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Abstract— Quantification of brain-heart interplay (BHI) has
mainly been performed in the time and frequency domains.
However, such functional interactions are likely to involve
nonlinear dynamics associated with the two systems. To this
extent, in this preliminary study we investigate the functional
coupling between multifractal properties of Electroencephalog-
raphy (EEG) and Heart Rate Variability (HRV) series using a
channel- and time scale-wise maximal information coefficient
analysis. Experimental results were gathered from 24 healthy
volunteers undergoing a resting state and a cold-pressure
test, and suggest that significant changes between the two
experimental conditions might be associated with nonlinear
quantifiers of the multifractal spectrum. Particularly, major
brain-heart functional coupling was associated with the second-
order cumulant of the multifractal spectrum. We conclude
that a functional nonlinear relationship between brain- and
heartbeat-related multifractal sprectra exist, with higher values
associated with the resting state.

Clinical relevance: The presented methodology could provide
biomarkers for supporting the diagnosis of neurological, psy-
chiatric, and cardiovascular disorders.

I. INTRODUCTION

The central nervous system and the cardiovascular system
continuously interact and communicate through anatomical,
biochemical, and functional links, and the resulting func-
tional network has been referred to as the central-autonomic
network (CAN) [1]–[3].

Focusing on Electroencephalography (EEG) and Heart
Rate Variability (HRV) series, previous studies investigated
CAN-related changes between different populations and ex-
perimental conditions, and model-based and model-free ap-
proaches have been proposed. While a model-based approach
exploits a-priori knowledge or assumptions to try to describe
the functional brain-heart information exchange, a model-
free approach focuses on synchronized brain and heartbeat
events. Exemplarily, we recently proposed a model-based
approach based on synthetic data generation for a functional
directional brain-heart interplay assessment, which was eval-
uated with data gathered from healthy subjects undergoing
relevant sympathovagal changes induced by a cold-pressor
test [4]. On the other hand, exemplary model-free approaches
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include the so-called Heartbeat-Evoked Potential (HEP) [5],
the application of information theory methods applied to
brain and heartbeat dynamics [6], and joint symbolic analysis
[7].

The cardiovascular system shows a nonlinear and non-
stationary behaviour due to several interactions with the
respiratory and nervous systems [8]. Consequently, heartbeat
dynamics has been successfully modelled by exploiting the
so-called multifractal (MF) framework analysis through the
definition of a multifractal spectrum D(h) characterizing
transient and local non-Gaussian structures that a single
Hurst exponent, H , may not describe [9]–[12]. Similarly,
EEG series show multiple local singular behaviours going
beyond self-similarity and thus need a model comprising
a collection of exponents H = h(t) to fully characterize
its dynamics [13], [14]. Exemplarily, MF properties were
investigated in several EEG studies on, e.g., sleep [15], motor
imagery [16], and epileptic seizures [17], learning [18], and
functional brain connectivity [19].

From an estimation viewpoint, the wavelet transform mod-
ulus maxima method [20], and the MF detrended fluctuation
analysis [21] were proposed to estimate D(h). Recently, we
used a wavelet leader multifractal formalisms [22] and its
generalization using p-leaders [23], [24] with non-gaussian
expansion to characterize brain and heartbeat dynamics
separately during a Cold-Pressor Test (CPT) [25], [26].
CPT comprises a strong thermal elicitation with consequent
sympathovagal changes and was associated with significantly
lower MF features derived from both EEG [26] and heartbeat
dynamics [25] than resting state. Furthermore, the crucial
role of preprocessing on heartbeat dynamics based on in-
homogeneous point-process models has been demonstrated
[25], [27].

Despite the significance of the aforementioned evidences,
the functional link between brain and heartbeat dynamics
at a MF level has not been investigated yet. To this end, in
this preliminary study we report on a methodological attempt
aimed to combine brain- and heartbeat-derived multifractal
features at different time scales using a channel-wise Max-
imal Information Coefficient (MIC) analysis. Experimental
results were gathered from healthy volunteers undergoing
resting state and CPT, and are shown in terms of p-values
topographic maps.

II. MATERIALS AND METHODS

A. Experimental Setup
A 128-channel EEG and one-lead ECG were collected

from thirty healthy volunteers (gender balanced, average age



of 26.7) with a 500Hz sampling rate. Signals were gathered
through a Geodesic EEG Systems 300 (Electrical Geodesics,
Inc.). All subjects declared to be healthy and right-handed,
and signed an informed consent. The experimental procedure
was approved by the local ethical committee. Data with
significant artifacts gathered from six participants were not
considered for further analyses.

Subjects underwent a 3min resting state session followed
by a 3min Cold-Pressor Test (CPT) session with their left
hand in iced water, and were free to stop the session in case
of pain. Further information can be found in [4].

