the details of the corresponding wavelet based analyses.

B. Multiresolution quantities

1) Wavelet coefficients: Let ψ0(t) denote the mother-
wavelet: an elementary function, characterized by a fast expo-
nential decay and a strictly positive integer N ≥ 1, the number
of vanishing moments, defined as ∀k = 0, 1, . . . , N − 1,∫
R t

kψ0(t)dt ≡ 0 and
∫
R t

Nψ0(t)dt 6= 0. The mother-wavelet
is moreover chosen such that the collection of templates of
ψ0 dilated to scales 2j and translated to time positions 2jk,
{ψj,k(t) = 2−jψ0(2−jt − k), j ∈ Z, k ∈ Z}, forms an
orthonormal basis of L2(R). The discrete wavelet transform
(DWT) of X is defined through its coefficients:

dX(j, k) =
∫
R
X(t) 2−jψ0(2−jt− k) dt. (3)

Note the choice of the L1-norm (as opposed to the more
common L2-norm choice) that better matches scaling analysis.
For further details on wavelet transforms, the reader is referred
to e.g., [38].

2) Structure functions: For fixed scales a = 2j , the time
averages of (the q-th powers of) the dX(j, k) are referred to
as the structure functions (with nj the number of dX(j, k)
available at scale 2j).

Sd(j, q) = 1
nj

nj∑
k=1

|dX(j, k)|q. (4)

3) Wavelet Leaders: Let us further assume that ψ0(t) has
compact time support and define dyadic intervals as λ ≡
λj,k =

[
k2j , (k + 1)2j

)
. Also, let Λ denote the union of the

interval λ with its 2 adjacent dyadic intervals: Λ ≡ Λj,k =
λj,k−1 ∪ λj,k ∪ λj,k+1. Following [27, 39], we define the
wavelet Leaders as (Fig. 1 illustrates this definition) :

LX(j, k) ≡ Lλ = sup
λ′⊂Λj,k

|dλ′ |. (5)

Fig. 1. Definition of Wavelet leaders. The wavelet Leader LX(j, k),
located on node (k2j , 2j) (red circle) of the dyadic grid underlying the
DWT, is (practically) obtained as the largest of all wavelet coefficients
dX(j′, k′) located at finer scales j′ ≤ j within in a time neighborhood
(k − 1)2j ≤ k′2j′

< (k + 2)2j (blue dots within the grey-shaded area).

C. Scaling models: Long range dependence, Self-similarity,
Multifractality

1) Long range dependence (LRD): As mentioned in Sec-
tion I, the oldest intuition associated to scaling or scale
invariance traces back to 1/f -processes, i.e., to (second-order)
stationary processes Y whose spectrum behaves, for some
(wide) range of frequencies, as,

ΓY (f) ' C|f |−γ (6)

with γ > 0. In the particular case where the power law
behavior holds in the limit f → 0 and for 0 ≤ γ ≤ 1, the
process Y is said to be long range dependent or to possess
long memory [36]. The wavelet coefficients dY (j, k) of Y are
related to its spectrum via

2jE|dY (j, k)|2 =
∫
R

ΓY (f)|Ψ0(2jf)|2df, (7)

where Ψ0 denotes the Fourier transform of ψ0 [28]. For
LRD processes, it implies the following asymptotic power law
behavior of the (power of the) wavelet coefficients:

2jE|dY (j, k)|2 = 2jESY (j, 2) ∼ Cψ2jγ−1, 2j → +∞. (8)
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2) Self-similarity (SS): Long range dependence involves
only the description of the statistical second-order (q = 2)
of data. Self-similar processes provide us with a better math-
ematically grounded framework to model scale invariance.
A process X is said to be self-similar when it satisfies
∀c > 0, {X(t), t ∈ R} fdd

= {cHX(t/c), t ∈ R}, where
fdd
=

means equality of all finite dimensional distributions [36]. For
finite variance and stationary increment self-similar processes
(of interest here and denoted H−sssi), the self-similarity
parameter H is restricted to H ∈ (0, 1), and one can show
that [28, 40]:

Sd(j, q) = Cq2jqH ,∀ 2j , q ∈ (−1,+∞). (9)

When 1/2 < H < 1, the increments Y of X are LRD,
with γ = 2H − 1. This is why SS and LRD properties
are often confused one with the other. Note, however, that
Y is stationary when X is not and that LRD involves only
the second statistical order and the limit of coarse scales
(a = 2j → +∞) when SS involves all statistical orders and
all scales, from finest to coarsest (0 < a = 2j < +∞).

Self-similarity consists of a demanding model with respect
to empirical data as it requires, first, that the scaling property
holds for all scales and second, that the single parameter
H controls all the statistical properties of the data. From a
practical perspective, this is often too severe a limitation and
multifractal models are preferred.

