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Abstract—Epileptic patients can undergo severe brain damages
during seizures. There is thus a significant need for automated
seizure prediction. Brain activity has been shown to display a
scale-free temporal dynamics, which has, in turn, been involved in
seizure prediction. Self-similarity, the paradigm model for scale-
free dynamics, has however mostly been studied in univariate
settings, considering recorded signals independently. Yet, non-
negligible correlations exist in multi-channel recordings of brain
activity and must be accounted for. The present work aims to
assess the relevance and benefits of a recently developed multi-
variate eigen-wavelet framework for multivariate self-similarity
analysis in seizure prediction using CHB-MIT Scalp EEG data.

Index Terms—Multivariate self-similarity, multivariate wavelet
transform, EEG data, Epilepsy, seizure prediction.

I. INTRODUCTION

Context. Epilepsy, a chronic disease consists of a central
nervous system disorder, leading to seizures during which
the patient brain can be severely injured. Devising automated
epileptic seizure prediction procedures thus constitutes a cru-
cial and on-going stake, notably when they can be imple-
mented from non-invasive and wearable scalp EEG devices.

It was shown in many studies that brain activity can be well-
described by arrhythmic or scale-free dynamics efficiently
modeled by self-similarity [1], [2]. In practice, self-similarity
analysis relies on the estimation of the self-similarity or Hurst
exponent [3], [4]. Self-similarity is mostly studied in univariate
settings, i.e., self-similarity exponents are estimated indepen-
dently for each time series. However, brain activity is moni-
tored via numerous sensors, yielding multivariate time series
recorded jointly. Recently, a multivariate self-similarity model,
operator fractional Brownian motion (ofBm) was proposed and
a corresponding multivariate eigen-wavelet-based analysis was
developed [4]. The present work aims to quantify the relevance
and benefits of multivariate self-similarity analysis in brain
activity monitoring through the prediction of epileptic seizures
from scalp EEG data.
Related works. Seizure prediction constitutes an important
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research topic, often investigated using tools such as synchro-
nization and functional connectivity [5], phase coherence [6],
power spectral density [7] or power of the wavelet coefficients
[8] in standard frequency bands, autoregressive models [9],
or more recently deep learning frameworks [10]. Scale-free
dynamics have also been involved in seizure prediction (e.g.,
from intracranial EEG [11] or single scalp EEG [12]). Frac-
tional Brownian motion (fBm) has been shown to be a relevant
model for scale-free temporal dynamics [3] and often used to
analyze MEG and EEG data analysis. Most works however
rely on univariate self-similarity (or multifractal) analysis. In
the context of scalp EEG data, multivariate self-similarity
models such as ofBm [4], [13] could prove more efficient
to account for cross-temporal dynamics in EEG time series.
This has so far never been tried.
Goals, contributions and outline. The present work aims to
quantify the relevance and benefits of using multivariate self-
similarity models and eigen-wavelet-based analysis in epilepsy
seizure prediction from multi-channel scalp EEG data. Section
II describes the ofBm model and multivariate wavelet spectrum
eigenvalues-based analysis for M -variate fBm through the
estimation of M self-similarity exponents. This tool is applied
to M = 22-variate EEG data, obtained from the CHB-MIT
Scalp EEG database, documented in [14] as described in
Section III. Finally, Section IV quantifies the significance
of multivariate self-similarity analysis for epileptic seizure
prediction.

II. MULTIVARIATE SELF-SIMILARITY

Operator fractional Brownian motion. Fractional Brown-
ian motion (fBm), the only Gaussian, self-similar stochastic
process with stationary increments, is a classical model for
univariate self-similarity [3], [4]. To analyze the multivariate
times series conveying brain activity, it can be modeled as a
collection of possibly correlated M -fBm X , {XH1

(t), . . . ,
XHM

(t)}t∈R each associated with a possibly different self-
similarity parameter Hm. Further, these M -fBm are possibly
linearly mixed via a M ×M real-valued invertible matrix W ,
Y , WX = W {XH1(t), . . . , XHM

(t)}t∈R. The resulting
multivariate process Y is a specific case of operator fractional



Brownian motion [4]. Multivariate self-similarity analysis thus
amounts to estimating, from the observation of Y , the vector
of self-similarity parameters H = (H1, . . . ,HM ).
Multivariate wavelet analysis. In the present work, self-
similarity is analyzed through a wavelet-based representation.
Let DYm

