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ABSTRACT

We present a new anomaly detector for data traffic, ‘SMS’, based on
combining random projections (sketches) with multiscale analysis,
which has low computational complexity. The sketches allow ‘nor-
mal’ traffic to be automatically and robustly extracted, and anomalies
detected, without the need for training data. The multiscale analysis
extracts statistical descriptors, using wavelet leader tools developed
recently for multifractal analysis, without any need for timescales to
be selected a priori. The proposed detector is illustrated using a large
recent dataset of Internet backbone traffic from the MAWI archive,
and compared against existing detectors.

Index Terms— Multifractal analysis, multiscale representation,
random projection, anomaly detection, Internet traffic.

1. INTRODUCTION

Context: Internet traffic monitoring. Research into Internet traffic
measurement has been extensive, ranging from data capture systems,
through to statistical analysis, data modeling and prediction. The
goals of this activity include insights to better design and operate
the network, to optimize resources and performance, and to address
security issues. The detection of anomalies is a crucial network mon-
itoring task as it impacts at multiple levels including the diagnosis of
network dysfunction, localization of performance bottlenecks, and
discovery of unusual traffic including malicious activity.

Anomaly detection in computer network traffic context is highly
challenging. First there is the variable nature of the data itself, which
may be available at levels of granularity that differ in time (from µs
to daily averages), in geographic spread (single link/router or mul-
tiple, core or access networks), or in detailed nature (packet times-
tamps, sizes, 5-tuples1, or application level data). Second, the origins
of anomalies are diverse and include the physical layer, IP protocols,
application layer protocols, source traffic events such as flashcrowds,
and ‘heavy hitter’ or ‘α-flows’. Anomalies due to malicious activ-
ity include those whose signature is well known, for example Dis-
tributed Denial of Service (DDoS) and port scanning, but new forms
of attack, resulting in new anomalies which may be very subtle, reg-
ularly appear. This variety implies anomalous traffics whose forms
and statistics show very different kinds of departures from normal

1The standard 5-tuple consists of five IP packet header fields: IP address
and port number for source and destination, and IP protocol carried (TCP,
UDP or ICMP). Timestamps may be combined with 5-tuples to define flows.

traffic, which precludes the use of matched filter approaches, even if
adaptive and advanced. Third, normal traffic is itself an ill-defined
notion, and the construction of a traffic reference, against which
anomalies can be defined, is non-trivial, in particular since traffic
characteristics naturally vary over time with the evolution of appli-
cations and services. This significantly impairs the use of supervised
classification strategies, as training sets of expert-annotated anoma-
lies will in general be unavailable. Fourth, the very high volume of
Internet traffic restricts the complexity of statistical features that can
be routinely computed. Finally, privacy concerns may also constitute
a barrier to anomaly detection.
Related works: anomaly detection. We focus on anomaly de-
tection based on aggregated time series, being counts of IP pack-
ets or bytes in consecutive time bins, obtainable from packet header
traces containing timestamps plus 5-tuples for each packet. This ap-
proach has the advantage of being more privacy-friendly than tech-
niques that rely on packet payload, and remains relevant in the face
of payload encryption techniques such as IPsec. Another advan-
tage of time series is that existing signal statistical processing de-
tection/classification tools are available, including many with low
computational cost, suitable for long time series.

Among unsupervised approaches applied to univariate time se-
ries, wavelet filtering has been used to select relevant time scales for
detection [1]. Entropy-based detectors applied to specific features
(IP addresses and port numbers [2, 3, 4], connection patterns [5])
have also proved successful. Exploiting the scale invariance proper-
ties of Internet traffic [6, 7], anomaly detection has also been based
on the self-similarity parameter [8, 9]. For multivariate data (multi-
link/point measurements), Principal Component Analysis (PCA) al-
lows a reference traffic to be computed, and thus to quantify anoma-
lous deviations from it [10]. In an attempt to capture different classes
of anomalies, multimodal detection procedures were also attempted.
For example, Astute [11] monitors packet and byte counts jointly
at six different aggregation levels. Random projection tools, also
known as hashing procedures or sketching, were also used for the
automatic construction of reference traffic [12, 13]. To do this they
exploited the flow-level structure of IP traffic. Other works which
exploit flow structure include [3, 4, 8].

