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ABSTRACT

Slow brain dynamics has received considerable interest in the
recent years, with the scale-free paradigm playing a crucial
role for analysis of various neuroimaging modalities. How-
ever, assessing the role of slow arrhythmic fluctuations re-
quires the use of a large continuum of time scales and thus
of long time series, hence raising concerns regarding the use
of scale-free tools on fMRI data. Further, scale-free analy-
sis remained so far mostly univariate, that is, voxels are an-
alyzed independently, hence neglecting their spatial organi-
zation. The present contribution aims to propose a spatially
regularized estimation of the self-similarity parameter, based
on a recently formalized formalism combining wavelet lead-
ers and Bayesian models. The spatially regularized estimates
permit to quantify the modulations of the scale-free dynamics
from rest to a working memory task from fMRI data collected
for 21 healthy volunteers. These modulations are significant
in the default mode network and in some regions involved in
task performance such as primary visual regions or the sup-
plementary motor area.

Index Terms— fMRI, scale-free, multivariate, spatial
regularization, Bayesian inference.

1. INTRODUCTION

Scale-free dynamics in macroscopic brain activity. Energy
levels and temporal dynamics of oscillations in pre-defined
frequency bands, that quantify the behaviors of populations of
neurons, remain reference tools to model and analyze macro-
scopic brain activity, assessed by M/EEG measurements.
However, slow activities (< 2Hz) are a prominent part of
functional brain dynamics. They are nowadays often mod-
eled using the scale-free paradigm, postulating arrhythmic
(oscillation free) temporal dynamics. Due to hemodynamic
filtering, these arrhythmic dynamics lie below 0.2Hz in fMRI
data. Indeed, scale-free temporal dynamics were observed
across several modalities, both at rest or during task perfor-
mance, and under various conditions or pathologies [1–12].
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It has also been documented that scale-free dynamics are
functionally associated with neural excitability [3, 13], hence
explaining the modulation of scaling exponents with task en-
gagement or pathologies.
Related works. It is well-established that scale-free temporal
dynamics are well modeled by self-similar processes, such
as fractional Brownian motion. Wavelet tranforms permit a
theoretically well-grounded and practically robust assessment
of scale-free dynamics and estimation of the corresponding
scaling or Hurst exponent (cf. e.g., [14] for the methodology
and [9, 10] for applications to fMRI data). More recently, it
has however been shown that the use of wavelet leaders, a
non-linear non-local transformation of wavelet coefficients,
permits to better account for the richness and variety of
scale-free dynamics actually observed in data, and yields
estimation procedures for H with better performance (used
here, cf. Section 2), cf. e.g., [15] for the methodology and [9]
for applications in neurociences. Since scale-free analysis
requires the data to be analyzed at several time scales jointly,
relatively long time series are required for robust estima-
tion. This limitation may explain why it leads to relevant
characterizations and promising conclusions when applied to
modalities such as M/EEG [6, 11, 12] while successes remain
debated on (typically short length) fMRI time series. Another
limitation stems from current scale-free analysis procedures
being univariate: Despite several tens of thousands of voxels
being recorded jointly in the brain with fMRI, the obviously
rich and informative spatial structure of the data is not ex-
ploited and each time series is analyzed independently.
Goals, contributions and outline. The present contribution
aims to overcome the limitations caused by the small sam-
ple size of fMRI time series by taking advantage of their
multivariate nature. Preliminary attempt to cope with spatial
regularization on fMRI data for the estimation of H has been
conducted in [16] in a variational framework. Here, elab-
orating on the general methodology proposed in [17, 18], a
Bayesian spatial regularization procedure for the estimation
of the self-similarity parameter H , exploiting the statistical
properties of wavelet leaders, is devised in Section 2. This
spatially regularized estimation procedure is illustrated on



fMRI data, collected on a cohort of 21 healthy volunteers,
both at rest and while performing a working memory task
(cf. Section 3 for details about the experiment). Section 4
shows the benefits and potential of this novel multivariate es-
timation procedure to quantify the modulations of scale-free
dynamics from rest to task on the whole brain, as compared
to univariate scale-free analysis.

