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ABSTRACT
Texture segmentation constitutes a classical yet crucial task in image
processing. In many applications of very different natures (biomedi-
cal, geophysics,...) textures are naturally defined in terms of their lo-
cal regularity fluctuations, which can be quantified as the variations
of local Hölder exponents. Furthermore, such images are often nat-
urally embedded in the class of piece-wise constant local regularity
functions. The present contribution aims at proposing and assessing
a segmentation procedure for this class of images. Its originality is
twofold: First, local regularity is estimated using wavelet leaders,
a novel multiresolution quantity recently introduced for multifrac-
tal analysis but barely used in local regularity measurement, com-
parisons against wavelet coefficient based estimation are conducted;
Second, the challenging minimal partition problem underlying seg-
mentation is convexified and conducted within a customized proxi-
mal framework. The estimation of the number of regions and their
target regularity is obtained from a total-variation estimate that en-
ables the actual use of proximal minimization for texture segmenta-
tion. Performance are assessed and illustrated on synthetic textures.

Index Terms— Texture segmentation, piece-wise constant, lo-
cal regularity, wavelet leaders, proximal minimization.

1. MOTIVATION, RELATEDWORKS, CONTRIBUTIONS

Texture segmentation from local regularity fluctuations. Tex-
ture characterization and segmentation constitutes a challenging task
in image processing (see e.g., [1, 2, 3, 4, 5] and references therein).
In a variety of applications of possibly very different natures, the
relevant information characterizing textures, and thus conveying the
information to be analyzed, consists of the fluctuations across space
of their local regularity. This is notably the case for biomedical tex-
tures such as bone [6] or breast [7] (see also [8] for a review), for
surface imagery [9], for satellite imagery [10], or for image registra-
tion [11, 12].

Often, local regularity is assessed in terms of the so-called
Hölder exponent h(x) [13]. In essence, h(x) consists of the power
law exponent quantifying the decrease of the powers of local fluc-
tuations, measured via multiresolution quantities TX(a, x) (e.g.,
wavelet coefficients) around a given space position x when the
analysis scales a goes towards fine scales, i.e., ETX(a, x)2 !
C(x)ah(x) when a → 0.

Related works: Hölder exponent estimation and segmentation.
Local regularity based analysis of textures can naturally be organized
into two sub-questions: i) Accurately estimating the Hölder expo-
nents for each location; ii) Splitting the image into regions where es-
timates can be considered constant, so as to achieve texture segmen-
tation. Though these issues have received significant efforts over the

past two decades for 1D signals (cf. e.g., [14, 15]), much less contri-
butions were dedicated to 2D fields or images (see a contrario [12]
and references therein).

Estimation relies on two key choices, with crucial impact on per-
formance: Multiresolution quantities TX(a, x) from which the h(x)
are measured; Range of analysis scales a to be practically involved
in the estimation. For multiresolution quantities, most works con-
ducted so far relied on either increments, oscillations or wavelet co-
efficients. Bilinear time-scale representations were also used [15].
The choice of the range of scales is naturally framed into a classi-
cal bias-variance trade-off. While theoretically, estimation should
be conducted in the limit of fine scales, practically a finite range of
scales am ≤ a ≤ aM has to be used. Choosing a large range of
scales yields smaller estimation variance at the price of increasing
the bias because the TX(a, x) at large scales are less well localized
(cf. e.g., [16, 15]).

For segmentation, i.e., to detect changes amongst Hölder expo-
nents measured at different locations, this trade-off also turns crucial.
This is why both estimation and change detection have mostly been
conducted in model dependent frameworks. Fractional Brownian
motion (fBm) [17], the paradigm model for scale invariance, implies
a constant and unique Hölder exponent across sample fields. Mul-
tifractional Brownian motion extends fBm by allowing piece-wise
smooth variations of h(x) across space (while preserving joint Gaus-
sianity) [18] and constitutes essentially the only model with space-
dependent h that has been studied and used. The problem has mostly
been addressed for 1D signals and barely for images (see a contrario
[12, 7] which aimed at identifying particular points in the image de-
fined by specific values of h(x)). Furthermore, to our knowledge,
little work has been published aiming at detecting changes in h(x)
in a context where an exact model is not a priori assumed (see a
contrario [15] for 1D signals).

