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ABSTRACT

This work focusses on the parameter estimation in the ¢;-Potts
model, i.e., a variational approach involving a ¢; dataterm and a
TV/{y penalization. Variational approaches based on total variation
have gained considerable interest to solve piecewise constant de-
noising problems due to their deterministic setting and low compu-
tational cost. However, the estimation performance of the achieved
solution strongly depend on the tuning of a regularization parameter.
While recent works have tailored various hierarchical Bayesian pro-
cedure in order to additionally estimate the regularization parameter
when the noise is Gaussian, less attention has been devoted to Lapla-
cian noise. In this context and elaborating on a previous work, this
contribution promotes a fast and parameter-free denoising procedure
of piecewise constant signals corrupted by Laplacian noise. It relies
on the minimization of a Bayesian-driven criteria whose similarities
with the /1 -Potts model permits to derive an efficient algorithm.
Index Terms— Piecewise constant denoising, Laplacian noise,
regularization parameter, Potts model, hierarchical Bayesian model.

1. INTRODUCTION

The denoising of piecewise constant signals is of considerable inter-
est in various applications [1} 2]]. A large part of the literature relies
on the assumption that the noise is white and Gaussian. However, in
presence of outliers, it is more advisable to assume the noise Lapla-
cian rather than Gaussian since the heavy-tail nature of the Laplacian
distribution provides a more relevant modelisation of outliers [3} 4]].

The denoising of piecewise constant signals corrupted by
Laplace noise traced back to [Sl 16]. Since then, it has rarely been
envisaged in the Bayesian literature since, as opposed to Gaussian
noise, posterior distributions are generally not expressible in terms
of simple tractable functions of the observations. However, various
methods have been developed around a generalized likelihood ratio
test (see, e.g., [4] and references therein). In the variational context,
there exists an efficient formulation based on the following ¢1-TV¢,
problem (usually referred to ¢1-Potts model) [[7, 8]

Z» € Argmin||y — x| + A|| Lz||o, (1)
zeRN

where y € R™ denotes the noisy data, L € RN s the first
difference operator, i.e., (L&) = Tr+1 — k, and X > 0 is a regu-
larization parameter aiming at balancing the contribution of the data
fidelity term and the regularization term. While can be solved
efficiently by means of dynamic programming [7, 8], the estimation
performance of & strongly depends on the choice of A which is a
priori unknown.

Related works. In the context of Gaussian noise and, thus, of the
£5-TV{, counterpart of (I) with ¢ = {0, 1}, interesting ideas to se-
lect A rely on a hierarchical Bayesian structure between y, x and
A. For instance the selection of A in the ¢>-TV/{; problem can be
solved by assuming a certain prior for A and maximizing either the
conditional distribution of (@, A) given y [9L [10] or a marginalised
posterior in order to remove A from the model [11}/10]. In the context
of ¢5-TV/y, a similar procedure relying on a reparametrization of «
is derived in [[12] and its efficiency is proved through numerous ex-
periments. All these approaches share the same idea that amounts in
considering a joint estimation of & and A, so requiring an additional
penalization term designed from hierarchical Bayesian arguments.

Contributions and outline. Inspired from our previous contri-
bution dedicated to Gaussian noise [12], we derive in this work a
parameter-free estimation procedure suited to Laplacian piecewise
contant denoising. It consists in solving

(#,5,\) € Argmin
zeRN,0>0,A>0

1 A
—lly = @[ + ~|[Lzflo + ¢(0,A) (2)
g g

and having beforehand defined ¢. To do so, a reparametrization of
x is necessary and is recalled in Section 2] Then, the derivation of ¢
using hierarchical Bayesian arguments is described in Section[3] We
design in Section f] an algorithmic procedure providing an approx-
imate solution for which benefits from efficient dynamic pro-
gramming techniques solving (I). Estimation performance are then
discussed in Section[3land conclusions are drawn in Section [6]

2. PROBLEM REPARAMETRIZATION

2.1. Problem

The underlying problem consists in estimating a piecewise constant
signal & € R” from the noisy observations y = % + €. The noise
samples (€;)1<i;<n are assumed to be independent and identically
distributed (i.i.d.) zero mean Laplace variables with common but
unknown scale parameter o, i.e., €|o ~ Laplace (0,01y).

