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Abstract—Multifractal analysis is a powerful modeling and
estimation framework for the characterization of data dynamics
via the fluctuations of its pointwise regularity in time or space.
Though successfully applied in a large number of applications in
very different contexts, the estimation of parameters related to
the data multifractality is an intricate issue for discrete real-
world data in non-standard situations, e.g., for small sample
size or in the presence of data corruptions. Building upon a
recently introduced generic statistical model for log-leaders, spe-
cific multiresolution quantities designed for multifractal analysis,
the present work proposes a novel robust model and estimator
for the multifractality parameter that quantifies the degree of
multifractality in data. Our model explicitly accounts for certain
data corruptions as outliers in the spectral log-leader domain.
Moreover, we propose an original expectation-maximization
algorithm for estimating the parameters associated with the
model. Several Monte Carlo simulations have been conducted
to evaluate the performance of the proposed estimator, which
confirm its good performance when compared to standard linear
regression in the presence of different additive or multiplicative
data perturbations.

Index Terms—multifractal analysis, wavelet leaders, robust
estimation, expectation-maximization

I. INTRODUCTION

Context: Multifractal analysis. Multifractal analysis has
become a standard signal and image processing tool dedi-
cated to the study of scale invariance in spatial or temporal
dynamics, i.e., in systems whose dynamics are controlled by
a large continuum of interacting scales instead of isolated
characteristic scales (or frequencies). The relationship between
scales can be quantified by one (or a few) scaling exponent(s).
An equivalent, dual description is given by the multifractal
spectrum, which quantifies the temporal or spatial fluctuations
of the data’s local regularity [1], [2]. In particular, its width,
quantified by the so-named multifractality parameter, can be
related to spatial or temporal dynamics’ intermittency and de-
viations from joint Gaussianity. Multifractal analysis has been
widely used in many applications of very different natures
(cf., [2] and the references therein). The estimation of the
multifractal spectrum is a central goal of multifractal analysis.
In practice, defining a robust formula for its determination
from discrete data remains an important and delicate issue.
Related works: estimation of the multifractality parameter.
Classical multifractality parameter estimation tools solely
build on power laws of the statistics of well-chosen multiscale
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quantities across scales, as the wavelet leaders, and perform
simple linear regressions to quantify scaling exponents. Yet,
this approach requires signal or images with large sample
size. This limitation spurred the proposition of alternative
estimators that build on more informative statistical models
[3], [4], most of which remain however tied to fully parametric
models for specific multifractal processes and thus of limited
practical relevance. More recently, a statistical model for
log-wavelet leaders has been introduced that is generic and
not tied to specific process constructions. It has paved the
way for the construction of new families of estimators, by
Bayesian inference [5], [6] or expectation-maximization (EM)
[7], and constitutes the current state-of-the-art for estimating
the multifractality parameter. However, these estimators are to
varying degrees affected by data corruptions that frequently
occur in applications, including noise or deterministic pertur-
bations. Though it can critically alter parameter estimates and
is thus of central practical importance, this issue has barely
been considered in the context of multifractal analysis (see, a
contrario, [8] for a the theoretical study on the estimation of
a multifractal function in white noise).

Goals, contributions and outline. This work proposes,
as a first contribution, a novel model and estimator for the
multifractality parameter that is more robust to certain types
of data corruptions than classical estimators. The key concepts
of multifractal analysis are briefly recalled in Section II. The
proposed model is described in Section III. It builds on the
statistical model for log-leaders proposed and studied in [7].
However, contrary to [7], a novel key ingredient allows this
“robust model” to mitigate the impact of outliers in the spectral
domain of log-leaders. As a second contribution, in Section
III-C, we derive an EM algorithm for the estimation of the
parameters of this robust model, including the multifractality
parameter. As a third contribution, we conduct large Monte
Carlo simulations to study the robustness of the algorithm with
respect to (w.r.t.) additive white noise and or deterministic
data corruptions (cf., Section IV). Our results show that
the proposed model and EM algorithm succeed in providing
relevant estimates for parameter values for a large range of
outlier fractions and can effectively deal with various types
and degrees of data perturbations. Finally, the proposed model
is investigated for the analysis of a real-world heart rate signal.