3) Multifractality: Multifractal (MF) processes are often
considered as a further extension to model scale invariance
since they enable to account for a declination of scaling
properties often observed on empirical data: For a range of
orders q and a range of scales 2j , the structure functions of MF
processes exhibit power law behaviors with respect to (wrt)
scales, for a given range of scales, (cf. [28, 40]),

Sd(j, q) = Cdq 2
jζ(q), q ∈ [0, q+∗ ], (10)

where the scaling exponent ζ(q) have a concave shape
that hence depart from the linear behavior qH , seen as the
signature of self-similarity (cf. Eq. (9)). This amounts to
reading ζ(q) as a collection of scaling exponents replacing
the single self-similarity parameter H and, hence, bringing
versatility in actual data modeling.

A detailed introduction to multifractal theory is beyond the
scope of this contribution, the reader is referred to e.g., [27, 37,
40]. We only restate here a few key points. Concave scaling
exponents imply that the scales involved in the scaling of Eq.
(10) necessarily has an upper bound, hence that scaling hold
at fine scales only. Multifractal analysis is often theoretically
phrased in terms of the multifractal spectrum D(h) rather than
in terms of scaling exponents ζ(q). This function D(h) is
theoretically designed to convey the scaling properties in terms
of locally singular behaviors. For a number of (commonly
used) stochastic processes and for all applied purposes, these
two functions are related one to the other by a Legendre
transform and hence strictly equivalent:

D(h) = inf
q 6=0

(1 + qh− ζ(q)) . (11)

Multifractal theory indicates that the measurement of the
entire function D(h) requires the use of both positive and
negative values of q and hence that a practically relevant
multifractal analysis of data should extend Eq. (10) above to
negative q.

Obviously, wavelet coefficients, because they mostly take
values close to 0, cannot be raised to negative powers and
the corresponding structure functions Sd(j, q) turn unstable.
Also, even when using positive q, it has been shown [39,
40] that the use of Sd(j, q) can only poorly enable the
practical discrimination between a linear behavior qH and a
concave ζ(q), hence do not permit to accurately distinguish
between self-similar and multifractal processes. To overcome
this drawback, the use of wavelet Leaders (as defined above)
instead of wavelet coefficients has been proposed and shown to
be both theoretically and practically (estimation performance)
more accurate. This amounts to rewriting Eq. (10) above as,

SL(j, q) = CLq 2jζ(q), for a range of 2j , q ∈ [q−∗ , q
+
∗ ]. (12)

This is referred to as the Wavelet Leader Multifractal formal-
ism (WLMF). For self-similar processes, the equation above
reduces to SL(j, q) = CLq 2jqH , ∀q ∈ R.

D. Empirical scaling (or multifractal) analysis

1) Log-Cumulant: Measuring the function ζ(q) from data
theoretically implies to perform estimation for all q. Instead, it
has been suggested [26, 41] to envisage polynomial expansion
of ζ(q):

ζ(q) =
∞∑
p=1

cLp
qp

p!
. (13)

It can be shown [26, 39, 41] that the coefficients cLp can be
obtained from the scale dependence of CL(j, p), the cumulant
of order p ≥ 1 of the random variable ln |LX(j, ·)|:

∀p > 1, CL(j, p) = cL0,p + cLp ln 2j (14)

Therefore, the knowledge of ζ(q) and hence of D(h) can be
recast into that of the log-cumulants cLp . This is of practical
interest as self-similar processes are characterized by ∀p ≥
2 : cLp ≡ 0 (or cdp ≡ 0), while for multifractal processes
of interest cL2 6= 0 (or cd2 6= 0). For the multifractal case,
when time series are short as in fMRI, cL1 and cL2 gather
most of the information practically available from D(h) or
ζ(q): cL1 characterizes the location of the maximum of D(h),
while cL2 is related to its width. In the systematic analysis of
the voxels reported below, we will therefore concentrate on
such two parameters and thus on parabolic approximations of
the multifractal characterizations: ζ(q) ' cL1 q + cL2 q

2/2 and
D(h) ' 1− (h− cL1 )2/(2cL2 ).

2) Estimation procedures: Practical scaling analysis or em-
pirical MF analysis mostly amounts to measuring the scaling
exponents ζ(q), or equivalently the log-cumulants cp, from the
observed data. This is performed by tracking straight lines and
estimating slopes in log-log plots (often referred to as logscale
diagrams), as suggested by Eqs. (12) or (14) above.
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From nj wavelet coefficients dX(j, k), wavelet Leaders are
computed (according to Eq. (5)). Then, standard estimation
procedures are used to obtain the estimates SL(j, q) and
ĈL(j, p). From these, the corresponding ζ̂L(q) and cLp can
then be estimated by linear regression (cf. Eq. (14)),

ζ̂L(q) =
j2∑
j=j1

wj log2 S
L(j, q), (15)

