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Abstract— Multiscale analysis of human heartbeat dynamics
has been proved effective in characterizeing cardiovascular
control physiology in health and disease. However, estimation of
multiscale properties can be affected by the interpolation pro-
cedure used to preprocess the unevenly sampled R-R intervals
derived from the ECG. To this extent, in this study we propose
the estimation of wavelet coefficients and wavelet leaders on
the output of inhomogeneous point process models of heartbeat
dynamics. The RR interval series is modeled using probability
density functions (pdfs) characterizing and predicting the time
until the next heartbeat event occurs, as a linear function of
the past history. Multiscale analysis is then applied to the pdfs’
instantaneous first order moment. The proposed approach is
tested on experimental data gathered from 57 congestive heart
failure (CHF) patients by evaluating the recognition accuracy
in predicting survivor and non-survivor patients, and by com-
paring performances from the informative point-process based
interpolation and non-informative spline-based interpolation.
Results demonstrate that multiscale analysis of point-process
high-resolution representations achieves the highest prediction
accuracy of 65.45%, proving our method as a promising tool
to assess risk prediction in CHF patients.

I. INTRODUCTION

The analysis of Human Heart Rate Variability (HRV)
[1] has notably been used to discern healthy subjects from
patients suffering from congestive heart failure (CHF) [2].
However, an important remaining challenge consists in im-
proving the prediction of mortality risk for CHF patients, as
well as risk stratification, to a level accurate enough to allow
for application in clinical practice [2]–[5]. In particular, it
has been accepted that linear features of heartbeat dynamics
(often based on spectral analysis [1]) are not sufficient for
CHF patients characterization, and need to be complemented
by nonlinear features, ranging from Entropy rates to Non-
Gaussian metrics (cf. [1], [6]–[13] and reference therein for
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reviews). In the last two decades, 1/f and fractal processes
were used to model the temporal dynamics of HRV fluc-
tuations [12]. More recently, multifractal [5], [11], or non
Gaussian fat tail distribution models [14] have been involved
in HRV descriptions. It was shown that the variations of
scaling properties can be associated with pathologies and
thus used as diagnostic tool [11], [15]. Furthermore, in CHF
patients, departures from Gaussianity were used to evaluate
increased mortality risk [2], and compared against fractal
exponent [16]. Recently, a robust and efficient procedure
relying on the use of multiscale representation and wavelet
leaders, has been proposed to conduct multfractal analysis
[17] and tested on HRV analysis [5], [18].

In this study, we evaluate the impact of point-process
based interpolation strategies [8], [19] on wavelet leader
based multiscale representations and we compare it against
either a direct analysis of the raw data, or the use of a non
informative standard spline-based interpolation. In fact, the
R-R interval series extracted from the ECG are analyzed to
characterize heart rate (HR) and heart rate variability (HRV).
Whether raw data or interpolated and regularly re-sampled
time series should be considered is a matter of debate. The
former choice creates the difficulty of analyzing irregularly
sampled data thus requiring to convert number of beats into
seconds ; the latter choice raises the question of which
interpolation should be envisaged and how much achieved
results will depend on interpolation.

It has been demonstrated that, by means of a point process
approach, it is possible to characterize the probabilistic
generative mechanism of heartbeat events, even considering
short recordings under nonstationary conditions. The RR
interval series (RRi) is modeled using probability density
functions (pdfs) characterizing and predicting the time un-
til the next heartbeat event occurs. The unevenly spaced
heartbeat intervals are then represented as observations of
a state-space point process model defined at each moment in
time, thus allowing to estimate instantaneous HR and HRV
measures without using any interpolation method. We here
illustrate these points on the study of a high quality database
(described in Section II-C), comprised of 57 CHF patients,
with the aim to accurately assess risk of posterior mortality.
Results related to multiscale representations and (supervised)
classification performance are presented and commented in
Section III. Conclusions are drawn in Section IV, along with
discussions and future endeavors.