II. MULTIFRACTAL ANALYSIS

Multifractal spectrum. Multifractal analysis characterizes
the fluctuations along time (or space) of the pointwise regular-
ity hX(t) of a function or signal X(t) ∈ R, t ∈ R. Pointwise
regularity is commonly quantified using the Hölder exponent
denoted as hX(t) ≥ 0 (see, e.g., [1] for details). The closer
hX(t) to 0, the more irregular X(t) around t. The information
contained in the fluctuations of the pointwise regularity is then
described globally via the multifractal spectrum, defined as the
Hausdorff dimensions of the sets of points that share the same
Hölder exponent, i.e., D(h) , dimH{t : hX(t) = h} [1]. The
estimation of D(h) relies on studying the statistics of multi-
scale quantities such as wavelet coefficients or wavelet leaders,
as summarized in [1], [9] and in the next section.
Wavelet leaders. Let ψ denote a mother wavelet, an
oscillating reference function with a finite number of zero
moments Nψ ∈ N+ (i.e., ψ ∈ CNψ−1, ∀n = 0, . . . , Nψ − 1,∫
R t

nψ(t)dt = 0 and
∫
R t

Nψψ(t)dt 6= 0) chosen such that
the collection {ψj,k(t) = 2−j/2ψ(2−jt−k)}(j,k)∈(Z,Z) of its
translated and dilated versions forms a basis of L2(R). The L1

normalized discrete wavelet coefficients of X(t) are defined
as dX(j, k) , 2−j/2 〈ψj,k|X〉, and the corresponding wavelet
leaders as

LX(j, k) , supλ′⊂3λj,k |dX(λ′)|,

where λj,k = [k2j , (k + 1)2j) is a dyadic interval of size 2j ,
and 3λj,k the union of this interval with its two neighbors.
Multifractal formalism. The pth order cumulants Cp(j) of
the logarithm of wavelet leaders `j(k) , lnLX(j, k) (in short
log-leaders) at a fixed scale 2j are known to behave as [9]

Cp(j) = c0p + j cp ln 2, (1)

where the cp are referred to as log-cumulants, which provides
an approximation for the multifractal spectrum D(h) ≈ 1 +
(c2/2) ((h− c1)/c2)2 + . . ., with c2 < 0. Here, c1 describes
the average data regularity, and the multifractality parameter
c2 quantifies to leading order the degree of regularity fluctua-
tions of the data and is of fundamental importance for distin-
guishing different multifractal models, cf., [9]. As suggested
by (1), c2 can be standardly estimated by means of linear
regressions of the variances of log-leaders C2(j) = Var[`j(k)]
against scale j [9]. In the following, we focus on the definition
of an alternative robust estimator for this parameter.

III. A ROBUST EM ALGORITHM FOR MULTIFRACTALITY
PARAMETER ESTIMATION

Several works have shown that log-leaders can be well mod-
eled as Gaussian random vectors with covariance parametrized
by the multifractality parameter c2 [5]. An equivalent model
can be formulated in the spectral domain via a Whittle
approximation and data augmentation, facilitating the design
of efficient estimators [6]. Starting from this model, which
is briefly recalled next, we propose in the following a novel
model and estimator for c2 that is robust against outliers in
the spectral domain.

A. Log-leader spectral domain model

Denote as z ∈ CM the vector containing the Fourier
coefficients obtained by a discrete Fourier transform (DFT)
of the centered log-leaders from all scales under analysis, i.e.,

z = (DFT {`j − 〈`j(k)〉k})j2j=j1 .

It can be shown that the components zi, i = 1, . . . ,M , of z are
independent and complex Gaussian distributed with zero mean
and covariance parametrized by the multifractality θ1 = −c2
and a model adjustment parameter θ2, i.e.,

zi ∼ CN (0, θ1g1(i) + θ2g2(i)). (2)

The functions g1, g2 > 0 are known, fixed and subsume the
covariance in time for log-leaders of multifractal processes
[6]. Finally, introducing a complex Gaussian vector of latent
variables u leads to the augmented likelihood

p(z,u|θ1, θ2) =
M∏
i=1

p(zi, ui, |θ1, θ2)

∝
M∏
i=1

θ−11 exp
(
−(θ1g1(i))−1|zi − ui|2

)
θ−12 exp

(
−(θ2g2(i))−1|ui|2

)
, (3)

where ∝ means “proportional to”.