ĉLp = log2 e

j2∑
j=j1

wjĈ
L(j, p). (16)

The weights wj have to satisfy the constraints
∑j2
j1
jwj ≡ 1

and
∑j2
j1
wj ≡ 0 and can be expressed as wj = b−1

j
V0j−S1
V0V2−V 2

1

with Vi =
∑j2
j1
jib−1

j , i = 0 : 2. As in [28], we chose bj=n−1
j

to perform weighted linear fits.
3) Other scaling analysis procedures: The estimation pro-

cedures can be rewritten directly using the (absolute value
of the) wavelet coefficients |dX(j, k)| instead of the Leaders
LX(j, k), yielding mutatis mutandis the estimates ζ̂d(q), ĉdp.
This is referred to as the Wavelet Coefficient Multifractal
formalism (WCMF). Until a recent past, this WCMF was
the only MF formalism available. However, it has recently
been established that Leaders enable to measure the entire
multifractal spectrum (through the use of negative q) [27, 40]
and present far better performance [39, 42] as soon as one tries
to discriminate between linear and concave ζ(q) functions.

An earlier solution to the negative q issue had been pro-
posed (see e.g., [26]). It is based on the Modulus Maxima
of the CWT. However, wavelet Leaders provide us with a
better mathematically grounded solution, exhibit a far lower
computational cost, and can be readily extended to processes
of higher dimensions (to images for instance).

4) Illustration: An example of the resulting estimations for
ζ(q) and D(h) (detailed below) is reported in Fig. 7 for a
representative voxel in the visual cortex eliciting activation.

To finish with, let us mention that multifractal analysis can
be applied to any kind of data or processes, be they multifractal
or not, just as Fourier analysis can be applied to any signal be
they pure harmonic tones or not.

III. DATA ACQUISITION

A. Why do we use EVI fMRI datasets?

Irrespective of the retained approach, analysis of scaling be-
havior implies long enough signals. In [21], the authors tested
their MF analysis on Echo Planar Imaging (EPI) fMRI data,
which temporal resolution was decreased down to 200ms for
partial brain volume acquisition to get up to 1500 time points.
Here, we resort to a new imaging technique called parallel
localized EVI, recently validated on the human brain [29]. This
imaging procedure offers a very high temporal resolution (one
volume every 200ms) and thus enables acquisition of a larger
number of brain volumes (not only a single slice) in a
standard acquisition period (here 2210 scans). This offers the
possibility to perform reliable scaling analyses. The present
study therefore aims at exploring the benefit of this new leader
based MF analysis in combination with EVI brain images,

which are highly resolved in time, as described in the next
part.

B. Echo-Volumar Imaging technique

The principle of EVI has been introduced in [43]. Faster
than EPI, EVI allows 3D single-shot acquisition at very
high scanning rates. Nevertheless, this acquisition technique
requires very high performances from the MR hardware in
order to avoid signal losses and geometric distortions due
to B0 inhomogeneities and long echo train durations. Thus,
only a few attempts at using EVI in fMRI have been per-
formed until now, focusing mainly on very anisotropic brain
volumes [44, 45]. Due to improved gradient hardware and
magnet homogeneity, and especially to the application of
parallel acquisition and reconstruction, we demonstrated the
feasibility of acquiring large, isotropic, brain volumes with
EVI, at usual fMRI spatial resolution, in about 200 ms [29].
Localized Parallel EVI relies on the use of outer volume
suppression pulses and parallel acquisition with undersampling
by a factor of 2 along two directions, in order to reduce the
echo train durations by a factor of 4, as described in Fig. 2.
Consequently, a 120× 120× 144mm3 brain volume can be
acquired in 200 ms, with a distortion level comparable to
EPI. Parallel reconstruction was performed using an in-house-
developed multidimensional SENSE algorithm, which requires
one sensitivity map for each acquisition channel. In order
to improve signal stability in the reconstructed time series,
parallel reconstruction was regularized, as pioneered in [46,
47]. Tikhonov weighting was applied, with a regularization
condition minimizing the magnitude of the MR signal in
the reconstructed volumes, as proposed in [48]. The relative
importance of the regularization term was modulated by a
regularization parameter λ2, empirically set.

All experiments were performed on a 1,5 T GEHC scanner
(40 mT/m, 150T/m/s slew rate gradient, 8 channel head
coil array). EVI acquisitions have been performed using the
following parameters: orientation= sagittal plane, TE/TR =
40/200 ms, flip angle (FA) = 35◦, BW = 62.5 kHz,
FOV = 80×80×100 mm3, acquired/reconstructed matrices
= 20× 10× 10/20× 20× 20, echo train duration = 60.5
ms. Sensitivity maps: sagittal plane, TE/TR = 10/500 ms,
FA = 30◦, BW = 62.5 kHz, FOV = 240×240×100 mm3,
matrix 60×60×20. A high resolution T1-weighted 3D volume
was also acquired for each subject for anatomical localization
(256×256×128 matrix, voxel size = 0.9×0.9×1.2 mm3) as
shown in Fig. 2(b)-(c).