2.2. Reparametrization

Following [13}114]], any candidate solution « can be parametrized by
the indicator vector » € {0, 1}* of its change-points and the vector
of values taken between each change-point.
The indicator vector r = (m) 1<i<N is introduced as follows
o 1, if there is a change-point at time instant ¢,
“7 1 0, otherwise.
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By convention, r; = 1 indicates that z; is the last sample belong-
ing to the current segment, and thus that ;41 belongs to the next
segment. Moreover, stating vy = 1 ensures that K = Zf\f: 1 Ti-

For each £k € {1,...,K}, the set R C {1,...,N} is
used to represent the set of time indices associated to the k-
th segment. Therefore, Ry, N Ry = {0} for k& # k' and
UK Ry = {1, , N'}. Hereafter, the notation K. will be adopted
to emphasize the dependence of the number K of segments on the
indicator vector 7, i.e., K = ||7||o.

The values taken on each segment of & can be encoded by intro-
ducing the vector gt = (f11)1<k<k,. such that

(Vk e {1,...,Kr})(Vi € Ry)

The parametrization leads to this first result whose derivation is
a direct result from arguments described in [[12].

Proposition 2.1. Lety € RY and ¢: Ry x Ry — R. Problem @)
is equivalent to

Knp
s 1 2
minimize = E E (yi — pe)
0={r,p}c{0,1}N xr"r | 0 =

A>0,0>0 k=11i€Ry

T = . )

+ S(Kr —1) + ¢(o, A)}- ©)

3. BAYESIAN DRIVEN DERIVATION OF ¢

It is well established that a minimization problem involving a data
term and a regularization terms can be related to the maximization of
the posterior distribution (see e.g., [15]]). A similar idea is used here
when posterior distribution is obtained with a hierarchical Bayesian
formulation in order to derive a connection with (3)).

3.1. Hierarchical Bayesian model

First, according to the noise degradation model, the joint likelihood
function of the observations y given the piecewise constant model
{7, p} and the scale parameter o follows a Laplacian distribution,
ie.,

Kn

F e mo)=T] T 2o (- "‘%,y') (©)

k=14i€Ry,

To derive the posterior distribution, prior distributions over r, p, and
o have to be specified. In the literature, it is often encountered to
assume that (7;)1<i<n are independent and identically distributed
(i.i.d.) according to a Bernoulli distribution with hyper-parameter
p [16} 17, 18]]. The parameter p quantifies the prior probability of
occurrence of a change, independently of the location:

N-—-1
frlp) = H pl(1—p)t T

From a hierarchical Bayesian perspective, a natural choice for
the posterior distribution of segment amplitudes (k)1 <k <k, would
consist in electing independent conjugate Laplace prior distributions.
However, such posterior distributions cannot be expressible in terms
of simple tractable functions. To alleviate this problem, we choose a
non-informative prior such as a uniform distribution between some
Mmin and Mmax, i-e-,

Ky

Flr) = T (max = tmin) ™ 2 iman) (). (D)
k=1

In particular, if we choose fimin < min(y) and pimax > max(y),
then (7) recasts into

Fplr) = (max — pmin) 7. 8)

Following usual prior choices in hierarchical approaches [14],
a scale-invariant non-informative Jeffreys prior is assigned on the
scale parameter ¢ in order to account for the absence of prior knowl-
edge on o, i.e.,

1
[ (o) x e )

while a conjugate Beta distribution B(ao, 1) is assigned to the un-
known hyper-parameter p:

I' (oo 4 1)

ap—1 _ ap—1
mp (1-p) . (10)

fp) =

Assuming the parameters 7, p and o to be a priori independent,
we can derive the following joint posterior distribution

f(®ly) o f(ylr,p, o) f(plr) f(rlp)f(p)f (o) (11

with ® = {r, p, o, p}. Then, minimizing the minus log joint poste-
rior distribution (TT)) leads to:

1 &
;z Z lyi — g

k=1i€Ry

+ (Kr—1) <10g (1%)) + log(fhmax — um))

+ Nlog(20) — (N —1)log(l — p) +logo
— (a1 —1)logp — (o — 1) log(1 — p)
+ log(,umax - Hmin)~ (12)

minimize
o={r.p.02,p}

3.2. Problems equivalence and derivation of ¢

The core idea to derive ¢ consists in establishing the similitudes be-
tween problems (3) and (12).