B. Robust model

Outlier model. Our model builds on the assumption that
due to data corruptions, the variances of some of the Fourier
coefficients zi in (3) deviate from the model g1, g2. This
assumption is generic in the sense that it does not further
specify the precise data corruptions (noise, outliers in the
time domain, additive or multiplicative trends, . . . ). Note that
models for specific data corruptions could also be designed
but are left for future studies. Specifically, we assume that a
proportion γ of the observations zi are outliers that follow a
zero mean complex Gaussian distribution with variance δ2 and
probability density function (pdf)

p(zi|δ2) =
1

πδ2
exp

(
−|zi|

2

δ2

)
. (4)

Moreover, a distribution p1(ui) is assigned to ui, when zi is
an outlier, whose shape is assumed not to depend on the model
parameters of interest.
Conditional distributions. Combining the model (3) for
uncorrupted data and (4) for outliers leads to express the
conditional distribution of zi given ui as the Gaussian mixture

p(zi|ui,θ) =
γ

πδ2
exp

(
−|zi|

2

δ2

)
+

1− γ
πθ1g1(i)

exp

(
−|zi − ui|

2

θ1g1(i)

)
, (5)

where θ = (θ1, θ2, δ
2, γ) gathers the unknown parameters of

the model. Upon introduction of binary latent variables xi,



i = 1, . . . ,M , such that xi = 1 if zi is an outlier and xi = 0
otherwise, (5) can be rewritten as

p(zi|ui, xi,θ) =
[

1

πδ2
exp

(
−|zi|

2

δ2

)]xi
[

1

πθ1g1(i)
exp

(
−|zi − ui|

2

θ1g1(i)

)]1−xi
, (6)

where it is natural to model xi as a Bernoulli random variable
with parameter γ and distribution

p(xi|θ) = γxi(1− γ)1−xi . (7)

Similarly, the conditional distribution of ui given xi is

p(ui|xi,θ) = [p1(ui)]
xi

[
1

πθ2g2(i)
exp

(
− |ui|

2

θ2g2(i)

)]1−xi
.

(8)
Complete likelihood. In order to obtain a closed-form ex-
pression of the maximum likelihood estimator (MLE) of the
unknown vector θ, in the spirit of [10], we propose to use the
EM algorithm [11] using the so-called complete likelihood

L(θ; z,u,x) =

M∏
i=1

p(zi, ui, xi | θ)

=

M∏
i=1

p(zi|ui, xi,θ)︸ ︷︷ ︸
(6)

p(ui|xi,θ)︸ ︷︷ ︸
(8)

p(xi|θ)︸ ︷︷ ︸
(7)

=

M∏
i=1

[
γp1(ui)

πδ2
exp

(
−|zi|

2

δ2

)]xi
[

1− γ
π2θ1θ2g1(i)g2(i)

exp

(
−|zi − ui|

2

θ1g1(i)
− |ui|2

θ2g2(i)

)]1−xi
.

(9)

C. Proposed EM Algorithm
Starting from an initial parameter θ(0), the EM algorithm

iterates between two steps called expectation (E) and maxi-
mization (M) steps.
E-step. Compute the expectation of the log-likelihood (9)
w.r.t. the conditional distribution of the latent vectors x,u
given the current estimate θ(λ), i.e.,

Q(θ,θ(λ)) =Ep(u,x|z,θ(λ))[lnL(θ; z,u,x)] (10)

with

lnL(θ; z,u,x) =

M∑
i=1

xi
(
ln γ − ln δ2 − |zi|

2

δ2
)

+

M∑
i=1

(1− xi)(ln(1− γ)− ln θ1θ2)

−
M∑
i=1

(1− xi)
( |zi − ui|2
θ1g(i)

− |ui|2

θ2g2(i)

)
+K, (11)

where K is a constant that does not depend on θ. The
conditional distribution of u,x | z,θ(λ) is

p(u,x | z,θ(λ)) =
M∏
i=1

p(ui, xi|zi,θ), (12)

with

p(ui, xi|zi,θ) ∝ p(zi|ui, xi,θ)p(ui, xi|θ)
∝ [π̃i,1p1(ui)]

xi [π̃i,2f(ui|αi, β2
i )]

1−xi , (13)

where

π̃i,1 =
γ

πδ2
exp

(
−|zi|

2

δ2

)
, (14)

π̃i,2 =
1− γ

π(θ1g1(i) + θ2g2(i))
exp

(
− |zi|2

θ1g1(i) + θ2g2(i)

)
,

(15)

and

f(ui|αi, β2
i ) =

1

πβ2
i

exp

(
−|ui − αi|

2

β2
i

)
(16)

is the density of the random variable

ui|zi,θ ∼ CN (αi, β
2
i ) (17)

with αi = β2
i (θ1g1(i))