C. fMRI data analysis

For ease of interpretation and validation, we implemented
a classical slow event-related fMRI paradigm which stud-
ies occipital responses to presentation of alternative contrast
checkerboard.

The five healthy subjects gave their written informed con-
sent and this study was approved by a local ethical committee
for biomedical research. Two sessions of a slow visual event-
related paradigm were acquired for each subject. The stimulus
was a black and white contrast reversing checkerboard with
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a 20-ms period, which appears during 80 ms, followed by a
24.67-ms rest period (ISI = 24.75 s). One session consisted
of 20 trials of the stimulus. All series were corrected for
subject motion with SPM2 (www.fil.ion.ucl.ac.uk).
No spatial smoothing was performed. Response magnitudes
for each voxel were estimated using a general linear model
with a canonical Hemodynamic Response Function (HRF)
and its first derivative as regressors. A Fisher (F) test was
performed to assess significance. 3D superimpositions with
anatomical data were obtained with Anatomist (http://
brainvisa.info) as shown in Fig. 2(b). For illustrative
purpose, we report activations for one subject in Fig. 2(c) that
were detected both in occipital cortex and cerebellum. We
obtained quite reproducible activations across subjects. Fig. 3
also depicts voxel-based HRF estimates that were computed
by selective averaging in voxels eliciting an activation from
the raw time courses.
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Fig. 2. Localized Parallel EVI imaging sequence. (a): sketch summarizing
the parallel reconstruction stragegy based on 2D SENSE unwarping technique.
(b): anatomical localization of zoomed EVI BOLD data. (c): visual activations
detected in EVI datasets (single subject) superimposed on anatomical data.
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Fig. 3. Comparison of brain dynamics seen in EVI and EPI BOLD
sequences.(a): voxel-based HRF estimates from the parallel localized EVI
sequence. (b): corresponding HRF estimates from the EPI sequence for the
same subject.

In parallel EPI fMRI acquisitions, regularization of parallel
reconstruction generally increases the functional Contrast to
Noise Ratio, through a noise reduction larger than the contrast
reduction. This increase of CNR mechanically results in an
increased sensitivity to the BOLD contrast. This effect has
also been observed in parallel EVI: median statistical scores
increase when the regularization parameter is increased. Nev-
ertheless, this improvement slows down at high regularization
factors, as also observed in [47], since the regularization

condition becomes predominant over the accuracy of the
reconstruction. Therefore an optimal value of λ2 has been
determined from the GLM-based analysis (λ2 ≈ 0.01).

IV. RESULTS

A. Scaling and Multifractal: fMRI data analysis

In the present work, the ensuing goal is twofold: First,
validation of the existence of scaling in the analyzed data
and estimation of the MF parameters; Second, differentiation
of evoked and ongoing brain activity in terms of scaling
behaviors. This has never been addressed in the fMRI literature
using the WLMF approach. For doing so, we statistically
compare MF parameters estimated from raw motion-corrected
fMRI time series acquired during activation and resting runs
from selected regions of interest (ROI). Importantly, these
ROIs have been identified on each subject separately from the
uniquely relevant F-contrast c = [1, 1, 0] to detect activations
in the above mentioned SPM2 analysis. The extracted SPM
clusters have been corrected for multiple comparisons and
thresholded below 5 % in corrected p-value and above 5 voxels
in spatial extent (up to 25 voxels). Note that the number of
SPM clusters R varies from one subject to the other.

1) Scaling in fMRI data?: The first major issue lies in
assessing whether the data possess scaling properties or not.
To do so, one can naturally compare the power spectral den-
sity (PSD) estimate (obtained from an averaged periodogram)
and the so-called log-scale diagram (LD) defined as j vs
log2(2jS(j, q = 2)) (cf. [28] and Section II). Using Eq. (7),
both estimates can be superimposed for comparison purposes.
PSD, LD and superimposition are plotted in Fig. 4 together
with the time course of a voxel chosen in R2 (and labeled Y (t)
for consistency with notations in Section II-C). Both the LD
and PSD plots show clear power law behaviors existing over
times ranging from the second to the minute. These are clear
evidences in favor of the existence of scaling properties in data
over this range of scales. Equivalent plots and conclusions can
be drawn for each voxel of the different ROIs confirming that
scaling actually exists in the analyzed data.