(2j , k) = 〈2−j/2ψ0(2−jt − k)|Ym(t)〉, ∀k ∈ Z,
∀j ∈ {j1, . . . , j2} denote the discrete wavelet transform
(DWT) coefficients of component Ym, where ψ0 stands for the
reference mother wavelet [15]. Multivariate DWT is defined
naturally as the collection of univariate DWT of each com-
ponent Ym, using the same mother wavelet. This amounts to
concatenate the univariate DWT coefficients into DY (2j , k) =
(DY1

(2j , k), . . . , DYM
(2j , k)), ∀k ∈ Z, ∀j ∈ {j1, . . . , j2},

∀m ∈ {1, . . . ,M}. The wavelet spectrum is then defined as
the collection of covariance matrices of DY (2j , k), computed
independently at scale 2j :

S(2j) ,
1

nj

nj∑
k=1

DY (2j , k)DY (2j , k)∗. (1)

Self-similarity analysis consists in the estimation of the expo-
nents H = (H1, . . . , HM ) from the M -variate time series Y .
Univariate self-similarity analysis. First, M independent
univariate analyses can be conducted from using only the
diagonal entries Sm,m(2j) of the wavelet spectrum. When
there is no mixing, (W ≡ I), the Sm,m(2j) asymptotically
behave as power-laws, with scaling exponent 2Hm − 1, thus
leading to a linear regression based estimator of Hm [4]:

ĤU
m =

 j2∑
j=j1

vjSm,m(2j)

/2− 1

2
, m = 1, . . . ,M, (2)

with vj classical regression weights such that
∑
j jvj = 1 and∑

j vj = 0 (cf. [4]). Obviously, these M -univariate analyses
lead to biased estimation of the self-similarity parameters
when linear mixing is present (W 6= I), and even without
mixing do not exploit cross temporal dynamics likely to exist
in data.
Classical multivariate self-similarity analysis. To account
for cross-temporal dependencies amongst components, the non
diagonal entries Sm,m′(2j) (m′ 6= m) of the wavelet spectrum
can be used. Without mixing, the Sm,m′(2

j) asymptotically
behave as power-laws, with scaling exponent 2Hm,m′ − 1,
with Hm,m′ = (Hm+Hm′)/2. This naturally leads to estimate
Hm,m′ by a linear regression:

Ĥm,m′ =

 j2∑
j=j1

vjSm,m′(2
j)

/2−1

2
, m ≤ m′ = 1, . . . ,M.

(3)
Obviously, these M(M − 1)/2 estimates lead to biased esti-
mation of H when linear mixing is present (W 6= I). Further,
without mixing, departures of Ĥm,m′ from (Hm + Hm′)/2
may quantify departures of data from the underlying ofbm
model, a potentially valuable multivariate information.
Eigen-wavelet multivariate self-similarity analysis. To ac-
count both for cross-dependencies and mixing, an alternative

eigen-wavelet based multivariate selsimilarity analysis was
proposed [4]. It shows that each of the eigenvalues λm(2j)
of the wavelet spectrum S(2j) asymptotically behaves as
power law with respect to the scales 2j , with scaling exponent
2Hm − 1, with and without mixing.

This naturally suggests to perform the practical estimation
of Hm by a linear regression of log2 λm(2j) against octaves
j = log2 2j . However, this would results in significant biases
because of the so-called repulsion effect altering the estimation
of covariance matrix eigen-values from finite size observa-
tions. By nature of multiscale analysis, that bias increases at
coarser scales [13]. To overcome this bias, it was proposed to
compute several wavelet spectra, from non overlapping time
windows w = 1, . . . , 2j−j2 , using an identical number of
wavelet coefficients common to all scales 2j [13]:

S(w)(2j) ,
1

nj2

wnj2∑
k=1+(w−1)nj2

DY (2j , k)DY (2j , k)∗. (4)

The eigenvalues {λ(w)
1 (2j), . . . , λ

(w)
M (2j)} of S(w)(2j) are

computed for each non-overlapping window w at each scale
2j , entailing a repulsion effect of similar size at all scales,
thus leading to an unbiased estimation of Hm. In practice,
the H1, . . . ,HM are thus estimated by means of linear re-
gressions over the octaves j of the log-averaged eigenvalues
log2 λ̄m(2j) , 2j2−j

∑2j−j2

w=1 log2(λ
(w)
m (2j)):

ĤM
m =

 j2∑
j=j1

vj log2 λ̄m(2j)

/2− 1

2
, m = 1, . . . ,M.

(5)
This estimation procedure was assessed on synthetic M -fBm
in [13].

III. EPILEPSY DATASET

Data description. Data used in this work consist of multi-
channel scalp EEG recordings from the CHB-MIT Scalp EEG
database available at https://physionet.org/content/chbmit/1.0.
0/, documented in [14]. These recordings have been collected
at the Boston Children’s Hospital from pediatric subjects with
intractable seizures and sampled at 256Hz.