II. MATERIALS AND METHODS

A. Point-Process Models of Heartbeat Dynamics
1) Model: Point-process interpolation is performed

through a parametrized linear combination of the RR interval



series. For t ∈ (0, T ], the observation interval, and 0 ≤
u1 < · · · < uk < uk+1 < · · · < uK ≤ T the times of
the events, we can define N(t) = max{k : uk ≤ t} as the
sample path of the associated counting process. Its differ-
ential, dN(t), denotes a continuous-time indicator function,
where dN(t) = 1 when there is an event, or dN(t) = 0
otherwise. The left continuous sample path is defined as
Ñ(t) = N(t−) = limτ→ t− N(τ) = max{k : uk < t}.
Although this framework can be applied to any phenomenon
represented by unevenly observed events, we here define the
point process model of the ventricular contraction events as
the focus of our study. Therefore, given the R-wave events
{uj}Jj=1 detected from the ECG, RRj = uj−uj−1 > 0
denotes the jth R–R interval. Assuming history dependence,
the probability distribution of the waiting time t−uj until the
next R-wave event follows an inverse Gaussian model [19]

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1
2

× exp

{
−1

2

ξ0(t)[t− uj − µ(t,Ht, ξ(t))]2

µ(t,Ht, ξ(t))2(t− uj)

}
(1)

with j = Ñ(t) the index of the previous R-wave event before
time t.

In this study, we use the formulation where the instanta-
neous first-order moment statistic (mean) µ of the distribu-
tion is defined as

µRR(t,Ht, ξ(t)) = γ0 +

p∑
i=1

γ1(i, t) RRÑ(t)−i (2)

with Ht = (uj ,RRj ,RRj−1, ...,RRj−p+1), ξ(t) =
[ξ0(t), γ0(t), γ1(1, t), ..., γ1(p, t)] the vector of the time-
varying parameters, and ξ0(t) > 0 the shape parameters of
the inverse Gaussian distribution.

The use of an inverse Gaussian distribution f(t|Ht, ξ(t)),
characterized at each moment in time, is motivated both
physiologically (the integrate-and-fire initiating the cardiac
contraction [19]) and by goodness-of-fit comparisons [8]. In
fact, if the rise of the membrane potential to a threshold
initiating the cardiac contraction is modeled as a Gaussian
random walk with drift, then the probability density of the
times between threshold crossings (the R-R intervals) is
indeed the inverse Gaussian distribution [19]. Since the IG
distribution is characterized at each moment in time, it is
possible to obtain an instantaneous estimate of µe(t) at a
very fine time scale (with an arbitrarily small bin size ∆),
which requires no interpolation between the arrival times of
two beats, therefore addressing the problem of dealing with
unevenly sampled observations.

2) Parameter Estimation, Model Selection, Goodness-of-
Fit: We effectively estimate the parameter vectors ξa(t)
using the Newton-Raphson procedure to compute the local
maximum-likelihood estimate [8]. Because there is signifi-
cant overlap between adjacent local likelihood intervals, we
start the Newton-Raphson procedure at t with the previous
local maximum-likelihood estimate at time t − ∆. We de-
termine the optimal order {p} by the Akaike Information
Criterion (AIC), and by prefitting the point process model

goodness-of-fit to a subset of the data [19]. Model goodness-
of-fit is based on the Kolmogorov-Smirnov (KS) test and
associated KS statistics [8], [19]. The recursive, causal nature
of the estimation allows to predict each new observation,
given the previous history, independently at each iteration.
The model and all its parameters are therefore also updated at
each iteration, without priors. In other words, each test point
RRk is tested against one instance of a time-varying model
trained with points {RRj} with j < k. Autocorrelation
plots are also considered to test the independence of the
model-transformed intervals [19]. Once the order {p, q} is
determined, the initial model coefficients are estimated by
the method of least squares [8].

B. Multiscale analysis
1) Hurst parameter and wavelets: Classical multiscale

analysis is based on wavelet coefficients, which are obtained
by comparing by inner product the data X to the collection
{ψj,k(t) = 2−jψ(2−jt−k)}(j,k)∈N2 of dilated and translated
templates of the so-called mother wavelet ψ: dX(j, k) =
〈ψj,k|X〉. For detailed introductions to wavelet transforms,
readers are referred to e.g., [20].

For self-similar processes, such as fractional Brownian
motion, commonly used to model HRV (cf. e.g., [21],
[22]), it can be shown that the so-called structure functions,
consisting of sample moments of order q > 0, behave as
power laws with respect to scales

S(q, j) =

nj∑
k=1

|dX(j, k)|2 ' Kq2
jqH (3)

with nj the number of dX(j, k) available at scale 2j . The
Hurst parameter H can (technically) be simply related to the
repartition of energy along frequencies (hence to the Fourier
spectrum or autocorrelation of X). It thus consists of a linear
feature that can be efficiently estimated using wavelets [17],
[18]. The function S(q = 2, j) can also be deeply tied to
Fourier spectrum [17], [18].