2. BAYESIAN SPATIALLY REGULARIZED
SCALE-FREE ANALYSIS

2.1. Univariate procedures

Wavelet leaders. For a time series X , discrete wavelet
transform coefficients dX(j, k) are computed as dX(j, k) =
〈X, 2−j/2ψj,k〉, where the collection {ψj,k(t) ≡ 2−j/2ψ0(2−jt−
k), j ∈ N, k ∈ N} is constructed by dilations and translations
of a the mother-wavelet ψ0(t). It is characterized by its num-
ber of vanishing moments Nψ ≥ 1 (∀k = 0, . . . , Nψ − 1,∫
R t

kψ0(t)dt ≡ 0 and
∫
R t

Nψψ0(t)dt 6= 0).
Wavelet leaders are further constructed as local suprema

of wavelet coefficients, taken over finer scales and within a
short temporal neighborhood 3λj,k, with λj,k = [k2j , (k +
1)2j) the dyadic interval of size 2j and 3λj,k the union of
λj,k with its neighbors λj,k−1 and λj,k+1 [15]: L(j, k) =
supλ′⊂3λj,k |dX(λ′)|.
Linear regression. A relevant wavelet leader based estima-
tor for the self-similarity parameter H can be constructed on
the linear regression of the averaged log leaders, `(j, k) :=
lnL(j, k), across scales ( with weightswj selected to produce
an ordinary least square estimate), cf. [15]:

ĤLF =
1

ln 2

j2∑
j=j1

wj
1

nj

nj∑
k=1

`(j, k). (1)

Bayesian estimation. A wavelet leader Bayesian estimator
for H can be further developed. It exploits the approximative
modeling of the statistical properties of `(j, k) as multivariate
normal distributions as proposed in [17, 18]:

[`(j, 1), . . . , `(j, nj)] ∼ N (c+H ln(2j),Σj,z), (2)

with Σj,z a semiparametric model for the covariance at scale
2j [17, 18]. Parameter z controlling the variance is estimated
using Bayesian scheme and priors as detailed in [17,18]. The
use of Gaussian priors for the parameter vectors (c,H) leads
to a Gaussian posterior distribution and permits straightfor-
ward computation of the marginal posterior mean estimator
for H defined as

ĤBU = E[H|`]. (3)

When non-informative Gaussian priors are used, ĤBU in (3)
takes a form similar to ĤLF in (1), yet with weights wj that
are estimated as an output of the Bayesian scheme and reflect
the variances of `(j, k), at each scale 2j .

2.2. Bayesian spatially regularized procedures
With the procedure described above, the estimates Ĥv for
all voxels v are performed independently one from another.
To take advantage of the spatial organization of the voxels
and to improve the estimation of the collection of parameters
H = {Hv}nvoxelv=1 , the statistical model leading to (3) can be
extended to a multivariate setting and embedded into a hier-
archical Bayesian model incorporating spatial regularization.
Instead of Gaussian priors that are independent for each voxel
in ĤBU , use is made of spatially regularizing joint priors to
favor smooth variations of parameter values between adjacent
voxels. They penalize second order spatial differences DH,
with D the 3D discrete Laplacian operator [19]:

p(H, ε) ∝ ε− 1
2 rank(DTD) exp

(
− 1

2ε
||DH||2

)
p(ε). (4)

The hyperprior p(ε) controls the amount of spatial regular-
ization. With the log-leaders of each voxel being modeled
as independent with likelihood (2), this prior leads to closed
from Gaussian and inverse gamma conditional distributions
for H and ε, respectively. This hence permits the efficient ap-
proximation of the marginal posterior mean estimator used to
define the spatially regularized multivariate estimator for H:

ĤBM = E[H|{`v}nvoxelv=1 ]. (5)

3. EXPERIMENT DESIGN AND FMRI DATA

Working Memory Task. A group of 21 (female) participants
were subjected to a verbal working memory task. Subjects
had to attend visual sequences of serially presented upper-
case letters, spanning the entire alphabet and displayed during
1s with an inter-stimuls interval of 2s. The working memory
paradigm included a sequence of 8 blocks comprising 0-back
and 2-back tasks. In the control (0-back) task, subjects had
to identify the occurrence of the letter X . In the 2-back task,
subjects had to determine whether each presented letter was
the same as that presented 2 stimuli before. The ratio of tar-
gets to distractors was about 30% within each block. Par-
ticipants were instructed to respond to targets by pushing a
button with their right thumb. Responses and reaction times
were recorded.
Data collection. fMRI recordings were achieved using a 3
Tesla on a Siemens Trio system (Erlangen, Germany), both at
rest and during working memory tasks. During resting-state,
participants were instructed to keep eyes closed. A multi-
band GE-EPI (TE=30ms, TR=1s, FA=61◦, mb=2) sequence
(CMRR, Minneapolis, USA) was used, with 3-mm isotropic
resolution and a FOV of 192×192×144 mm3. 543 scans were
collected for a total recording time of 9min10s. Task-related
fMRI data were collected using the same experimental setup
except that only 512 images (8min39s) were acquired.
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Fig. 1. Group-level estimates of H . From top to bottom ĤLF − 1, ĤBU − 1 and ĤBM − 1 (1 has been subtracted to enhance
contrast). From left to right, left-sagittal, coronal, right-sagittal, axial brain slices. These figures have been designed using
http://nilearn.github.io.