EEG recordings have been divided into 23 cases collected
from 22 subjects, composed of 5 males and 17 females,
annotated with beginnings and ends of epileptic seizures. For
each case, between 22 and 26 EEG signals have been recorded
for several hours according to the International 10-20 system
of EEG electrode positions and nomenclature. The recordings
are at least one-hour long and only a part of them contains
seizures.
Data preprocessing. In the present work, we make use of the
22 first EEG channels, so as to use the same channels for all
subjects.

Because the work focuses on predicting epilepsy, the goal
is to perform a detection of preictal states, which are periods
occurring a few minutes before the onset of an epileptic
seizure. Thus windows corresponding to preictal states are
selected in the recordings containing seizures while windows
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Fig. 1. Multivariate scale-free analysis. Diagonal entries log2 Sm,m(2j)
(blue ’+’) and log-eigenvalues log2 λ̄m(2j) (red ’o’) of the wavelet spectrum
S(2j) for one preictal window associated with Subject 5 before (left) and after
(right) removal of 3 redundant channels.

corresponding to interictal states (far in time from any epilectic
seizure) are selected in the recordings with no seizure. In
practice, 2-minute long windows (30, 720 samples) are used.

To assess quantitatively the performance of the proposed
multivariate eigen-wavelet based self-similarity analysis to
detect preictal states, only subjects with at least 110 interictal
and 10 preictal windows are considered. Thus, only 8 subjects
are studied in this work.

IV. PREDICTION OF PREICTAL STATES

A. Analysis set-up

The 2-minute long windows of the EEG signals are analysed
using Daubechies wavelets with Nψ = 2 vanishing moments.
Linear regressions are performed across scales 21 to 24,
corresponding to equivalent frequencies ranging from 10Hz
to 85Hz, where intracranial EEG signals are documented to
have scale-free dynamics [11].

B. Single window multivariate analysis

Fig. 1(left) compares, for a preictal window of a given sub-
ject, the M = 22-univariate wavelet analysis log2 Sm,m(2j)
(solid black lignes with ’+’) against the eigen-wavelet based
multivariate analysis log2 λ̄m(2j) (solid red lines with ’o’).
While the M = 22-univariate log2 Sm,m(2j) functions
mostly superimpose, the multivariate eigen-value based anal-
ysis clearly shows that three eigen functions log2 λ̄m(2j)
take values significantly smaller than the 19 others. This
betrays linear dependencies amongst the 22 EEG-recordings.
Indeed, time series result from subtraction amongst electrode
measurements, some being used several times, so that one time
series actually consists of the addition of several others. This
leads to remove three redundant recordings from multivariate
analysis, thus leading to a M = 19 multivariate self-similarity
analysis, reported in Fig. 1(right).

Fig. 1 further confirms linear behaviors (hence scale-
free dynamics) for both log2 Sm,m(2j) and log-eigenvalues
log2 λ̄m(2j), m = 1, . . . ,M , at fine scales.

C. Self-similarity parameter estimate distributions

To illustrate the ability of self-similarity analysis to detect
preictal states temporal dynamics from those of interictal
states, Fig. 2 compares (by means of boxplots) the distributions
of the univariate ĤU

m (left) and eigen-wavelet multivariate
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Fig. 2. Distributions of estimated self-similarity parameters. Boxplots
for the univariate estimates ĤU

m (left) and multivariate estimates ĤM
m (right)

for preictal (red) and interictal (blue) states, for all subjects.

ĤM
m (right) estimates of the Hm, computed for the Subjects

5 (top) and 20 (bottom), from the 169 available interictal
windows (blue) and the 15 available preictal windows (red).
Fig. 2 shows clearer distinctions between the distributions
of estimated preictal and interictal Hm, for each m, for the
eigen-wavelet based ĤM

m , compared to univariate ĤU
m, with

lower spreading in distribution and smaller overlap between
distributions.

Fig. 2 also shows, by comparisons between subjects, that
detection between interictal and preictal states must be per-
formed on a per-subject basis. Indeed, the distributions of
Ĥm for interictal states differ from one subject to the other,
hence average across subjects would blur differences between
preictal and interictal statistics. These observations are valid
for all subjects (not shown here for space reasons). Fig. 2
clearly indicates that i) preictal states have temporal dynamics
that departs from those of the interictal states of one same
subject and ii) that interictal states of different subjects have
different temporal dynamics. These are the first significant
findings of this work.