2) Scaling versus Non-Stationarity ? : However, Fig. 4(a)
and Fig. 5(a) show that Y (t) also possesses a low frequency
trend. Such a very slow oscillation exists for most of the
voxels under analysis. Their orders of magnitude may however
significantly vary in space as may the involved range of low
frequencies. These trends can be read as non stationary shifts
of the mean superimposed on stationary fluctuations. Because
very low frequency oscillations can naturally be modeled as
1/f -processes, it has been claimed in the literature that the
scaling observed on data may only correspond to spurious
artifacts caused by non stationarities. However, it has been
previously shown that wavelets brings substantial robustness
in the analysis of scaling and in disentangling true scaling be-
havior from slow non stationarities or trends. More precisely,
it enables to correctly estimate the scaling parameters when
non stationarities are superimposed to a true scaling behavior
and conversely to discriminate non stationarities that may be
confused with scaling when using standard spectral analysis
tools. This has been explained in detail in other contexts
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Fig. 4. Scaling in data. (a): typical time course Y (t) of the fluctuations
recorded in a voxel of R1 during the visual paradigm; (b): corresponding
PSD estimate; (c): corresponding wavelet LD plot; (d): comparison of the
PSD with the suitably renormalized LD highlighting the superimposition of
the power law behaviors and of the scaling ranges.

in [28, 30, 32–34] and will therefore not be further discussed
here. Instead, we chose to further examine the issue of trend
versus scaling discrimination by making use of a recent tool,
the Empirical Mode Decomposition (EMD) [49]. The precise
definition and details of EMD cannot be given here for sake of
space, the reader is referred to the excellent tutorial paper [50].
The main output of EMD consists of the fact that the analyzed
data can be split into various components.

We chose to split data into 3 components: a very low
frequency trend (LF), a medium frequency signal (mF) and
a high frequency noise (HF), as illustrated in Fig. 4(a). Both
the LF trend and the HF noise may either alter the analysis of
scaling or be confusingly associated to scaling, as commonly
speculated in the literature.

LDs are computed independently for the entire original
time series, and the three components. They are superimposed
in Fig. 5(b), clearly showing that the scaling, and scaling
range, observed on the entire time series are neither caused
by the LF nor by the HF components but are rather entirely
due to fluctuation (mF component). The trend in itself also
exhibits a power law behavior in the LD plot, but in a much
coarser range of scales (beyond the minute) and with a clearly
different scaling exponent. Moreover, when N (the number of
vanishing moments of ψ0) is increased the scaling exponent
that can be estimated from the trend varies in a proportional
and trivial manner. This is not the case for the scaling exponent
estimated from the fluctuation (mF) component that remains
(quasi-) constant when N is varied, a significant experimental
proof in favor of the actual existence of scaling in data (see
[28] for further details). Moreover, we can check that the
scaling exponents estimated on the entire time series and on
the mF component closely match. These analyses unambigu-
ously disentangle true scaling properties from non stationary
superimposed trends or high frequency noise corruption.

The analyses reported here clearly shows that the fMRI data
under analysis possesses scaling properties, within scales that
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Fig. 5. Scaling vs Non-Stationarity Analysis. (a): fMRI time series for an
activating voxel, and its EMD based separation into (from top to bottom) low,
medium and high frequency components. (b): the corresponding LDs (time
series: ’o’, LF: ’+’, mF: ’�’, HF: ’�’).

range from the second to the minute and that are not related
to slow trends, whatever their origins.

3) Multifractality?: Now that the existence of scaling in
data is established, let us proceed, in a second step, to a more
detailed and quantitative multifractal analysis. We apply the
WLMF analysis procedure, as described in Section II-D, to
the voxel-based mF signal component for all voxels in the
identified SPM clusters. Because the Leader approach requires
a positive regularity of the time series (cf. [27, 40]), analysis
procedures are applied to the cumulated sum of the observed
time series (i.e., labeled as X in the notations of Section II)
rather than to the time series Y itself.

The corresponding Leader-based LDs (LLDs) show clear
scaling behaviors holding for 3 6 j 6 6, i.e., for time
scales ranging from 1.5 to 15s that slightly differ between
rest and activation datasets. This is illustrated in Fig. 6 for a
voxel (chosen as representative) both during the visual exper-
iment and resting state. The corresponding scaling exponents
ζ(q) and MF spectrum D(h) are compared in Fig. 7(a)-(b),
respectively. It shows that, for both the visual experiment and
the resting state, the departure of the ζ̂(q)s from a linear
behavior in q is weak, yet clear (or equivalently that the
D̂(h) is narrow, yet not collapsing onto one single point).
This hence leads to the conclusion that the analyzed data
possess a weak yet significant and measurable multifractality.
Akin to [18], we have also regressed out the modelled BOLD
response in order to illustrate the presence of multifractality
on the residuals. As shown in Fig. 8(a), the main difference
observed between the scaling parameters (ĉL1 , ĉ