−1zi, (18)

β2
i =

θ1g1(i)θ2g2(i)

θ1g1(i) + θ2g2(i)
. (19)

The notations

πi,1 =
π̃i,1

π̃i,1 + π̃i,2
, πi,2 = 1− πi,1 (20)

lead to

Ep(u,x|z,θ(λ))[xi]=π
(λ)
i,1 (21)

Ep(u,x|z,θ(λ))[1− xi]=π
(λ)
i,2 (22)

Ep(u,x|z,θ(λ))[(1− xi)|ui|2]=π
(λ)
i,2 (|α

(λ)
i |

2 + (β2
i )

(λ))

(23)

Ep(u,x|z,θ(λ))[(1−xi)|zi−ui|2]=π
(λ)
i,2 (|zi−α

(λ)
i |

2+(β2
i )

(λ))

(24)

M-step. Closed-form expressions of the different parameter
updates for the Maximization step are then derived by
canceling the gradient of the function Q:

γ(λ+1)=
π1
M

(25)

θ
(λ+1)
1 =(π2)

−1
∑M

i=1
π
(λ)
i,2 (|zi−α

(λ)
i |

2+(β2
i )

(λ))/g1(i) (26)

θ
(λ+1)
2 =(π2)

−1
∑M

i=1
π
(λ)
i,2 (|α

(λ)
i |

2+(β2
i )

(λ))/g2(i) (27)

(δ2)(λ+1)= (π1)
−1
∑M

i=1
π
(λ)
i,1 |zi|

2, (28)

where π2 =
∑M
i=1 π

(λ)
i,2 and π1 =

∑M
i=1 π

(λ)
i,1 .

Finally, π(λ)
i,2 is the a posteriori probability that zi belongs to

the outlier class and can be used to define an outlier detector,
e.g., stating that zi is an outlier if π(λ)

i,2 < 0.5 (maximum a
posteriori detector).



IV. NUMERICAL EXPERIMENTS AND RESULTS

A. Synthetic multifractal process: multifractal random walk

To assess the performance of the proposed algorithm, we
make use of a multifractal random walk (MRW) [12]. MRW
is a reference synthetic stochastic process that is constructed to
mimic the multifractal properties of the celebrated multiplica-
tive log-normal cascades of Mandelbrot and has multifractal
spectrum D(h) = 1 + (c2/2) ((h− (H − c2/2))/c2)2, with
0.5 < H < 1 and multifractality parameter c2 < 0.

B. Monte Carlo simulations

To study the estimation performance of the algorithm when
the data X(t) are subjected to additive or multiplicative
corruptions, we conduct Monte Carlo simulations for Nmc =
1000 independent copies of an MRW of size N = 210,
with H = 0.7, for different values for c2, with variance of
increments normalized to the value 1. The following scenarios
for data corruptions E(t), t ∈ [0, 1] are studied:

1) White Gaussian noise with variance σ2:
Y (t) = X(t) + σE(t), E(t) ∼ N (0, 1);

2) Sparse Gaussian outliers with variance σ2:
Y (t) = X(t) + σE(t), where E(t) ∼ N (0, 1) for a
fraction γ of data points, and E(t) = 0 otherwise;

3) Exponential harmonic perturbation:
Y (t) = X(t) + σE(t), E(t) = e4(sin(7.9πt)+sin(32πt)).

The exponential harmonic perturbation is included as a bench-
mark because it has been previously considered in the context
of multifractal analysis [13]. For none of these corruptions
it is know which points in the spectrogram of log-leaders are
affected. The performance are assessed in terms of the average
(mean) and the root-mean-squared error (rmse) of estimates for
the multifractality parameter c2. We use Daubechies wavelet
with Nψ = 2 vanishing moment and scales j ∈ J2, 6K for the
analysis of data Y (t). Results are shown for a weighted linear
regression (WLR) [9], the proposed robust EM algorithm (R-
MLE), and an EM algorithm for the likelihood (9) without
outlier model denoted MLE (i.e., for γ = 0, which reduces to
the algorithm in [7]). The EM algorithms are stopped when
the variation of the log-likelihood falls below 10−4.