Goals, contributions and outline. This paper proposes a network
traffic anomaly detection procedure, called Sketch and MultiScale
(SMS), based on the analysis of packet count time series assembled
from 5-tuple plus timestamp data. The procedure is unsupervised,
and is therefore suitable for the detection of new anomaly types as



well as old, and avoids the need for training sets. Instead, it uses mul-
tiple flow-preserving sketches to extract a reference ‘normal’ traffic
from the trace itself. Each sketch yields a time series which is anal-
ysed using wavelet-leader based multiscale representations, recently
designed for the most up-to-date formalism for practical multifractal
analysis [14]. These result in fast, robust, multiscale representations
of the statistical properties of the time series, defined over a set of
time scales ranging from milliseconds to minutes (over 5 decades).
This avoids the a priori selection of time scales at which anoma-
lies should be seen and make it feasible to process very large traces.
Finally, comparing across independent sets of sketches allows the
flow-defining IP addresses involved in the anomaly to be isolated.

Random projections and wavelet leaders are presented in Sec-
tion 2.1 and 2.2 respectively, while the anomaly detection and
anomalous flow identification is detailed in Section 2.3. We put
SMS to work on a large recent Internet dataset (1st half of 2014),
part of the Japanese MAWI repository [15], described in Section 3.
Detection performance is quantified and interpreted qualitatively in
Section 4, and compared against that obtained with MAWILab [16],
the reference tool of the MAWI repository.

2. METHODOLOGY

For each packet i in a given trace, arriving at time ti, we assign a flow
label Ai based on its 5-tuple. Here we use Ai ∈ {IPsrci, IPdsti}.

2.1. Random projections / Sketches

A random projection of an IP trace X consists of a hash function,
acting on flow labels, which inserts the packets ofX into a hashtable
of size M , resulting in a random flow-splitting of X into M sub-
traces Xm, m ∈ {1, . . . ,M}. In other words, all packets of any
given flow are allocated together to a randomly chosen entry in the
hashtable. If there are no anomalies, then we expect each sub-trace,
or sketch, to be statistically equivalent (and moreover equivalent to
the full trace up to a constant variance factor assuming independence
between flows). The intuition here is that anomalies in X will only
be present in some of its sketches. A median over sketches can there-
fore provide a reference for normal traffic that shows little sensitivity
to the outlier sketches carrying the anomalies. Furthermore, anoma-
lies will be easier to detect in sketches where they appear, as the
volume of normal traffic is reduced (higher signal to noise ratio).

A random projection procedure [12, 13] consists of {hn, n =
1, . . . , N} k-universal hash functions [17], giving rise toN indepen-
dent sets of M sketches, and NM packet count timeseries Xn,m.

2.2. Wavelet-leader multiscale representations

It is well-accepted that Internet traffic statistics are well-characterized
by scale invariance properties, notably self-similarity and long-
memory [6], and that such scaling can be efficiently analyzed using
multiscale representations, in particular based on wavelet decompo-
sitions [7]. It has also been proposed that scaling in Internet traffic
can be modeled by multifractal models [18, 19], and that multifractal
properties are best analyzed using wavelet leader based represen-
tations [14]. Wavelet-leader based multiscale representations are
therefore a natural choice as a basis for anomaly detection.
Wavelet coefficients. Let ψ denote the mother wavelet, charac-
terized by a strictly positive integer Nψ , defined as

∫
R t
kψ(t)dt ≡ 0

∀n = 0, . . . , Nψ−1, and
∫
R t
Nψψ(t)dt 6= 0, known as the num-

ber of vanishing moments. The (L1-normalized) discrete wavelet
transform coefficients dX(j, k) of the process X are defined as

dX(j, k) = 〈ψj,k|X〉, with {ψj,k(t) = 2−jψ(2−jt− k)}(j,k)∈N2 .
For a detailed introduction to wavelet transforms see [20].
Wavelet leaders. Let λj,k = [k2j , (k + 1)2j) denote the dyadic
interval of size 2j centered at k2j , and 3λj,k the union of λj,k with
its left and right neighbors: 3λj,k =

⋃
m{−1,0,1} λj,k+m. The

wavelet leader L(γ)
X (j, k) is defined as the largest wavelet coefficient

in the neighborhood 3λj,k over all finer scales j′ < j [14]:

L
(γ)
X (j, k) := sup

λ′⊂3λj,k

|2j
′γdX(λ′)|. (1)

The parameter γ ≥ 0 must be chosen to ensure a minimal regularity
constraint (see [14] for a theoretical study).
Log-cumulants. It has been shown the cumulants of order p,Cγp (j),
of lnL