With respect to the generic issue of image segmentation, effi-
cient variational methods were proposed [19, 20, 21, 22, 23, 24],
however none of them guarantees convergence towards a global min-
imum, and thus, obtained solutions strongly depend on initialization.
Instead, a convex relaxation of the minimal partition techniques were
proposed in [25, 26]. In [26], the algorithmic solution is based on
a Arrow-Hurwicz type primal-dual algorithm but requires inner it-
erations and upper boundedness of the primal energy in order to
improve convergence speed. Also, a proximal solution in a context
of disparity estimation was proposed in [27]. Alternatively, recent
techniques are framed into variational principles, making use of
comparisons between pairs of neighboring patches [28, 3]. Notably,
in [28], a convex relaxation of the original problem was envisaged so
as to ensure to find the global minimizer, while in [3] a more general
but non-convex framework was proposed, which yields improved
results at the price tough of a well-chosen initialization. However,
the computational cost is a limitation of these methods.



Goals and contributions. In this context, the first originality of
the present contribution consists in performing region-segmentation
of images, that excludes the recourse to a fully parametric model for
the data, but instead only assumes that images belong to the class of
piecewise constant Hölder exponent functions. Its second originality
lies in a twofold departure from earlier works: For multiresolution
quantities, wavelet leaders are chosen and shown to yield improved
statistical performance for Hölder exponent estimation, compared to
the classical wavelet coefficients (cf. Section 2); For segmentation,
using estimated Hölder exponents as inputs, a proximal algorithm
is devised. It essentially relies on the customization of the formu-
lation proposed in [27], which expands on that proposed in [29] to
efficiently handle the resulting large size problem. Further, we pro-
pose an original method to a priori estimate the number of regions as
well as their mean regularity, an initialization step that turns compul-
sory and crucial for the actual use of the proximal approach in that
context. These are detailed in Section 3.

This combination (use of wavelet leaders and of proximal algo-
rithm with original initialization) enables us to propose an efficient
data-model free piecewise constant Hölder exponent minimal par-
tition image segmentation procedure, that furthermore depends on
very few parameters that need to be tuned manually.

2. WAVELET COEFFICIENTS AND LEADERS FOR
HÖLDER EXPONENT ESTIMATION

Local regularity and Hölder exponent. Let X denote the
bounded 2D function (image) to be analyzed. Local regularity
around position x0 ∈ R

2 is measured by the so-called Hölder ex-
ponent h(x0), defined as the largest α > 0, such that there exists
a constant C > 0 and a polynomial Px

0
of degree less than α,

such that |X(x) − Px
0
(x)| ≤ C|x − x0|

α in a neighborhood x of
x0. When h(x0) is close to 0, the image is locally very irregular
and close to discontinuous. Conversely, a large h(x0) corresponds
to a locally smooth field. For example, h(x0) ≤ 2 indicates that
the fields is locally quasi-differentiable. Fig. 1(b) below displays
a Gaussian texture, with piecewise constant Hölder exponents, the
region with the lowest h (outer ring) clearly appears more irregular
then the one with the largest h (inner ring).

Wavelet coefficients. Let φ(x) and ψ(x) denote the scaling func-
tion and mother wavelet defining a 1D multiresolution analysis. Let
the 2D wavelets be defined as: ψ(0)(x) = φ(x1)φ(x2), ψ(1)(x) =
ψ(x1)φ(x2), ψ(2)(x) = φ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2) with
x = (x1, x2). The collections ψ(m)

j,k (x) = 2−jψ(m)(2−jx − k)

of dilated (to scales a = 2j ) and translated (to space positions
x = 2jk) templates of ψ0 form a basis of L2(R2) for well cho-
sen functions ψ. Let d(m)

X (j, k) = 〈X,ψ
(m)
j,k 〉 denote the (L1-

normalized) coefficients of X of the so-called discrete wavelet
transform (DWT) ofX . Readers may refer to [30] for further details.

Wavelet leaders. Wavelet leaders were recently introduced in the
context of multifractal analysis [13, 31], their use in the context of
local regularity measurement has however been barely considered.
The wavelet leader LX(j, k), located around position x0 = 2jk,
is defined as the local supremum of all wavelet coefficients taken
within a spatial neighborhood across all finer scales 2j

′

≤ 2j :

LX(j, k) = sup
m=1,2,3,
λ′⊂9λj,k

|d(m)
X (λ′)|, (1)

λj,k = [k2j , (k + 1)2j), 9λj,k =
⋃

p∈{−1,0,1}2 λj,k+p [13, 31].

