
ESTIMATION - DETECTION

TD 2 — Detection

Exercise 1

A radar system repetitively sends out trains of n pulses. The pulse trains are of sufficiently short
duration and the rotation of the antenna during the each emission of a sequence of pulses can
be neglected. The reflected pulses are preprocessed and collected in a vector of observations
(x1, · · · , xn). They can be modeled as xi = τ + εi if a target is present (H1), and as xi = εi
when no target is present (H0). Here, εi ∼ N (0, σ2) models all the noise in the radar system and
environment. The noise level σ2 is assumed to be known.

1. Suppose that the value of τ is known. Define the Neyman-Pearson test for this problem.

(a) Derive the test statistic T . What is the critical region of the test?

(b) Calculate the critical value tα of the test for significance α. Derive the expression for
the receiver operating characteristic. How does it behave as a function of α, σ2, τ , n?

(c) Derive the expression for the value of τ for which the test rejects H0 and H1 with
equal probability when H1 is true.

2. In practice, τ will not be known since targets will be at different distances, have different
size, geometry, reflection coefficients, etc. The problem can be formulated with the hypoth-
esis H0 : τ = 0 and H1 : τ 6= 0.

(a) Define the generalized likelihood ratio test for this problem, derive its test statistic and
critical value.

(b) Derive the probability of rejection of H0 when τ = τ∗.

3. Suppose now that we want to formulate the test using the constraints H1 : τ ∼ N (0, ν2)
and H0 : τ = 0. Define the Bayesian test and derive its test statistic. How do you interpret
the result?
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Exercise 2

Suppose that the data in an imaging problem are complex-valued and corrupted by background
noise X = XR + iXI with independent Gaussian real and imaginary parts, XR ∼ N (0, σ2) and

XI ∼ N (0, σ2), respectively. It follows that the magnitude of the noise, X =
√
X2
R +X2

I , is dis-

tributed according to a Rayleigh distribution,X ∼ R(σ2). The noise level in the imaging problem
equals either σ2

0 or σ2
1 . Image segmentation is supposed to be performed based on the magnitude

of the registered images and two different algorithms are available for this task: Algorithm A0 is
optimized for low noise level σ2 = σ2

0 but is slow at higher noise levels, and Algorithm A1 is
more complex but has good performance at noise level σ2 = σ2

1 > σ2
0 . A sample (X1, · · · , Xn)

of n pixels of an image of the background is available.

1. Neyman-Pearson test.

(a) Define the test for H0 : σ2 = σ2
0 and H1 : σ2 = σ2

1 and derive its test statistic.

(b) Derive the expression for the significance α and for the power π of the test.
(Note that if xi

i.i.d.∼ R(σ2), then
∑n

i=1 x
2
i ∼ G(n, 2σ2).)

2. Suppose the probabilities for H0 and H1 to be true are P (H0) and P (H1), respectively.

(a) Define the Bayesian detector and derive its test statistic.

(b) Design appropriate costs cij such that the expected execution time is minimized when
using the Bayesian detector. The execution time of algorithms A0 and A1 for one
image is given by:

A0 A1
H0 2s 6s
H1 4s 3s

What is the expected execution time when P (H0) = 3/4 and P (H1) = 1/4, n =
16× 16, σ2

0 = 0.04 and σ2
1 = 0.045?

t 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 23∫∞
t f(x|H0)dx 0.895 0.908 0.92 0.93 0.939 0.948 0.955 0.962 0.967 0.972∫∞
t f(x|H1)dx 0.261 0.284 0.309 0.334 0.361 0.387 0.414 0.442 0.469 0.497

t 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 24∫∞
t f(x|H0)dx 0.976 0.98 0.983 0.986 0.988 0.99 0.992 0.994 0.995 0.996∫∞
t f(x|H1)dx 0.525 0.552 0.58 0.606 0.632 0.658 0.683 0.706 0.729 0.751

(c) What is the expected execution time when the Neyman-Pearson test with α = 0.045
is used?