Proposition 3.1. The minimizations problems ) and ([2)) lead to a
similar solution for the following parametrization of A and choice of

A 1-
- = <10g (J> + 1Og(,u/max - Mmin)) (]3)
o p

and

¢(o,\) = Nlog(20) + log(o)

A
(N + ap — 2) + (N + ap — 1) log(/Jmax - ,U:min) (14)

o
A
+ (N + a0 + a1 — 3) 10g <1 + eXP(; - log(,uzmax - Mmin))) .

The principle of the proof consists in observing that both (3))
and (12) contains the same data fidelity term, a term proportional to
(K» — 1) which lead to Eq. (I3) by identification and an additional
term independent of 7, namely

¢(o,p) =Nlog(20) — (N — 1)log(1 — p) + logo
— (a1 —1)logp — (e — 1) log(1 — p) (15)
+ log(,umax - ,U«min)~

Finally, by inverting the relation (I3}, ¢ can be parametrized in terms
of (o, A\) such as in (T4).



Algorithm 1 Bayesian driven resolution of the TV/¢; problem

Input: Observed signal y € RN,
The predefined set of regularization parameters A.
Hyperparameters ® = {ao, a1, fimax — Hmin }-
Iterations:
1: for A € Ado
2: Compute ) = arg min ||y — (|1 + Al Lz|jo.
xER
3:  Compute o) = [ly — Za[l2/VN — L.
4: end for
Output: Solution {Z5, X, o5} with A= arg g\m}\l F(Zx, A\, o))
€

4. ALGORITHMIC SOLUTION

Now that we have derived the explicit expression (T4) of ¢, we aim
at efficiently solving the nonconvex optimization problem (3) in a
deterministic setting. Following [12]], we propose to estimate A on a
predefined grid A and to solve (VA € A)

(Zx,0x) € Argmin
zERN ,6>0

1 A
“lly =2l + 2 Zallo + 6o, 2), (16)

F(x,\,0)
which we approximate by

@ = arg min [ly - /s + Al Lall,
x

an
ox = |ly—&|l2/VN -1,

(VA € A) {

and then selecting the triplet {Z<, X, G5 } such that

A:argl;nelg F(Zx, A\, 0x). (18)

The corresponding algorithm steps are reported in Algorithm [T]
This approach permits to use the dynamic programming algorithm
Pottslab developed in [[71[8] to solve the problem (I)) for any A € A.

5. ESTIMATION PERFORMANCE

5.1. Experimental setting

Data y are synthesized in two steps. First, the change-point locations
of T are drawn i.i.d. given the change-point probability p, and then
the value taken on each segment is uniformly drawn between a min-
imal value ZTmin and a maximal value Tmax also given beforehand.
Second, we generate € ~ Laplace (0,0In) and formy = T + €.
Therefore the mean amplitude between successive segments is about
(Tmax — Tmin)/3 and its comparison w.r.t. noise power, that is the
amplitude-to-noise-ratio, reads ANR = (Tmax — Tmin)/(30).

The hyperparameters are chosen as follow. A non-informative
prior is used for the prior probability p by setting ap = a1 = 1 so
that the Beta distribution in reduces to a uniform distribution
over (0,1). In addition, fimax and pimin are chosen such as pimin <
miny, fmax > maxy and fimax — fmin = 10*. This choice is
further discussed in Section

In our experiments, the set A of discrete values for A\ has been
composed of 500 values equally spaced, in a log,,-scale, between
107" and 10°.
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Fig. 1. Illustration of the proposed method. Three configurations
are examined depending on p and ANR. The proposed criterion
F(Zx, A, 0y) is displayed in red in the second row as function of A
while the relative MSE between Z, and % is displayed in the third
row. The estimate A is indicated in a vertical dashed line and the
corresponding solution 5, is reported in red in the first row.

5.2. Illustration of the automatic selection of \

Three different observations y (grey) are represented in each
columns of Fig[l] as representatives of different configurations of
change-point probability p and scale parameter o. The truth = that
we aim at recovering is display in black.

The proposed criterion F(Zx, A\, o) is displayed in the second
row in solid red as function of A\. The position of its minimum P\
(see (I8)) is indicated by a vertical dashed red line. The correspond-
ing solution Z; is reported in dashed red lines in the first row and
appears as a visually good estimate of .