Local regularity estimation. It has long been known that, for
large (but not all) classes of images [13], wavelet coefficients repro-
duce the Hölder exponent h(x0), in so far as, for all k0 such that
2jk0 ≈ x0: |dX(j, k0)| ! Cd(x)2

jh(x
0
) when 2j → 0. More re-

cently, it has been shown [13, 31] that wavelet leaders systematically
(that is: for all classes of images) reproduce the Hölder exponent
h(x0): lim2j→0 LX(j, k0) ! CL(x)2

jh(x
0
). This naturally leads

to the estimation of h(x0) by means of linear regressions:

ĥd(x0) =
j2∑

j=j1

wj ln |dX(j, k0)|, ĥL(x0) =
j2∑

j=j1

wj lnLX(j, k0),

(2)
with weights wj chosen to perform non weighted regression [15].
Section 4 compares estimates obtained from either wavelet coeffi-
cients or leaders and shows that the latter yield a substantial decrease
in variance and are thus to be preferred.

3. MINIMAL PARTITION SEGMENTATION USING
PROXIMAL TOOLS

Let Ω ⊂ R
2 denote a spatially continuous domain and f ∈ L2(Ω)

the image that we intend to label. Note that, in Section 4, f will
successively model the estimated Hölder exponents obtained from
wavelet coefficients or leaders, i.e., f = ĥd or f = ĥL. The
Mumford-Shah approach in [20] consists in computing a piecewise
constant approximation of data f . Assuming that f can be approx-
imated by Q labels such that (Ωq)1≤q≤Q models the Q distinct re-
gions, this problem can be written as

min
Ω1,...,ΩQ

Q∑

q=1

∫

Ωq

(f − vq)
2dx+

1
2

Q∑

q=1

Per(Ωq)

s.t.

{⋃Q
q=1 Ωq = Ω,

(∀q += p), Ωq ∩ Ωp = ∅,
(3)

where vq stands for the value of f in region Ωq (with, by convention,
vq ≤ vq+1), where the left-hand-side term consists of the sum of
the variances of f over all regions, and where Per(Ωq) measures
the perimeter of region Ωq , and where the constraints imposed on
Ωq ensure to obtain a non-overlapping partition of the image. The
discrete analogue of Model (3) is the Potts model which is known to
be NP-hard to solve. A solution to circumvent this difficulty consists
in relaxing this non convex formulation into a convex approximation
[26].

From now on, the sampled version of the image f is consid-
ered and denoted as a vector of pixels f = (f (n))1≤n≤N ∈ R

N .
The Q regions Ωq are labeled through an auxiliary variable u =
(u(n))1≤n≤N , such that u(n) = vq if and only if the pixel n belongs
to the region Ωq . Further, one can introduce Q binary functions
θ = (θ1, . . . , θQ) such that, for every q ∈ {1, . . . , Q},

(∀n ∈ {1, . . . , N}), θ(n)
q =

{
1 if u(n) ≥ vq ,

0 otherwise.
(4)

It results that the labeling function u can be recovered from θ =
(θ1, . . . , θQ) through the relation

(∀n ∈ {1, . . . , N}), u(n) =
Q∑

q=1

(vq − vq−1)θ
(n)
q , (5)



with v0 = 0. A bijection between u and θ is guaranteed by con-
straining, for every n ∈ {1, . . . , N}:

Bn = {θ(n) ∈ {0, 1}× . . .× {0, 1}, 1 ≥ θ
(n)
1 ≥ . . . ≥ θ

(n)
Q ≥ 0},

whose convex relaxation is

Bn = {θ(n) ∈ [0, 1]× . . .× [0, 1], 1 ≥ θ
(n)
1 ≥ . . . ≥ θ

(n)
Q ≥ 0}.

Moreover, for every n ∈ {1, . . . , N}, θ(n)
1 = 1.

Convex criterion The convexification of Model (3) leads to the
following minimization problem involving the Q binary functions
θ = (θ1, . . . , θQ) [29]:

minimize
θ1,...,θQ

Q−1∑

q=1

N∑

n=1

(θ(n)
q − θ

(n)
q+1)(f

(n) − vq)
2

+
N∑

n=1

θ
(n)
Q (f (n) − vQ)

2 +
1
2

Q∑

q=1

ρTV(Hθq, V θq)

s.t.

{
(∀n ∈ {1, . . . , N}), θ(n)

1 = 1,

(∀n ∈ {1, . . . , N}), 1 ≥ θ
(n)
2 ≥ . . . ≥ θ

(n)
Q ≥ 0,

(6)

where H ∈ R
N×N and V ∈ R

N×N are matrix representa-
tions of, respectively, the horizontal and vertical first-order dis-
crete differences, and where the total variation reads, for every
η =

(
η(n)

)
1≤n≤N

∈ R
N and ζ =

(
ζ(n)

)
1≤n≤N

∈ R
N ,

ρTV :
((
η(n))

1≤n≤N
,
(
(ζ(n))

1≤n≤N

)
0→

N∑

n=1

√
|η(n)|2 + |ζ(n)|2.