3. When n is large, G(n, 2σ2) can be approximated by a Gaussian distribution. In an attempt to
simplify the decision process, we want to determine whether we can use this approximation.
We have observed the test statistic Tn for N = 20 background images of size 64× 64,

Tn = {79.8, 80, 80.2, 80.9, 81.2, 81.2, 81.5, 81.6, 81.6, 82,

82.2, 82.2, 82.2, 82.3, 83.1, 83.1, 83.2, 83.7, 83.8, 84.3}.

(a) Suppose that the images have been generated under controlled conditions and that the
noise level is known to be σ2 = 0.01. Perform the χ2 test with K = 4 equi-probable
classes for this purpose (note: F−1(0.75) = 0.675, where F is the cdf of the standard
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Normal distribution). The significance of the test is fixed to α = 0.1. The quantiles of
the chi-square distribution are given by:

n 1 2 3 4 5(
χ2
n

)−1
(0.9) 2.71 4.61 6.25 7.78 9.24

(b) Now suppose that the noise level is constant but unknown. Perform the χ2 test.

(c) Suppose again that σ2 = 0.01 and perform the Kolmogorov test for α = 0.1 (the
quantile of the Kolmogorov distribution is tα=0.1 = 0.2316). The values of the Normal
cumulative distribution function evaluated at the observations Tn are given by

F0(Tn) = {0.05, 0.07, 0.09, 0.21, 0.29, 0.29, 0.37, 0.4, 0.4, 0.52,

0.59, 0.59, 0.59, 0.62, 0.82, 0.82, 0.84, 0.92, 0.93, 0.97}.

Exercise 3

Let (X1, · · · , Xn) be a sample of Gaussian distribution N (µ, σ2) with mean µ and variance
σ2.

1. Let µ be known. We want to decide on the hypothesis H0 : σ2 = σ2
0 and H1 : σ2 = σ2

1 >
σ2

0 .

(a) Define the Neyman-Pearson test and derive its test statistic. What law does the test
statistic follow?

(b) Derive the expressions for the critical value of the test. Determine its power. Discuss
the behavior of the receiver operating characteristic as a function of n, σ2

0 and σ2
1 .

2. Now let µ be unknown. Define the generalized likelihood ratio test for the above hypotheses.
and derive its test statistic. Express the test statistic in terms of the sample variance. What
law does the test statistic follow?

3. Let σ2 be unknown. We want to decide between the hypothesis H0 : µ = m0 and H1 :
µ 6= m0.

(a) Recall the maximum likelihood estimator σ̃2
ML for the variance when the mean µ is

known.

(b) Recall the maximum likelihood estimators m̂ML and σ̂2
ML for the mean and the vari-

ance when the mean µ is unknown.

(c) Define the generalized likelihood ratio test and derive its test statistic tn.

(d) Show that an equivalent test can be obtained with the test statistic Tn = X−m0√∑n
i=1(Xi−X)

2

by decomposing
∑n

i=1(xi −m0)2. What law does this test statistic follow?
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Exercise 4

Radioactivity is governed by the Poisson distribution. In a detection system for abnormal
radioactivity, a measuring device delivers one observation xi of a Poisson random variable Xi ∼
P(λ) per unit time interval. The problem consists in deciding between the hypotheses H0 : λ =
λ0 (normal) and H1 : λ = λ1 > λ0 (abnormal: alarm).

1. Neyman-Pearson test.

(a) Define the test, derive its test statistic and state its critical region.

(b) Derive an expression for the significance α.

(c) Now let n = 3, λ0 = 2/3, λ1 = 2, and α = 0.01. Compute the critical value tα and
give the true significance of the test for this critical value. Compute the power of the
test. The values of the Poisson distribution for λ = 2 are given by:

k 0 1 2 3 4 5 6 7
P [X = k] 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 0.0120 0.0034

2. Suppose the probabilities for H0 and H1 to be true are P (H0) and P (H1), respectively.

(a) Define the Bayesian detector and derive its test statistic.

(b) Let c00 = c11 = 0. How does the critical value of the test depend on c01 and c10?

3. We want to decide whether the approximation of the law of the test statistic T when λ = λ0

by a Normal distribution N (λ, λ) is appropriate or not, i.e., H0 : T ∼ N (λ, λ) and
H1 : not H0. Let λ0 = 1.