To quantify differences amongst distributions of estimated
self-similarity parameters between preictal and interictal states,
Wilcoxon signed-rank test p-values pWm are computed. These
p-values are compared to Benjamini-Hochberg (multiple hy-
pothesis correction) thresholds, d(W,m)

α , at a false discovery
rate set to α = 0.05 [16]. To further quantify differences
between the ĤM

m and the ĤU
m, an across component overall

performance score is defined as the normalized signed distance
from the p-values pWm to the Benjamini-Hochberg thresholds
d
(W,m)
α , score = 1

M

∑M
m=1(d

(W,m)
α −pWm ).

Fig. 3 compares, for each of the available 8 subjects, the p-
values pWm for ĤM

m (red) and ĤU
m (blue), compared to the

Benjamini-Hochberg thresholds d
(W,m)
α (black) and reports

the corresponding scores. Fig. 3 shows that the eigen-wavelet
multivariate ĤM

m lead systematically to lower p-values and
thus larger overall scores, and for some subjects significantly
so. These findings confirm i) the statistically significant differ-
ences between the temporal dynamics of preictal and interictal
states on a per-subject basis, and ii) the improved ability of
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Fig. 3. Comparisons of preictal and interictal estimated self-similarity
parameters distributions. Sorted log p-values of the Wilcoxon signed-
rank test between preictal and interictal estimated self-similarity parameters
distributions, and related scores, for univariate ĤU

m (blue) and eigen-wavelet
multivariate ĤM

m (red) for the 8 different subjects, with the Benjamini-
Hochberg (log-)thresholds (superimposed dashed black lines) at false discov-
ery rate α = 0.05.

the eigen-wavelet multivariate ĤM
m to assess such differences.

D. Per subject preictal state detection performance

To further quantify the benefits of multivariate self-
similarity analysis to detect preictal states on per-subject basis,
ROC curves are computed as follows, for each subject inde-
pendently. First, 100 interictal windows are selected randomly,
from which self-similarity parameters are estimated and used
to define the empirical distributions of the Hm under the
null hypothesis (interictal state). Second, for all available
Nw preictal windows and Nw interictal windows chosen
randomly (not from the set of the 100 windows used to create
the distributions under the null hypothesis), self-similarity
parameters are estimated. Third, from these estimates, p-values
are computed by comparisons against the distributions of
estimates under null hypothesis and corresponding p-values
are compared to Benjamini-Hochberg multiple comparison
correction thresholds, for a collection of preset false discovery
rates α. A (interictal state) rejection decision is taken as soon
as one of the M = 19 p-values are lower than such threshold.
Fourth, averaging these decisions across the Nw preictal and
interictal windows permit to compute probabilities of correct
detection and of false alarms for each preset false discovery
rates α. These empirical probabilities are plotted one against
the other to yield ROC curves.

This procedure is performed independently for the M = 19
univariate ĤU

m, for the M = 19 eigen-wavelet multivariate
ĤM
m and for the M(M − 1)/2 = 171 classical multivariate

Ĥm,m′ . Fig. 4 compares, for each of the 8 subjects inde-
pendently, the resulting ROC curves and related area under
curve (AUC) for the univariate ĤU

m (blue lines with ’+’), for
the eigen-wavelet multivariate ĤM

m (red lines with ’o’) and
for the classical multivariate Ĥm,m′ (black lines with ’∆’).
Fig. 4 shows that the eigen-wavelet multivariate approach
reaches overall the most satisfactory performance: First, it
always outperforms the univariate strategy; Second, while it
is outperformed by the classical multivariate strategy for one
subject (Subject2), it essentially does as well as and sometimes
significantly better (Subjects 21 and 22) than the classical
multivariate strategy, which may show poor sensitivity, while
performing only M = 19 instead of M(M−1)/2 = 171 tests.
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Fig. 4. Epilepsy prediction from self-similarity exponent estimates. ROC
curves and related AUC of the test decisions for rejecting preictal states using
(blue) univariate-like estimates ĤU

m, (black) classical multivariate estimates
ĤU

m,m′ and (red) eigen-wavelet multivariate estimates ĤM
m distributions for

the different subjects.

V. CONCLUSION AND PERSPECTIVES

The present work has shown the relevance of comparing, on
a per-subject basis, the scale-free temporal dynamics of multi-
channel scalp EEG data, in intericatal and preictal states for
epilectic seizure prediction. It has also shown that multivariate
scale-free temporal dynamics assessed by a recently developed
eigen-wavelet multivariate self-similarity analysis outperforms
univariate or classical multivariate analyses.

Future work will include the design of a learning procedure
for seizure prediction, using the multivariate self-similarity
parameter estimates as features.

Matlab routines for multivariate self-similarity parame-
ter estimation are publicly available at https://github.com/
charlesglucas/ofbm tools for sake of reproducibility.
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