The functions involved in (6) are convex, lower semi-continuous,
and proper. H and V are diagonalizable in the Fourier domain and
the proximity operator of each function has a closed form. It results
that the proximal algorithms PPXA+ [32] can be used to efficiently
find the minimum of (6).

Estimation of (vq)1≤q≤Q The a priori choice of (vq)1≤q≤Q is
likely to strongly impact the estimated (θq)1≤q≤Q. Here, we pro-
pose to extract this values from a denoised estimator of f such that

f∗ = argmin
g

‖f − g‖2 + λ ρTV(Hg,V g) (7)

where λ > 0 denotes a regularization parameter, that impacts the
quality of the denoised estimate. Section 4 further details the esti-
mation of the (vq)1≤q≤Q from f∗.

4. RESULTS

Numerical simulations. The potential and performance of the
combined estimation and segmentation procedures described in Sec-
tions 2 and 3 above are illustrated and assessed by application to
independent realizations of synthetic images. They are produced nu-
merically according to a 2D multifractional Brownian field model
[14, 18], whose definition has been slightly modified here to ensure
an homogeneous variance across the image:

X(x) = C(x)

∫

R2

eıxξ−1

|ξ|h(x)+
1

2

dW (ξ), (8)

where dW (ξ) is 2D Gaussian white noise and h(x) denotes the
prescribed Hölder exponent function. The normalizing factor C(x)
ensures that the local variance ofX does not depend on the location
x. This model is chosen here for convenience in synthesis. Note that
the proposed estimation and segmentation procedures do not rely at
all on any knowledge of the model. A sample field of such processes
is shown in Fig. 1(b). Analysis is conducted using a standard 2D
DWT with orthonomal tensor product Daubechies mother wavelets
with Nψ = 2 vanishing moments. Regularity is estimated using the
scaling range (j1, j2) = (1, 3).
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Fig. 1. Synthetic data. (a) Piecewise constant Hölder exponent
mask (H1,H2,H3) = (0.25, 0.50, 0.75), (b) Sample field, and (c)
Corresponding histogram of the pixel values.

Estimation. To compare estimation performance obtained with
wavelet leaders against those produced with wavelet coefficients,
the estimation procedure described in Section 2 is applied to 100
independent copies, of size N × N , with N = 1024 and with
uniform Hölder exponent: h(x) ≡ H . Table 1 reports estimation
performance for different values of H and clearly indicates that
leader-based estimates of h systematically outperform wavelet co-
efficient based ones, with significant decrease in variances at the
price of increased biases, overall yielding substantially decreased
mean-square errors.

H = 0.25 0.50 0.75

WavC WavL WavC WavL WavC WavL
Bias -0.36 0.03 -0.19 0.08 -0.08 0.11
Std 0.52 0.19 0.55 0.37 0.60 0.50

RMSE 0.63 0.19 0.58 0.38 0.60 0.52
min -0.14 0.27 0.27 0.47 0.56 0.69
max -0.09 0.31 0.37 0.70 0.77 1.10

Table 1. Estimation Performance. Coefficients vs leaders.

Segmentation. Synthetic data are produced according to the
model in (8) with piecewise constant Hölder exponent function
h(x) = Hq for Region q. Each region is thus regarded as a different
texture and the goal is to achieve texture segmentation of the image.
As an instructive example, we use images consisting of Q = 3
different regions with piecewise constant Hölder exponents on con-
centric disks, as shown in Fig. 1-a. The three different textures can
clearly not be identified from the histogram of the image pixel values
shown in Fig. 1-c. In simulations, N ×N = 512× 512.

The estimation procedures of Section 2 are applied to such im-
ages, yielding local estimates of the Hölder exponents which are
plotted as images and histograms in Fig. 2-a (wavelet coefficients)
and in Fig. 3-a (wavelet leaders). Despite a visual perception of
3 different regions for the wavelet coefficient based estimates ĥd,
the corresponding histogram (Fig. 2-b) is unimodal and fails to re-
veal the existence of three constant-h regions in the image, a direct



−1.5 −1 −0.5 0 0.5 10

0.5

1

1.5

2
x 104

−1.5 −1 −0.5 0 0.5 10

0.5

1

1.5

2
x 104

(a) (b) (c) (d) (e) (f)

Fig. 2. Wavelet coefficient segmentation. (a) Estimate ĥd, (b) Histogram of ĥd, (c) ĥ∗
d, Histogram of ĥ∗

d, (e) Segmentation based on
thresholding of ĥ∗

d, and (f) Labeling function u obtained from proximal segmentation with f = ĥd.