L
2 ) computed

from the residuals (blue curve) and the original activated time
series (red curve) depicted in Fig. 6 (a) lies in the long-range
correlation structure, ie. in ĉL1 , which specifies the amount of
self-similarity. The mode of the residual-based multitfractal
spectrum has actually shifted away to the left and appears
closer to the MF spectrum we obtained from the resting
state time series in the same voxel (black curve), which is
depicted in Fig. 6 (d). This confirms therefore that multifrac-
tality is not specific to activated voxels or to evoked activity
and mainly brings information relative to ongoing activity,
what is usually called “noise” in the fMRI literature [14,
18, 21]. Also, Fig. 8(b) shows the corresponding multifractal
spectra computed in a less activated voxel as compared to
Fig. 8(a) (Tval = 3.52 vs. Tval = 5.1). Hence, the position of
the mode seems to depend on the activity level. This should
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be further investigated by a massive voxel-based analysis of
the residuals.

The comparison results between ongoing and evoked ac-
tivity are further confirmed by the analysis of the plots of
the log-cumulant structure functions, CL(j, p), defined in Eq.
(14), in Fig. 9 (from which ĉL1 and ĉL2 are estimated). The
estimated CL(j, 2) clearly possesses a (negative) non zero
slope hence yielding a negative ĉL2 . Let us emphasize that the
more negative ĉL2 , the stronger the experimental evidence in
favor of multifractality.

Now that an experimental scaling range has been conclu-
sively determined, 1.5 ≤ 2jTs ≤ 15s, a systematic estimation
of the multifractal parameters can be performed for each
voxel for both the the visual experiment and resting state.
Scaling exponents ζ(q), the multifractal spectrum D(h) or the
log-cumulant cp accounting theoretically equivalently for the
scaling content of the analyzed data, we chose to concentrate
on the log-cumulant cL1 , c

L
2 only: cL1 mostly amounts to the

self-similarity characterization, while cL2 measure the deviation
from pure self-similarity hence the impact of the multifractal
component of the data.

These systematic analyses yield the following conclusions.
For parameter c1, we observe that it consistently takes values
in the range 0.50 6 c1 6 1 (cf. Fig. 11), both for ongoing and
evoked brain activity, hence confirming the relevance of the
LRD paradigm to characterize fMRI time series correlations.
Also, we note that activation systematically (for all subjects
and all ROIs) results in an increase in c1, from the range
0.50 6 c1 6 0.75 for ongoing activity to the range 0.70 6
c1 6 0.95 for evoked activity. Activation hence induces an
increase of the LRD strength and impact. This is consistent
with findings reported in [21]. For parameter c2, the situation
is more intricate, partly due to the fact that estimation is
by far more difficult [42]. Nevertheless, we observe that,
in some cases, activations coincide with an increase in c2,
from negative to close to 0 values, hence with a decrease
in multifractality (cf. Fig. 12), while in others there is no
significant modification in c2 between both data types.

Therefore, a key result of these scaling analyses consists
of the fact that compared to the resting state, the visual
experiment induces a clear, sharp and systematic increase in
the LRD parameter, while it either produces a decrease in the
degree of multifractality or does not alter it. The statistical
significance of these results is further assessed by means of
statistical tests in Section IV-B.

4) Wavelet coefficients vs. Leaders: To further discuss
whether one should prefer to use wavelet coefficients or
wavelet Leaders (i.e., WCMF or WLMF) for scaling analysis,
one can compare estimations for c1 and c2 in Fig. 10. For c1,
one observes that the dispersion (or confidence interval size)
for the ĉd1 is larger than that of the ĉL1 but not significantly
so. For c2, the situation is very different, the dispersion of
ĉL2 is dramatically diminished (by one order of magnitude)
compared to that of ĉd2. This is in perfect agreement with the
analyses reported in [42] and yields the following conclusions
of major practical importance. As long as scaling are modeled
in terms of self-similarity only (i.e., one assumes that the
sole parameter c1 describes scaling), statistical performance

are slightly better for Leaders compared to coefficients, at
the price though of extra difficulties in selecting the range
of scales where to perform the linear regressions. Therefore,
Leaders and coefficients should be used jointly and collabora-
tively. When it comes to estimate c2, hence scaling related to
multifractal properties, only the WLMF should be used as the
confidence interval sizes obtained with WCMF are so large
that no conclusion can be drawn. Practically, in the statistical
tests performed in Section IV-B below, this induces that it is
strictly not possible to detect any change in c2 when one uses
wavelet coefficients, while Leader based tests clearly show a
number of changes. Relevant and accurate estimations of c2,
with reduced confidence interval sizes, therefore constitute the
major benefits of the use of Leaders in this context. Also, let
us note that tests based on wavelet coefficients would miss a
number of changes in c1, despite their effect being net, that
are clearly seen using Leader based tests.
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Fig. 6. Leader based Multifractal Analysis. (a): fMRI signal acquired
during the visual experiment. (b)-(c): The log-scale diagrams computed for
q = 2 (b) & q = −2 (c) from the time series depicted in (a). They show a
clear scaling range, from 1.5 to 15s. (d): fMRI signal acquired during resting
state in the same voxel as in (a). (e)-(f): Corresponding Log-scale diagrams
computed for q = ±2 showing also a scaling phenomenon ranging from 1.5
to 15s.
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Fig. 7. Leader based Multifractal spectrum. Computation of the pair
(ζ(q), D(h)) from two fMRI time series corresponding to activation (light
gray) and resting state (black) datasets in the same voxel.