4. RESULTS AND DISCUSSION

Analysis setting. Wavelet analysis was performed using a
Daubechies least asymmetric wavelets, with Nψ = 3 van-
ishing moments. Scales 22 ≤ 2j ≤ 25 were used for the
estimation of the Hurst parameters, essentially corresponding
to frequencies in the range 0.02 ≤ f ≤ 0.2.
Comparing the different estimates Ĥ . Fig. 1 reports the
group-level whole brain estimates of H across different
brain views, for the three different estimation procedures
ĤLF , ĤBU and ĤBM , independently for rest and task. As
explained in Section 2, ĤLF and ĤBU procedures yield sim-
ilar maps of estimates. In contrast, a qualitative comparison
of ĤBM against ĤLF or ĤBU shows a better contrasted
map of estimates, that can be interpreted as a denoising of
ĤBU . At rest, ĤBM preserves large structures with homo-
geneous estimates of H , such as for the Posterior Cingulate
Cortex (PCC), a central part of the Default Mode Network
(DMN), and, in addition enhances contrasts and better lo-
calizes smaller size regions, such as the Fronto-Polar region,
another DMN component. Further, ĤBM for the frontal
lobe shows homogeneously low estimates of H compared to
spurious localized fluctuations observed for ĤLF and ĤBU .
During task, the same denoising and enhancing effects are
qualitatively visible.

These qualitative analyses illustrate the benefits of the
spatially regularized estimation procedures, compared to the
univariate ones. Interestingly, ĤBM permits to show that, at
rest, the largest values ofH are observed mainly in the DMN,
thus confirming its central role in brain functioning at rest, in
agreement with results reported on region-based analysis in
the literature, cf. [5]. Also, during task, large H are observed

in the Primary Visual Cortex, involved in the task, as it elicits
evoked activity in response to visual stimuli.

Rest versus Task. To statistically assess differences between
H at rest and during task, Fig. 2 reports the superimposition
of the two one-sided paired t-tests rejecting the null hypoth-
esis Ĥ(r) ≡ Ĥ(t) (thresholded at |T | > 4, i.e., uncorrected
p-value of 3.5 · 10−4). It shows that, from rest to task, H
significantly decreases in several parts of the DMN (red spots
in Fig. 2), indicating a decrease of the long range correlation.
This is notably the case for the Bilateral Angular Gyri, Brod-
mann Area (BA) 39, and Bilateral Precuneus, part of PCC
and functional core of DMN. This decrease in H can be in-
terpreted as the active inhibition (or deactivation) of DMN
during task performance, in agreement with [5]. Interest-
ingly, this decrease results in a clean segmentation of parts of
the DMN, obtained without computing seed-based functional
connectivity with seed located a priori in PCC.

It also shows that in other regions H significantly in-
creases from rest to task (blue zones in Fig. 2), thus implying
a strengthening of the correlation structure. This is notably
the case for Medial PreFrontal Cortex (including Supplemen-
tary Motor Area (BA 6)) which is involved in the planification
for motor response (button press required by n-back task).
This change in temporal dynamics is consistent with the task-
related activity reported in the meta-analysis of n-back fMRI
protocols in [20].

It is also worth mentioning that substantial changes in H ,
hence in temporal dynamics, are not seen across the whole
fronto-parietal working memory network region involved in
n-back task.
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Fig. 2. T-test for rejecting Ĥ(r) = Ĥ(t). From top to bottom
Ĥ

(r)
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(t)
BU and Ĥ(r)

BM − Ĥ
(T )
BM . Red: Ĥ(r) >

Ĥ(t), Blue: Ĥ(r) < Ĥ(t). From left to right, left-sagittal,
coronal, right-sagittal, axial brain slices.

5. CONCLUSION AND PERSPECTIVES

The benefits and potential of the wavelet leader based spa-
tially regularized Bayesian estimation for scale-free parame-
ters has been well evidenced. It indicates that the limitation
stemming from the low sample-size of fMRI time series can
be efficiently overcome by making use of their spatial struc-
ture. This will be complemented by extending the spatial reg-
ularization to the analysis of multifractal properties in fMRI
data, which enable to generalize the description of scale-free
temporal dynamics beyond the sole self-similarity parameter
H to higher order dependence structure [17, 18, 21]. This
work will be continued with the study of a larger number of
subjects and of the impact of prescribed medication on the
modulation of scale-free temporal dynamics.

6. REFERENCES

[1] A Eke, P Herman, L Kocsis, and LR Kozak, “Fractal characterization
of complexity in temporal physiological signals,” Physiological mea-
surement, vol. 23, no. 1, pp. R1, 2002.

[2] Ed Bullmore, Jalal Fadili, Voichita Maxim, Levent Şendur, Brandon
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