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Abstract— The continuous reciprocal interplay underlying
cerebral and cardiovascular interactions has been shown to
generate complex and nonlinear dynamics. To this extent,
differences in induced cross-temporal dynamics are here in-
vestigated via wavelet-based multivariate multiscale analysis.
Twelve features were extracted from both EEG and ECG
recordings from 24 healthy subjects at rest and during a cold-
pressor test. The proposed multivariate analysis using the eigen-
structure of the multiscale decomposition was compared with
a classical multivariate analysis. Preliminary results show that
differences between experimental conditions are enhanced by
the application of the proposed multivariate analysis.

I. INTRODUCTION

Fractal theory has provided a significant scientific con-
tribution for the study of complex physiological systems,
particularly involving nonlinear dynamics in brain and car-
diovascular regulation activities [5], [7]. Such dynamics are
associated with a variability in time of the Hurst exponent,
therefore implying a multifractal (MF) behaviour [5] that has
been exploited to discern different pathological conditions
[10]. Likewise, MF analysis has been proven effective for
the investigation of the brain dynamics [7].

It is known that the Central Nervous System (CNS) and
the Autonomic Nervous System (ANS) continuously interact
through functional, anatomical, and biochemical links. To
this extent, a functional Brain-Heart Interplay (BHI) derives
from a multiscale communication and interaction in space
and time between the cortical and subcortical areas and
sympathetic and parasympathetic dynamics [6].

While the scientific community has been devoting in-
creasing attention to the assessment of functional BHI from
both a physiological and analytical viewpoints, a multivariate
multiscale characterization of joint brain and heart dynamics
has not been performed yet. To overcome this limitation, in
this preliminary study we propose a novel application of a
multiscale multivariate analysis referred to as Eigen Wavelet
analysis [1], [2], and compare it with more classical uni-
variate and multivariate analyses. Here we exploit a dataset
gathered from healthy subjects undergoing a Cold-Pressor
Test (CPT) that elicits a strong sympathovagal response as
compared to a resting state.
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TABLE I
POINT PROCESS-DERIVED METRICS FOR HEARTBEAT DYNAMICS

Measure explanation

σ2
RR estimated pdf variance of the HRV series
µ estimated pdf mean value of the HRV series
powLF PSD extracted in the LF-band [0.040.15)Hz
powHF PSD extracted in the HF-band [0.150.4)Hz
LH 2D integral from Bispectrum estimation in the bands (LF,HF)
HH 2D integral from Bispectrum estimation in the bands (HF,HF)
pSamEn estimation of the Sample entropy

II. DATASET

Details on the experimental procedure are reported in
[3]. Briefly, thirty healthy subject (26.7 yo on average,
gender balanced) were asked to submerge their non-dominant
hand into iced water after an initial 3-minute resting state.
Data from six subjects were discarded because of corrupted
recordings. Throughout the experiment, a 128-electrode EEG
and ECG signals were continuously recorded with a 500
Hz sampling rate. Heart Rate Variability (HRV) series were
derived from ECG following the processing reported in [3]
using point-process models for heartbeat dynamics. From
these models we derived the linear and nonlinear ANS
metrics listed in Table I with a 5min temporal resolution [8],
[9]. EEG signals were preprocessed followed the HAPPE
pipeline [4] and processed to derive the power within
the standard EEG bands {δ = [0.5, 4), θ = [4, 8), α =
[8, 12), β = [12, 30), γ = [30, 45]}Hz through the Welch
method (1s time-window, 50% overlap). The median val-
ues from the 43 central electrodes located in the bilateral
prefrontal and centro-parietal areas were retained for further
analysis. EEG series were resampled at a 200Hz rate to
match ANS dynamics.

III. MULTIVARIATE MULTISCALE ANALYSIS

Multivariate wavelet analysis. Let X(t) =
{X1(t), . . . , XM (t)} denotes the M = 12-variate time series
constructed from brain-heart measurements sampled at fs =
200Hz. Let ψ denote a mother wavelet, with Nψ vanishing
moments Nψ and {ψj,k(t) = 2−j/2ψ(2−jt − k)}(j,k)∈Z2

the collection of dilated and translated templates of ψ. Let
dXm

(j, k) = 〈2−jψ(2−j · −k)|X(·)〉 denote the discrete
wavelet transform coefficients of component Xm of X . The
classical multivariate multiscale analysis of X consists in
forming the M × M wavelet crosscorrelations functions
Sm1,m2(j) =

∑
k dXm1

(j, k)dXm1
(j, k) that characterize

cross temporal dynamics. Further, one can define for each
pair of components, Xm1