(γ)
X (j, k) provide relevant representations of the statistics of

X as a function of scale 2j ([21, 14]). Notably, when X is charac-
terized by multifractal properties, the Cγp (j) take the explicit form

Cγp (j) = c0,(γ)p + c(γ)p ln 2j (2)

where the c(γ)p can be directly related to the multifractal spectrum
of X (see [14, 22] for details). The attributes c(γ)p are not explicitly
used here, instead SMS relies on the underlying multiscale represen-
tations C(γ)

p (j), where Cγ1 (j) is mainly associated to the 2nd-order
statistics ofX (covariance or spectrum), whileCγ2 (j) conveys infor-
mation beyond 2nd-order statistics.

2.3. Sketch and MultiScale (SMS)

The anomaly detection and address identification procedure of SMS
can be outlined as follows.
Step 1 For each trace, use the N hash functions to produce N sets
ofM sub-traces, and aggregate each one at resolution ∆0 to produce
the flow-sampled time series Xn,m(t).

Step 2 For each Xn,m, compute wavelet-leader based C(γ)
p,n,m(j),

p = 1, 2. For each n compute the median over the n-th set of M
cumulants as C

(γ)
p,n(j) = Median{C(γ)

p,n,m(j),m = 1, . . . ,M}.
Step 3 For each n and p, C

(γ)
p,n(j) constitutes a robust reference

regarded as characteristic of normal traffic. The Euclidean distance
of each sketch to its respective reference in set n is calculated as

Dmp,n =
1

1 + j2 − j1

(
j2∑
j=j1

(C(γ)
p,n(j)− C(γ)

p,n(j))2
)1/2

. (3)

A sketch k in set n is reported, by cumulant p, as suspicious when its
distance to its reference is large compared to the reference variation:

Dkp,n > medianm{Dmp,n}+ τ MADm{Dmp,n}, (4)

where MAD = Maximum Absolute Deviation, and τ is a parameter.
Step 4 Let An denote the set of all flow labels from suspicious
sketches from the n-th table. This set contains many normal flows
which will vary randomly from table to table, whereas anomalous
flows will be in found in multiple An. We define a flow to be suspi-
cous if it appears in at least ` of the An.

3. MAWI TRAFFIC ARCHIVE

MAWI Repository. We evaluate SMS using Internet backbone
traffic from the MAWI archive [15, 23], specifically from the



samplepoint-F transit link connecting several Japanese research
institutes and universities to the Internet. Here packet header traces,
collected daily from 14:00 to 14:15 (Japanese Standard Time), are
anonymized and made publicly available. We use traces captured
from the first 15 days of each of the first 6 months of 2014, a total
of 78 excluding incomplete traces. Each trace contains roughly
100 to 150 million IP packets, corresponding to an average packet
inter-arrival time (IAT) of the order of 7µs.
MAWILab. MAWI traffic is currently monitored by MAWILab
[16], a combination of four conventional detectors [8, 4, 24, 25],
based respectively on multiscale gamma distributions, entropies,
Hough transforms and association rules, that incorporates automated
reporting and documentation of anomalies.

4. RESULTS

Parameter settings. For random projections, we set N = 8, M =
16, and adopt the hn from [17]. The aggregation time (bin size)
is set to ∆0 = 2−3 = 0.125ms, close to the sketch average IAT of
0.115ms ≈ 16×7µs. Cumulants of order p = 1, 2 with γ = 1 (thus,
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Fig. 1. Analysis Example: MAWI trace 2014/01/05. C1(j) (top)
and C2(j) (bottom) computed for the entire trace (solid black line
with ‘o’), each of the M sketches (light gray) and median Cp(j)
(solid red with ‘+’). The median (normal)C1(j) is free of prominent
anomalies and exhibits biscaling. Two sketches contain prominent
anomalies: trinocular (green dash-dot line) and NTP (blue dashed).

mean and variance of lnL
(γ)
X (j, k)) are used as suggested for Inter-

net traffic statistical characterization in [22]. The detection threshold
for suspicious sketches is set to τ = 3. This value was found em-
pirically to control false positives, and allows (4) to be viewed as
a robust form of ‘µ + 3σ’ . The detection threshold for suspicious
flows is set to ` = 7, since ` = 8 frequently yielded no candidates
(N too small given the sensitivity of the underlying detector for this
data), and the false positive rate is monotonically decreasing in `.
Introduction. We begin with an example of the analysis procedure
over a representative trace, using a single hashtable with IPsrc as
flow key. The top plot of Fig. 1 reports C1(j) computed for each
sketch. All but two almost superimpose (grey lines), and these define
the sketch-median C1(j), whereas the two outliers are detected as
suspicious. The same holds in the bottom plot for C2(j).