B. Region-based hypothesis testing

The next goal consists in assessing the statistical signifi-
cance of the observed difference in every cluster Ri between
med[ĉr

p] and med[ĉv
p]. We use nonparametric tests and robust
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Fig. 10. Statistical comparison of evoked v.s. ongoing activity: estimation of c1 and c2 from the wavelet coefficients (top rows) and wavelet Leaders (bottom
rows) for Subject 2. Each panel corresponds to a region (R1 to R3) identified as a significant SPM-cluster during the visual experiment. In each ROI, the box-
plot shows the median of the voxel-dependent cumulant estimates based upon the wavelet coefficients (bcd,s

1 , bcd,s
2 ) and Leaders (bcL,s

1 , bcL,s
2 ) for visual (s = v)

and rest (s = r) sessions, respectively.
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Fig. 8. Leader based Multifractal spectra. Comparison of multifractal
spectra computed in a strongly (a) and weakly (b) activated voxels from the
original time series (light gray) and the residuals (dark gray). The multifractal
spectra D(h) obtained in the same voxel during the resting state acquisition
period are reported in black.

statistics as there is no evidence that the scaling parameters
are normally distributed across voxels for a given ROI. In such
a case, one usually resorts to robust decision statistics (e.g.,
to the Wilcoxon’s signed rank (WSR) statistic), whose correct
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Fig. 9. Log-Cumulants: Estimated log-Leaders Cumulant functions
ĈL(j, p) for p = 1 (a) and p = 2 (b). From these linear behaviors in j,
one estimates the classifiers ĉL

1 , ĉL
2 .

specificity control (control of false positives) can be correctly
handled in the permutation testing framework [51, 52]. Here,
robustness means that the influence of outliers on statistics
remains bounded. Precisely, we perform the following two-
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sided tests :

Hr 6=v
0,p :med[ĉr

p] = med[ĉv
p], ∀ p = 1 or 2, (17)

which amount to testing whether the difference between the
matched samples ĉr

p and ĉv
p comes from a distribution whose

median med[ĉr−v
p ] = med[ĉr

p − ĉv
p] is zero.

Fig. 11 shows the corresponding WSR statistic p-values
and validates that the observed increase in c1 is quasi-
systematically significant across subjects. Again, for c2, the
results reported in Fig. 12 are less clear, as significance of the
changes varies with ROIs and subjects. However, results, over
the entire datasets indicate a slight shift tendency in c2 from
negative to close to 0 values, when the test is significant. This
confirms a global effect of reduction of multifractality under
activation.

V. DISCUSSION AND PERSPECTIVES

In this contribution, we have analyzed the scaling and
multifractal properties of EVI fMRI data acquired during a
resting state and a slow visual event-related activation protocol.
To do so, we made use of the most recent theoretical and
practical developments in multifractal analysis. They are based
on wavelet Leaders instead of wavelet coefficients. Also, we
clearly detailed and entangled the often confused relations
between the most common stochastic process models used
to account for scaling, namely 1/f -, long range dependent,
self-similar and multifractal processes. The various parameters
commonly involved in scaling description are also clearly
related, and the analysis and estimation procedures are de-
tailed. The use of wavelet coefficients and wavelet Leaders is
compared to the benefits of the latter.

Using this careful methodology and powerful estimation
tools, we provided significant evidence for the presence of
scaling in the analyzed fMRI datasets, for the five participants,
that can in no way be confused with non stationarities or low
frequency oscillating trends, which were also present in data,
yet superimposed to true scaling. Also, we established that
this scaling properties should be related to both long memory
in time and multifractality (in agreement with [14, 21]). Given
our acquisition parameters, especially the deliberate choice of
a large scan number, scaling parameters are estimated with a
high degree of precision and thus are reliable.

As concluded from Section IV-B, we demonstrated the exis-
tence of relationships between the scaling parameter estimates
and the congruence between the ROIs and the data under
consideration. Our findings show that activation induces a clear
and systematic increase in the long range dependence (or self-
similarity) c1 parameter together with a (less clear and less
systematic) decrease of the multifractality c2 parameter. Inter-
estingly, the former is connected to additive random walk and
linear filtering while the latter is rather related to non-linear
mechanisms. Therefore, the parameter c2 that characterizes
deviations from self-similarity can be thought of as a measure
of the importance of non-linear effects in neurophysiological
mechanisms. Our results suggest that activation tends to reduce
their impact: this could be expected given the very simple
nature of our paradigm. Also, in future works, we will take

advantage of the use of non parametric bootstrap in multi-
fractal analysis that enables not only to produce an estimate
but also a confidence interval for each voxel independently
[39]. This is likely to significantly improve the accuracy of
the change detection tests and make feasible the use of mixed
effect models for region-based inference.