Performance are further quantified in terms of relative mean
squared error (MSE) between & and T as function of X in the third
row. For p = 0.01 and ANR = 1.5 (see Fig[I] middle), the method
automatically selects one X such as the solution benefits from a lower
MSE than for any other A € A. However, when the ANR decreases
(see Fig[l] left) or p increases (see Figll] right), the solution may
not be optimal but still maintains very good estimation performance
close to the minimum MSE.

5.3. Quantification of estimation performance

In this section, we further examine the estimation performance with
respect to (w.r.t.) the dynamic Tmax — Zmin € {0.1,1,10}, the
change-point probability € {0.005,0.01,0.015} and the ANR.
The regularization parameter selected by the proposed method (X,
red) is compared against the similar method developed in [12] for
Gaussian noise (X(“), magenta). In addition, we also report the
oracle estimate (Aysg, dashed white) for which Z ¢ Apse Yields
the lowest MSE and whose range is delimited by two dashed white
lines. Results presented here are averaged over 25 realizations.
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Fig. 2. Estimation performance (/)\\ vs. ANR). From top to bot-
tom: p = 0.005, 0.010 and 0.015. Different dynamics are examined
from left to right: T max —Tmin = 0.1, 1, and 10. The mean proposed
estimate \ is displayed in red as a function of the ANR and is com-
pared against A2 (mixed magenta) and the MSE oracle estimator
Anise whose range is delimited by dashed white lines. Overall, the
proposed solution (red line) remains between the dashed white lines,
thus showing that Z for A = X achieves the best performance in
terms of relative MSE than for any other .

Behavior of X Each plotin Figillustrates how X, X(ZZ) and Avske
vary w.r.t. the ANR. For comparison purposes, the relative MSE is
also superimposed. Overall, the proposed solution (red line) remains
between the dashed white lines, thus showing that Z» for A = X
achieves the best performance in terms of relative MSE than for any
other \. However, we observe that the performance deteriorate as
p increases (see Fig]2] from top to bottom) as the estimation prob-
lem is more difficult when an higher number of segments need to
be detected. This is quantified by the shrinking of the oracle range
AvsE. R

Further investigations show that \ scales properly when the dy-
namic varies (see translations of red and white lines in Fig]2] from
left to right) whereas A(2) does not. This means that if two ob-
servations are identical by a scale factor, then the proposed method
outputs identical solutions by a scale factor.

Comparison of MSE. In addition, estimation performance are com-
pared in terms of relative MSE between Z and & for A = B (red),
() (magenta) and any A € Ansg (black) in Fig Results illus-
trate that taking into account the Laplacian nature of the noise (red)
rather than supposing it Gaussian (magenta) permits to systemati-
cally lower relative MSE. In addition, both methods exhibit similar
performance for ANR large enough. Overall, the proposed method
provides MSE performance as close to the oracle estimate as p is
small and ANR is large.

Impact of hyperparameter (imax — ftmin. For the same configura-
tions as those presented in Fig.[T] the results displayed in Fig.[d]show
that the tuning of ftmax — Umin does not require a complicate pro-
cedure as the estimation performance are the same for ftmax — fimin
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Fig. 3. Estimation performance (MSE vs. ANR). From top to
bottom: p = 0.005, 0.010 and 0.015. Different dynamics are ex-
amined from left to right: Tmax — Zmin = 0.1, 1, and 10. For each
configuration, relative MSE || —Z||/||®|| are compared for A = p)
(red), A2 (magenta) and any A € Ansk (black). Results show that
including the knowledge that the noise is Laplacian permits to yield
lower MSE.
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Fig. 4. Impact of hyperparameters (MSE vs. fimax — f4min). For
each configuration, h) (red) is plotted as a function of the hyperam-
eter value fimax — Mmin. Results show satisfactory and identical
performances for any choice such as fimax — fhmin > 10%.

sufficiently large with respect to the amplitude dynamic of y.

Computational cost. In the experiments presented here, simula-
tions took around 40 seconds for |A| = 500 and N = 10°.

6. CONCLUSION

Elaborating on previous work [12], the present contribution pro-
motes the use of a bayesian-driven criteria to estimate the regular-
ization parameter inherent to the ¢;-TV¢y minimization problem.
The criteria is derived by establishing the equivalence between the
variational problem and a hierarchical Bayesian formulation of the
change-point detection problem. The equivalence also permits to
design an efficient algorithmic procedure which benefits from low
computational costs. The good performance of the procedure were
evaluated in terms of MSE and compared to oracle estimates.
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