Although only two sketches are suspicious, the Cp(j) computed
from the entire trace is mostly dominated by them, showing the dan-
ger of performing statistical analysis blindly on full traces. Inconsis-
tent and difficult to interpret results will be obtained, as the nature of
anomalies varies from day to day. Instead, the proposed procedure
allows the robust extraction of normal traffic and the characterization
of its statistical properties, and thereby the unveiling of anomalies.

Fig. 1 shows that the median sketch C1(j) (red) exhibits biscal-
ing: two different scale ranges separated by a ‘knee’, here at j = 12
(0.5s). Originally reported in [26], this is now commonly consid-
ered as a signature of normal traffic. To avoid a failure of statistical
robustness at small (too close to the IAT) or large (limit of trace du-
ration) scales, we restrict analysis to J = (j1, j2) = (4, 16) (2ms
to 8s). For C2(j), it is now documented [22] that a relevant range,
where multifractality is shown, is (j1, j2) = (2, 10) (0.5-128ms).

Let Dmp,n = | Dmp,n−median(Dmp,n)|/MAD(Dmp,n) denote the
normalized sketch distance. Fig. 2 provides an overview of all the
sketch summaries by superimposing the NM normalized distance
pairs (Dm1,n,D

m
2,n) for each of the 78 traces, using IPsrc (left) or

IPdst (right) flow keys. The thresholds defining suspicious sketches
appear at τ = 3 (dashed red lines). The percentages shown give the
proportions of these detected by C1 or C2 alone, or both.
Two Important Anomaly Classes. A manual inspection of the sus-
picious flows extracted from the suspicious sketches from Fig. 1 con-
firmed them to be anomalies belonging to two particular classes.

The first consists of reflection DDoS attacks based on the Net-
work Time Protocol (NTP) [27]. Here NTP query traffic sent by the
attacker is amplified by triggering NTP servers to ‘reflect’ a large
message to the victim. Like most protocols susceptible to reflec-
tion attacks, the NTP protocol is carried by UDP, a connectionless
protocol that allows the reflected traffic to be sent in a tight burst.
Consequently, the compromised server sends packets at an abnor-
mally high rate, visible in both C1(j) and C2(j) at fine time scales

Fig. 2. Normalized sketch distance pairs over all traces. The dashed
lines mark the thresholds defining suspicious sketches.
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Fig. 3. Location j∗ of C1-spikes (spike threshold = 0.1).

(j < 10, or below 128ms), implying it impacts on both temporal
correlations and higher order dependencies. Recent NTP reflection
attacks have had a significant impact worldwide [27, 28].

The second class corresponds to the scanning activities of the
Trinocular project [29]. Trinocular probes millions of computers on
an ongoing basis in order to monitor their network connectivity, and
to detect Internet outages. Because probes are all sent with a timeout
of 3 seconds, the corresponding traffic shows a clear characteristic
time scale, visible in C1(j) at coarse time scales (j > 10) and in
C2(j) at j = 10 (roughly 128ms). This unusual though benign
traffic has a similar appearance to malicious scans.
Anomaly Classification. Due to the huge volume of traffic data it is
not feasible in general, nor here (almost 20,000 sketches were col-
lected) to manually inspect all suspicious sketches and flows in order
to provide the ground truth needed to assess detection performance
using classical tools such as ROC curves. It is however indispens-
able to provide a practical means, beyond the conservative settings
of thresholds detailed above, to ensure that detected anomalies are
meaningful. To this end we make use of a recently proposed back-
bone traffic taxonomy [30] to classify suspicious flows into one of
six categories, those heading the columns in Tables 1 and 2. This
approach contributes to two objectives: (i) an estimated breakdown
of anomaly causes, (ii) a check for false positives - the taxonomy is
a set of independent context-aware checks which in principle should
identify false positives by classifying them as ‘Other’.