This preliminary study needs to be further developed if one
wants to consider multifractal attributes as putative classifiers
of brain activity. In particular, to achieve a reliable model-
free analysis, which is able to detect and localize task-
related activity, we must explore true contrasts in the sense of
comparing brain activity induced by different external stimuli
on the same time series using these multifractal attributes as
stimulus markers. In contrast to [21], this should be investi-
gated in event-related protocols, for which the BOLD signal
fluctuations in time and frequency is much more complex. In
such cases, we could find out more multifractal situations, for
instance in regions eliciting habituation or learning phenomena
as those described in [53]. To this end, we are currently
exploring whole brain analysis blind to the use of any a priori
model-based detection. On our first experiment on a single
subject (results not shown) we observe that MF parameters are
primarily influenced in brain regions involved in the experi-
mental paradigm and also that these parameters remain quite
unchanged in other regions when comparing the activation
dataset to the resting state one. This has to be confirmed and
reproduced on more datasets i.e. on more subjects.

Repeating such analyses to the whole brain and not specifi-
cally to activating clusters may make the method more relevant
for exploring long range task-related spatial interactions based
upon the scaling properties, as suggested in [19]. Hence, the
whole-brain extension of the proposed approach will offer the
possibility to study functional connectivity based on resting-
state functional fMRI data and to explain how such long range
interactions are modulated by external stimulation. Therefore,
this study shall fulfill several important objectives for the
understanding of brain structure and function:
• Elucidate the structure of spontaneous activity seen in

fMRI as a marker of functional connectivity: the correla-
tion of the spontaneous activity between distant regions
observed in fMRI reflects the functional relationship
between these distant regions [54]. This is related to
the concept of functional integration [55] and provides
the structure of some fundamental subdivisions of the
brain (see e.g. [56]).

• Disentangle the relationship with anatomical connectiv-
ity: it is not completely clear whether the spatial structure
of spontaneous activity reflects the spatial structure of
the anatomical connectivity or whether there are other
components that could be identified. Such a comparison
becomes possible because diffusion MRI provides an
in vivo access on human brain anatomical connectivity
structure [57].

• Understand the relationship between ongoing and evoked
activity: Some studies have proposed that evoked activity
(i.e. the activity resulting from an input stimulus) would
superimpose linearly with spontaneous activity [58] while
other studies insist that spontaneous activity could be
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Fig. 11. Statistical comparison of evoked v.s. ongoing activity: estimation of c1, i.e., the linear component of ζ(q). Each panel corresponds to a region (R1

to R4) identified as a significant SPM-cluster during the visual experiment. This explains why the number of regions varies across subjects. In each ROI, the
box-plot shows the median of the voxel-dependent WLMF estimates bcs

1 for visual (s = v) and rest (s = r) sessions, respectively. The WSR statistic p-values
are displayed at the top of each panel i.e., for each region. Red marks show significant changes between resting state and visual experiment at 5%.
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Fig. 12. Statistical comparison of evoked v.s. ongoing activity: estimation of c2, i.e., the quadratic component of ζ(q). Each panel corresponds to a
region (R1 to R4) identified as a significant SPM-cluster during the visual experiment. This explains why the number of regions varies across subjects. In
each ROI, the box-plot shows the median of the voxel-dependent WLMF estimates bcs

2 for visual (s = v) and rest (s = r) sessions, respectively. The WSR
statistic p-values are displayed at the top of each panel i.e., for each region. Red marks show significant changes between resting state and visual experiment
at 5%.
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predictive of the behavior [59]. These two points of view
require further assessment.

• Compare the spontaneous activity in different popula-
tions (patients and controls). By considering functional
connectivity as a measure that characterizes the inte-
gration of brain structures into networks, one can use
it for comparing different kinds of populations: infants
versus adults, normal subjects versus patients [60]. A
particular interest in the study of resting-state networks
is that the connectivity or integration of these networks
are not confounded by different levels of the subjects in
the performance of task.

Currently, many approaches have been proposed to study
resting-state brain connectivity, mainly bivariate approaches,
based on distant correlations of the signal [61–63], and mul-
tivariate approaches, mainly based on ICA [56, 64] and clus-
tering [65, 66]. Our feeling is that brain connectiviy analysis
based upon multifractal attributes would help discriminate
linear from non-linear inter-dependency and that the MF
methodology defines a framework for studying how network
activity is modulated between resting and stimulation periods.
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