(a) Which test is appropriate for this problem and why?

(b) Suppose that we observe N = 30 independent realizations of the test statistic Tn,
where the number of observations per test statistic realizations is n = 3:

value of t observed 0 1 2 3 4 5 6 7
number of times observed 1 3 6 7 4 4 2 3

Define the classes for the test with K = 4 equi-probable classes (note: F−1(0.75) =
0.675, where F is the cdf of the standard Normal distribution). Perform the test for
α = 0.1. The quantiles of the chi-square distribution are given by:

n 1 2 3 4 5(
χ2
n

)−1
(0.9) 2.71 4.61 6.25 7.78 9.24

(c) Now let n = 20 and let the N = 30 observations of Tn be given by

value of t observed 13 14 15 16 17 18 19 20 21
number of times observed 1 1 3 2 4 3 1 3 3

value of t observed 22 23 24 25 26 27 28 29 30
number of times observed 1 2 0 1 2 2 0 0 1

As above, define the classes of the test (K = 4 equi-probable classes) and perform the
test for α = 0.1.
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Exercise 5

The distribution of the size of files in internet traffic (TCP protocol) is often modeled by a Pareto
distribution Π(xm, α) with scale and shape parameter xm > 0 and α > 0, respectively.

1. Suppose that xm is known. We want to decide between the hypotheses H0 : α = α0

(normal traffic) and H1 : α = α1 > α0 (abnormal traffic - attack).

(a) Define the Neyman-Pearson test for this problem. Derive its test statistic as a function
of zi = xi

xm
. State the critical region of the test.

(b) Derive the integral equation for the critical value tα and for the receiver operating
characteristic π(α).
Hint: xi ∼ Π(xm, α) =⇒ ln

(
xi
xm

)
∼ Exponential(α) =⇒

∑n
i=1 ln

(
xi
xm

)
∼

Erlang(n, α) = G(n, 1
α).

(c) Let n = 1 and compute the critical value tα and the receiver operating characteristic.

2. We want to use the Kolmogorov test to decide whether a specific set of observations follows
a Pareto law with parameters xm and α, i.e., H0 : xi ∼ Π(xm, α) and H1 : not H0.

(a) Express the cumulative distribution function of Π(xm, α) as a function of xi
xm

.

(b) Let xm = α = 1. The values that have been observed are (x1, · · · , x5) = (7, 2, 3, 6, 5).
Perform the Kolmogorov test for α = 0.05 and α = 0.01 (critical values (quantiles of
the Kolmogorov distribution): tα=0.05 = 0.5095 and tα=0.01 = 0.6272).

• Pareto distribution Π(xm, α): xm > 0, α > 0, x ≥ xm
- density f(x) = αxαm

xα+1

• Poisson distribution P(λ) : λ > 0, x ∈ N
- density f(x) = λx

x! exp(−λ)
note: xi ∼ P(λ̃) =⇒

∑n
i=1 xi ∼ P(λ = nλ̃)

• χ2
k distribution with k > 0 degrees of freedom: x ≥ 0

xi ∼ N (0, 1) =⇒
∑k

i=1 x
2
i ∼ χ2

k

• Rayleigh distributionR(σ2): σ > 0, x ≥ 0

- density f(x;σ2) = x
σ2 exp

(
− x2

2σ2

)
- mean µ = σ

√
π
2

- variance ν2 = 4−π
2 σ2

• Gamma distribution G(k, θ): k > 0, θ > 0, x > 0

- density f(x; k, θ) = 1
Γ(k)θk

xk−1 exp
(
−x
θ

)
- mean µ = kθ

- variance ν2 = kθ2

• χ2
k distribution with k > 0 degrees of freedom: x ≥ 0

xi ∼ N (0, 1) =⇒
∑k

i=1 x
2
i ∼ χ2

k

• Student’s t-distribution Tk with k > 0 degrees of freedom:

U ∼ N (0, 1), V ∼ χ2
n =⇒ U√

V/n
∼ Tn
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