To better understand the kinds of anomalies detectable by SMS,
two types of suspicious sketches under C1 are distinguished:
i) C1-shifts: those distant from the median C1 across all of J. These
are consistent with a volume change of a subset of traffic with the
same characteristics as normal traffic;
ii) C1-spikes: those that are close to C1 except at some time scale
j∗∈ J. These indicate traffic with anomalous characteristics.
Fig. 3 shows that the distribution of j∗ for C1-spike sketches con-
centrates in the range 500 to 1000 ms. Thus, being close to the knee
of biscaling, spikes strongly influence multiscale behaviour.

Applying SMS yielded 554 suspicious flows over all traces and
both IPsrc and IPdst flows, broken down in Table 1 according to
the taxonomy and five disjoint detection scenarios. The proportion
classified as ‘Other’ is only 26/554 ≈ 4.7%, an indication that the

Scan DoS NTP Pt.Multi.Pt. α-Flow Other Total
C1-shift & C2 37 2 2 40 9 1 91
C1-spike & C2 23 1 9 4 1 0 38
C1-shift only 37 1 14 106 40 15 213
C1-spike only 70 0 3 6 0 5 84
C2-only 14 7 7 45 50 5 128
Total 181 11 35 201 100 26 554

Table 1. Detection detail of suspicious flows, and classification.

Scan DoS NTP Pt.M.Pt. α-Flow Other Total
SMS 181 11 35 201 100 26 554
MAWILab 3626 94 105 2878 1178 260 8141
SMS \MAWILab 44 11 26 81 93 12 267
MAWILab \ SMS 3489 94 96 2758 1171 246 7854
SMS ∩MAWILab 137 0 9 120 7 14 287
SMS ∪MAWILab 3670 105 131 2959 1271 272 8408

Table 2. Detection breakdown comparison: SMS and MAWILab.

false positive rate is low. The four volume based anomalies [Denial-
of-Service (DoS), NTP reflection attacks (NTP), point-to-multipoint
traffic (Pt.Multi.Pt.), and α-flows (α-Flow)] are mainly captured as
C1 shift and C2 anomalies, corresponding to both a traffic volume
change and subtle temporal changes beyond correlation. It is worth
noting thatC2-only detections, which includes 7/11 DoS and 50/100
α-Flow anomalies, imply that volume-based or correlation based
procedures would fail to detect them. Manual inspection of the 7
DoS cases showed that 5 of them occured on the same day, and
consisted of many IP sources each sending 45 or fewer TCP SYN
packets to the same network.

Anomalies detected as C1-spikes are mostly classified as Scan
which implies ICMP or UDP traffic. Scanning injects packets with
a typical rate, and hence time scale, which interferes with the entire
dependence structure (correlation, C1, and beyond, C2) of traffic.
Detector Comparison. Table 2 details the detections, classified ac-
cording to the taxonomy, made by SMS and MAWILab over all
traces and flow labels. Unsurprisingly, MAWILab detects many
more anomalies than SMS, as it combines four different detectors,
and multiple parameter settings for each. The main point here is that
SMS provides a complementary detection ability: out of its 554 de-
tections, 267 are new. Adding SMS to MAWILab would allow 12%
(11/94) more DoS detections and 25% (26/105) more NTP ones.

The scan, point-to-multipoint and α-flow anomalies identified
by SMS only (see ’SMS \ MAWILab’ in Table 2) have similar
characteristics to those detected by MAWILab, but they involve far
fewer packets. This indicates a greater sensitivity of SMS in those
cases. Moreover, out of the 26 NTP amplification attacks caught
by SMS only, 13 are significant as they have very high bandwidth.
These were captured using IPdst based flows, whereas MAWILab
missed them because these attacks had few packets per individual
(IPsrc,IPdst) pair.

5. CONCLUSIONS

We have proposed a multiscaling, sketch and flow based detection
procedure, Sketch and MultiScale (SMS), which has low computa-
tional cost, does not require sensitive payload data, has an ability to
generate its own reference traffic automatically and robustly, and in
many cases an ability to identify the flows causing the anomalies.

Although it is not feasible, due to a lack of authoritative ground
truth, to assess the performance of SMS formally, the majority of the
flows detected as suspicious were manually inspected and confirmed
as anomalies. By using the anomaly taxonomy of [30], we were
able not only to explain the classification of SMS’s detections in
terms of the capabilities of the underlying multiscale representations
C

(γ)
1 (j), and Cγ2 (j), we argued that the taxonony acts as a practical

cross-check on the false positive rate, which was inferred to be low.
We found that SMS provides a useful complementary detection

capability compared to the MAWILab detector-set, capable of find-
ing both subtle and significant anomalies missed by the latter.
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