2) Multifractal models and wavelet leaders: In many
applications and notably in HRV analysis, it was pointed
out that self-similar models do not fully describe the scaling
properties in data and that multifractal models could prove
useful (cf. e.g., [11], [18]). Multifractality mostly implies that
the linear behavior with respect to q of the scaling exponents
qH in (5) must be replaced with a strictly concave function
ζ(q). Parameter H alone thus no longer fully accounts for
the scaling properties in data. It is now well-documented
that the correct estimation of the scaling exponents ζ(q) for
all values of q requires replacing wavelet coefficients with
wavelet leaders, consisting of multiscale quantities that better
capture the fluctuations of regularity in data by scanning all
details finer than the chosen analysis scale [17].

The wavelet leaders are defined as local suprema of
(fractionally integrated) wavelet coefficients, taken with a
narrow temporal neighborhood and all finer scales

L
(γ)
X (j, k) := sup

λ′⊂3λj,k

2j
′γ |dX(λ′)|. (4)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃
m{−1,0,1} λj,k+m

[17]. The fractional integration parameter γ ≥ 0 is chosen
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Fig. 1. Multiscale representations for the 3 different data modeling, for
SV an NS subjects.

to ensure minimal regularity (cf. [17] and references therein
for theoretical developments and details on multifractal anal-
ysis). It has also been shown [17] that multifractal properties
are well assessed when using multiscale representation based
on the log-leaders lnL(γ)(j, ·)

C(γ)
p (j) ≡ Cump lnL(γ)(j) ' c0p + cp ln 2j (5)

with coefficients cp related to ζ(q) (and the multifrac-
tal spectrum [17]) via the polynomial expansion ζ(q) ≡∑
p≥1 cpq

p/p!. Thus, the leading coefficient c1 is closely re-
lated to H , and C(γ)

1 (j) to S(2, j). C(γ)
1 (j) hence constitutes

a vector of linear features, associated to the autocorrelation
of X [17], [18], while C

(γ)
2 (j) and C

(γ)
3 (j) (the variance

and skewness of lnL(γ)(j), respectively) probe information
beyond correlation and are thus non linear features.

C. Experimental Data
Recordings from a cohort of 57 patients suffering from

Congestive Heart Failure (CHF) were made available by
the Nagoya Hospital or Fujita Health University Hospital,
Japan. Of these patients, 30 died within 33 ± 17 months
(range, 1-59 months) after Hospital discharge, whereas 27
survived for a longer time. The former group is referred
to as non-survivors (NS) and the latter as survivors (SV).
Further clinical details can be found in [2]. For each patient,
R peak arrival times were carefully extracted from 24-hour
Holter ECG recordings. Missing data and outliers stemming
from atrial or ventricular premature complexes were handled
by preprocessing automated tools. Subjects with sustained
tachyarrhythmias were excluded from the study.

III. RESULTS

A. Analysis setting
From the R peak arrival time lists {tn, n = 1, . . . , N},

three different time series are constructed and studied using
the multiscale representations described in Section II-B: i)
The raw data Xn ≡ tn − tn−1, referred to as the RRi
time series ; ii) X is interpolated using the informative
Point Process based interpolation (described in Section II-
A), referred to as the PP Interp. time series ; iii) X is

interpolated using a standard non informative Spline-based
interpolation, referred to as the Spline Interp. time series.
The 24h-long data are analyzed in one block. Analysis is
conducted using Daubechies2 wavelets. Inspection of the
database lead to choose γ = 1 in what follows. Note that
for large subclass of multifractal processes one can show
that C1(j) ≡ C

(γ)
1 (j) − γ ln 2j for p ≥ 2 does not depend

on γ. This is assumed to hold for the data analyzed here.