(t), Xm2
(t) the wavelet coherence

functions Cm1,m2
(j) = Sm1,m2

(j)/
√
Sm1,m1

(j)Sm2,m2
(j),

that consists of scale dependent correlation coefficients and
thus permits to assess scale dependencies in cross-temporal
dynamics.
Eigen wavelet analysis. While classical multivariate
analysis would entail analyzing each entry Sm1,m2(j)



Analysis # tests # significant tests
Univ. 48 12

Multiv. S 264 15
Multiv. C 264 18
Multiv. Λ 48 19

TABLE II

independently as a function of scales a = 2j , an original
wavelet eigen-analysis approach was recently proposed [1],
[2]. Hereby, we consider all components at a given scale
a = 2j by computing the eigenvalues Λ1(j), . . . ,ΛM (j)
of matrix S(j) and then associate the behaviour of each
Λm(j) as a function of scales 2j to BHI, thus reversing the
classical approach,.

IV. EXPERIMENTAL RESULTS
Testing Rest-CPT differences. Independently from any
physiological interpretation, we aim at determining if the
information extracted by our novel multivariate multiscale
wavelet analysis combined with point-process modeling is
able to characterize differences in BHI between rest and CPT.

We focus on the four octaves 7 ≤ j ≤ 10 corresponding
to time scales ranging from .853 ≤ 2j ≤ 6.826 seconds or
equivalently to frequencies 1.17 ≤ f ≤ .146 Hz. For each
scale and for each feature, we independently performed the
classical Wilcoxon ranksum test for changes in distribution
medians across the subjects.
Univariate, multivariate, and Eigen wavelet analysis. For
the univariate analysis, the diagonal entries Sm,m(j) of the
matrix S were used for further analyses considering
12 components ×4 scales = 48 tests. The classical multi-
variate analysis uses all upper triangle entries of the matrix
S, resulting in M × (M − 1)/2× 4 = 264 tests.

To get rid of changes in amplitude that would not actu-
ally correspond to changes in interactions, it is possible to
focus on the coherence functions Cm1,m2(j) for all pairs of
components, also yielding to 264 tests.

Finally, the new multivariate eigenwavelet decomposition-
based analysis proposed here makes use of the M = 12
eigenfunctions Λm(j), thus producing 12 components ×4
scales = 48 independent tests.

The corresponding Wilcoxon ranksum test p-values as
functions of all available scales are displayed in Fig 1 for
the univariate analysis (left) and eigen-multivariate analysis
(right). Due to the limited space, the corresponding plots for
the classical multivariate analysis both on matrices S and C
as function of scales are not shown here. Significance levels
for the test are set to 0.10 and 0.05.
Results. As reported in Table II, while univariate analysis
is associated with 12 positive tests out of 48, classical
multivariate analysis is with 15 positive tests only out of 264
comparisons. On the other hand, the proposed Eigen Wavelet
multivariate analysis outperforms the classical multivariate
analyses with 19 positive tests out of 48, and it also comple-
ments the univariate analysis (that focuses only on the brain
or heart features independently) by tracking differences in
brain-heart interplay. Significant tests did not show statistical
differences following a Benjamini-Hochberg false discovery
rate correction for multiple hypothesis testing.

V. DISCUSSION AND CONCLUSIONS.
In this preliminary study we investigate functional BHI by

using a novel multivariate multiscale Eigen-Wavelet method.

Fig. 1. p-values (log10 as functions of log2 of scales), for the univariate
analysis (left 3 columns) and eigenWavelet-multivariate analysis (right
3 columns). The dashed and solid horizontal lines indicate respectively
threshold p-value levels corresponding to 0.10 and 0.05.

We build upon our previous work investigating BHI during
CPT [3], in which we found that the functional interplay is
enhanced during a strong sympathovagal elicitation. Here we
show that the functional interaction between EEG and HRV
series exhibits a multiscale behaviour well characterized by
a wavelet analysis, and the proposed Eigen-Wavelet method
brings a clear statistical improvement with respect to a uni-
variate analysis. Results suggest that CPT induces changes in
BHI independently from brain and heartbeat features, as well
as from combined brain and heartbeat features, with subtle
and fine cross dependencies that a classical multivariate
analysis is not able to catch. These results are preliminary
and possibly dependent on the small number of subjects
and the specific pre-processing techniques employed. For
example, a possible bias might be due to the specific pre-
processing procedures applied to EEG signals, or to the
preliminary selection of EEG and HRV features that were
considered for further analyses. Future studies will employ
EEG channels from regions already found significant in
previous endeavours [3] and a more refined feature selection
strategy to better characterize BHI dynamics at different time
scales.
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