−1.5 −1 −0.5 0 0.5 10

0.5

1

1.5

2
x 104

−1.5 −1 −0.5 0 0.5 10

0.5

1

1.5

2
x 104

(a) (b) (c) (d) (e) (f)

Fig. 3. Wavelet leaders segmentation. (a) Estimate ĥL, (b) Histogram of ĥL, (c) ĥ∗
L, Histogram of ĥ∗

L, (e) Segmentation based on
thresholding of ĥ∗

L, and (f) Labeling function u obtained from proximal segmentation with f = ĥL.

consequence of the very large variance of the estimate ĥd. Despite
smaller variance, resulting in a non unimodal histogram (Fig. 3-b),
the leader-based estimates ĥL (Fig. 3-a) do not clearly reveal the
three constant-h regions either.

The denoising procedure described in Section 3 (cf. (7)), applied
to both ĥd(x) and ĥL(x), yields estimates ĥ∗

d(x) and ĥ∗
L(x) (resp.

Fig. 2-c and Fig. 3-c) , whose histograms, shown in Fig. 2-d and
Fig. 3-d respectively, clearly display 3 modes. Segmentation based
on a direct thresholding of such histograms however yields poor re-
sults as illustrated in Fig. 2-e and Fig. 3-e and Table 2. Instead, the
denoising procedure is used to initialize the proximal based segmen-
tation: The number of regionsQ is set to the number of local maxima
observed in the denoised estimates ĥ∗

d(x) and ĥ∗
L(x), here Q = 3;

The target mean intensity values vq, q = 1, 2, 3 are set to values cor-
responding to the positions of the local maxima of the histograms of
estimates ĥ∗

d and ĥ∗
L.

The proximal tool based segmentation procedure described in
Section 3 is now applied to both ĥd(x) and ĥL(x), initialized as de-
scribed above. Results are compared in Fig. 2-f and Fig. 3-f, (for one
single image) and quantified in Table 2 (averaged across 100 inde-
pendent copies). This shows that the number of mis-classified pixels
is systematically smaller when segmentation is based on ĥL(x). Dif-
ferences between wavelet coefficient and leader based performance
may appear small, this is however only a consequence of the cho-
sen simple geometry for the piece-wise constant regions. Indeed,
quantifying the number of mis-classified pixels within narrow strips
comprising the borders between the piecewise constant-h regions
shows that segmentation based on ĥL(x) significantly outperforms
that based on ĥd(x), a direct consequence of the better localization
and lower variance of the ĥL(x). Wavelet leader based segmenta-
tion thus provides far better border delimitation, a crucial issue in
biomedical texture segmentation, for instance. Our codes were de-
veloped in MATLAB R2011b and the segmentation of a 512 × 512
image with Q = 3 labels requires only 5 minutes on an 2.4 GHz
Quad-Core Intel Xeon and 6 GB of RAM.

% of miss- entire around borders
classified pixels image (∼ 2.104 pixels)

ĥd ĥL ĥd ĥL

BasicThresh 33.3 22.1 93.6 62.2
ProxSeg 3.4 3.0 9.4 8.6

Table 2. Segmentation Performance. Coefficients vs. leaders

5. CONCLUSIONS AND PERSPECTIVES

We have proposed, to the best of our knowledge, the first fully oper-
ational texture segmentation procedure based on texture local reg-
ularity. The segmentation procedure is designed for the class of
piece-wise constant regularity images. It relies on combining im-
proved regularity estimates based on wavelet leaders with the proxi-
mal solution to the minimization of the convex criterion underlying
the segmentation problem. The proximal solution further relies on
a total variation and proximal based initialization. The procedure is
illustrated here using realizations of stochastic Gaussian model pro-
cess with prescribed region-wise constant local regularity. The seg-
mentation procedure does, however, not rely on any a priori model
knowledge besides that of data belonging to the class of piece-wise
constant regularity images.

The performance of the proposed procedure for different region
geometry, selection of scaling range, and sensitivity to local regular-
ity differences are currently being systematically quantified. Com-
parisons against alternative segmentation features, such as local en-
tropy, will be conducted. Comparisons of the robust convex opti-
mization based segmentation achieved here against recent classifi-
cation techniques, such as the one proposed in [28, 3] will also be
made. Moreover, extensions of the procedure to the class of piece-
wise smooth local regularity images are currently under study. Pre-
liminary analysis of real biomedical textures yields promising results
and will be further investigated.
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