B. Scaling properties

The wavelet coefficient based log2 S(2, j) and wavelet
leader based C1(j), C2(j), C3(j) representations are com-
puted for data obtained from two different interpolations,
as well as directly from raw RRi data. For interpolated
time series, scale 2j can be associated to 2jTSms. Raw
RRi data consist of the list of RR interarrival times and
scale 2j can qualitatively be related to 2jR ms, where R
denotes the sample mean estimate of the mean of the RR
interarrival times for each subject. This permits to compare
multiscale representations obtained from each methods, as
functions of equivalent scales, for NS and SV subjects. Fig. 1
clearly show that the multiscale representations log2 S(2, j)
and C1(j), C2(j), C3(j) for the three time series are quasi-
identical at large j, hence validating that interpolation strate-
gies do not impact the coarsest time scales (above j ≥ 11,
i.e., above ' 10s). Obviously, fine scales (below j ≤ 7,
i.e., below ' 0.6s) do not exist for the raw RRi data,
whereas fine scales are available for the PP Interp. and
Spline Interp. time series. Their being different is a direct
signature of the nature of the interpolation procedures more
than of the content of the data. Intermediate time scales
(8 ≤ j ≤ 10, i.e., from 1s to 5s) are the scale of interest,
where the interplay between the content of the data and the
interpolation procedures occurs. RRi data at scales j = 8 and
9 show clear departures from the scaling behavior observed
at coarser scales. The non informative Spline Interp. time
series suffer from the same drawback. On the contrary, the
informative PP Interp. time series shows scales j = 8 and
9 in agreement and continuation of the scaling behavior
seen at coarser scales. This clearly illustrates that point-
process modeling of heartbeat dynamics allows to extend
the possibility of extracting relevant information, already
existing in data at coarse scales, also at finer scales.

C. SV versus NS classification

Exploring the extent to which the proposed multiscale
representations permit to discern SV from NS subjects,
we focus of the intermediate scales 8 ≤ j ≤ 10 where
interpolation procedures yields different behavior.

The obtained feature set is taken as an input of the Leave-
One-Out (LOO) procedure for a Support Vector Machine
(SVM)-based pattern recognition [23] (nu-SVM with nu =
0.5 and radial basis kernel function). A class label, among
SV or NS, given by clinical assessment, was associated to
each point in the feature space, which, for each fixed scale j
independently, takes as input the 4-dimensional feature vec-
tor log2 S(2, j), C1(j), C2(j), C3(j). In order to compare the
proposed methodology with other standard approaches, we
evaluated the LOO-SVM performance in predicting SV vs.



NS patients using the 4-dimensional feature vector estimated
on RRi data, PP Interp. and Spline Interp.

Classification performance (measured in terms of accura-
cies, i.e., % of overall — True Negative and True Positive —
total correct classification) are reported in Table I. Consider-
ing the SV vs. NS classes, accuracy of 50% is the change.

TABLE I
CLASSIFICATION ACCURACY IN %

scale (j) PP Interp. RRi data Spline Interp.

5 41.82 0 20.00
6 49.09 0 7.27
7 52.73 0 3.64
8 65.45 21.82 30.91
9 63.64 10.91 30.91

10 54.55 50.91 45.45

Table I shows that accuracies at fine scales are small and
irrelevant, which is consistent with the fact that fine scales do
not contain information related to actual data. It also shows
that performances at coarse scales are equivalent for all 3
time series (PP Interp., RRi data, and Spline Interp.) and
barely beyond 50%. Finally and interestingly, Table I show
that the maximum discrepancies between all 3 time series
occur around scales j = 8, 9 and 10, and that, at these
scales the point-process derived time series achieves the best
accuracies (up to 65.45%).

IV. CONCLUSION AND DISCUSSION

This study aimed at testing a novel approach of multiscale
analysis on high-resolution time series derived by point-
process models of heartbeat dynamics on 57 long-term ECG
recordings gathered from patients with CHF. To this extent,
three multiscale representations are considered and com-
pared: the log2 S(2, j) and C1(j), C2(j), C3(j) is estimated
from (a) the raw data (RRi time series), (b) RR interval
series interpolated using a standard non informative spline-
based interpolation, and (c) RR interval series interpolated
using the informative point-process based interpolation. All
representations are used to predict the mortality of CHF
patients through a simple SVM classifier.

Results demonstrate that the analysis using the point-
process derived time series achieves the best prediction accu-
racy, with a maximum of 65.45% for scale 8. This result is in
agreement with our previous studies [8], [19] demonstrating
that the use of an inverse Gaussian distribution, characterized
at each moment in time, inherits both physiological (the
integrate-and-fire initiating the cardiac contraction [19]) and
methodological information. The parameter µRR(t,Ht, ξ(t))
denotes the instantaneous R-R mean that can be modeled as
a generic function of the past (finite) R–R values. Indeed,
this is something unique of the point-process approach. This
study poses a solid basis for devising a tool capable of
performing accurate assessments of CHF morbidity and mor-
tality, which still remain unacceptably high despite effective
ongoing drug therapies. Future endeavors will focus on the
study of a comprehensive set of features gathered from
multiscale analyses, as well as investigating the multiscale
and multifractal properties of instantaneous parasympathetic
activity assessed by point-process estimates of HF power.
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