C. Simulation results and performance analysis

Additive white noise. Fig. 1 shows the performance of the
algorithms for the estimation of c2 as a function of the noise
level σ (log scale) of additive white Gaussian noise (H = 0.2,
c2 = −0.16). Clearly, WLR has worst performance even
for small noise levels and quickly degrades with increasing
values of σ. Interestingly, the sole use of the likelihood (9)
with γ = 0 in MLE adds robustness to noise, which has
never been reported before. Moreover, MLE estimators display
significantly lower RMSE values, and their performance start
to deteriorate at noise levels twice as large as those for which
performance of WLR degrades. The best performance in terms
of bias and RMSE is obtained with the proposed R-MLE
estimator.
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Fig. 1. Estimation performance in the presence of white Gaussian noise as a
function of noise level σ (c2 = −0.16).
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Fig. 2. Estimation performance in the presence of Gaussian outliers as a
function of outlier fraction γ (σ = 0.25, c2 = −0.16)

Sparse additive Gaussian outliers. As in the previous
section, Gaussian noise is added to an MRW, but only to a
fraction γ of the data points, thus simulating the presence of
outliers corrupting the data. Fig. 2 displays the results for this
case, which leads to the following conclusions. Again, WLR
yields the worst results and inaccurate estimates already for
small values for γ. On the contrary, the performance of MLE
and R-MLE are little affected by the data corruptions. The
proposed R-MLE estimator yields overall the best results in
the presence of outliers.
Additive exponential harmonic corruptions. Fig. 3 (cen-
ter) plots estimation results as a function of the strength σ (log
scale) for an additive exponential harmonic data corruption
(H = 0.2, c2 = −0.16). This figure shows that WLR
is extremely sensitive to such data corruptions and yields
severely biased estimates for all but the smallest values of
σ. The use of the likelihood (9) with γ = 0 in MLE adds
some robustness, but it eventually also severely impaired by
the data perturbation as σ increases. The proposed R-MLE
yields significantly better results, and though its bias increases
for increasing values of σ, estimates remain reasonably close
to the theoretical value c2 = −0.16. Fig. 3 (bottom) shows
results as a function of −c2 (for σ = 0.125) and further
confirms these findings: for the whole range of values for c2,
the proposed R-MLE yields consistently good estimates, while
WLR and MLE are severely biased.
Illustration for real-world heart rate variability data.
The proposed method is finally applied to the analysis of a
real-world heart rate (RR beat interval) signal extracted from
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Fig. 4. Average estimates (left) and data (right) for RR intervals for one
subject of the MIT-BIH Polysomnographic database with artificial outliers.

the MIT-BIH Polysomnographic database [14]1. The signal
was resampled at 4 Hz (from originally 250 Hz) and time
scales corresponding to 2.6 − 41s were analyzed (for which
multifractal properties are commonly reported in the literature
for heart rate data [15]). A common issue with heart rate data is
that RR beats are missed by the detection algorithm, leading
to wrong and excessively long intervals. We simulate such
corruptions by adding the average value of RR beat interval
to a fraction γ of the data points. Results are plotted in Fig. 4
in terms of average estimates for c2 as a function of γ (average
over 100 realizations of outliers), together with an illustration
for a small portion of the time series for γ = 0.1. The results
are similar to those observed for the synthetic data scenario
reported in Fig. 2: The estimates of c2 obtained using WLR
are practically unusable even for small portions of missed RR
beats, thus must rely on extremely precise preprocessing, while
those of the proposed model remain reliable for a large range
of outlier fractions γ, and better for R-MLE than MLE.

Overall, these results clearly show the effectiveness of the
proposed robust multifractal model and its estimator to counter
the effect of various types and degrees of data corruptions on

1Subject 2a, https://physionet.org/content/slpdb/1.0.0/

the estimation of the multifractality parameter c2, and that it
can be beneficially applied to the analysis of real-world data.

V. CONCLUSIONS

This work introduced a novel model and estimator for the
multifractality parameter c2 that is more robust to certain types
of data corruptions than classical estimators. The proposed
method builds on the log-leader frequency domain likelihood
of [6] and models data corruptions as alterations of portions
of the log-leaders’ spectrum. We devised and studied an EM
algorithm for the estimation of the parameters of this robust
model. Our numerical results for synthetic data for several
different types of data corruptions clearly indicate the benefits
of the proposed method over previously existing estimators
for the multifractality parameter in terms of estimation perfor-
mance. As a side result, this paper also showed that the model
in [6] is, to lesser degree, also more robust than classical linear
regressions, which has never been reported before. Future
work will include the design of models that explicitly account
for specific data corruptions in the time domain, such as the
outliers in our illustration for real-world heart rate data.
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