B. EEG and ECG Preprocessing

EEG preprocessing was applied to a subset of 90 channels
over the scalp and followed the so-called HAPPE procedure,
whose details are extensively reported in [28]. For each EEG
channel, the power spectral density (PSD) was then derived
within five standard frequency bands: δ ∈ [1−4], θ ∈ [4−8],
α ∈ [8−12], β ∈ [12−30] and γ ∈ [30−70] (all expressed in
Hz). The PSD was estimated by exploiting the well-known
Welch method with a Hamming window of 2 sec with a
moving step of 0.25 sec, thus obtaining a 4Hz sampling rate
for the time-frequency representation.

The ECG was processed to derive heartbeat dynamics. R-
wave events were automatically identified through the well-
known Pan-Tompkins algorithm, and eventual algorithmic
and physiological artefacts were corrected using a previously
developed method based on point-process statistics [29].
According to our previous evidence [27], instantaneous first-
order statistics for heartbeat dynamics were retrieved from
the instantaneous mean of an inverse-Gaussian probability
density function predicting R-wave events in time, µRR(t), in
line with an inhomogeneous point-process framework [27].

C. Multifractal analysis

The wavelet spectrum of self-similar models is defined as:

SdX (j, q = 2) =
1

nj

nj∑
k=1

|dX(j, k)|q ' K2jqH (1)

with a power-law exponent controlled by the well-known
Hurst parameter H . Here, nj is the number of dX(j, k)
available at scale 2j , and dX(j, k) = 〈ψj,k|X〉 is a pattern
of oscillation reference narrow in the time and frequency
domains with mother wavelet ψ [30].

The wavelet spectrum is bounded to the Fourier spectrum,
and H depends on linear data properties across frequency
bands [10]. On the other hand, multifractal models build
upon self-similarity by replacing the static parameter H
with a collection of local exponents H = h(t), and the
multifractal spectrum D(h) is then defined as the temporal
repartition of h(t) [10], [22]. The estimation of D(h) from
real data requires to impose q = 2 in (1) with positive and
negative interval of moments q, and the use of wavelet p-
leaders `(p)X :
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Fig. 1: Schematic representation of the implemented process-
ing pipeline.

p-leaders `(p)X are defined as `p norms of wavelet coefficients
in a narrow temporal neighbourhood λj,k = [k2j , (k+1)2j),
with 3λj,k =

⋃
m{−1,0,1} λj,k+m, over all finer scales.

Estimates from a multifractal spectrum D(h) can be derived
from the log-leaders cumulants as follows:

C(p)
m (j) ≡ Cumm log

(
`
(p)
X (j)

)
' c0m + cm log(2j) (3)

More specifically, the first-order cumulant c1 identifies the
H-related linear properties and the D(h) mode, while the
higher-order order cumulants c2, c3, c4 represent nonlinear
features from the multifractal spectrum such as width, asym-
metry, and kurtosis. Further details are reported in [22]. In
this preliminary study we limited our analysis to the first-
and second-order cumulants c1 and c2.

D. Maximal Information Coefficient

MIC is an estimator of the linear and nonlinear coupling
between pair of samples and is directly defined from the
scatterplot of the two paired series, x and y [31]. A grid
with any number of rows and columns can be superimposed
to the scatterplot. Considering Gnx×ny

as the set of all the
possible partitions of that grid with nx number of rows
and ny number of columns, the algorithm calculates the
associated mutual information to all elements g ∈ Gnx×ny

and finds the normalized maximum among G as follows:

mnx×ny
=

max {Ig}
g∈Gnx×ny

logmin{nx, ny}
(4)

MIC is then calculated as the maximal mnx×ny over all the
possible pairs (nx, ny). It has been found that MIC may also
be estimated as: MIC(x, y) = max

nxny<B
{mnx×ny

}, with B

empirically defined as B = n0.6. A fully detailed description
is reported in [31].

E. Quantification of Functional Brain-Heart Interplay
For each of the twenty-four subjects and for each of

the two experimental sessions, the two MF cumulants c1
and c2 were estimated separately from brain and heartbeat



Fig. 2: Topographic distribution of MIC differences between CPT and resting phase for the first-order cumulant of the MF
spectrum c1 calculated between five EEG frequency powers and the first-order moment µRR derived from point-process
models for heartbeat dynamics.

Fig. 3: Topographic distribution of MIC differences between CPT and resting phase for the second-order cumulant of the
MF spectrum c2 calculated between five EEG frequency powers and the first-order moment µRR derived from point-process
models for heartbeat dynamics.

dynamics. Specifically, from the brain side, we calculated
c1 and c2 for each of the 90 EEG channels and the 5 PSD
time series at the standard frequency bands. From the heart
side, we derived c1 and c2 associated with the µRR series.
For each MF cumulants (c1 and c2) separately, a MIC was
calculated group-wise between vectors whose length was of
216 elements, resulting from the number of subjects (i.e.
24) times the number of time scales (i.e. 9). Thus, a func-
tional brain-heart interplay was quantified as MICc1(x, y)
and MICc2(x, y), where x represents estimates from the
heart side (e.g., c1(µRR)) and y represents for estimates
from the brain side at a specific frequency band and EEG
channel (e.g., c1(PSDα,Fp2)). A schematic description of
the analysis pipeline is reported in Figure 1.

Finally, separately for c1 and c2 and for each frequency
band, statistically significant differences between the topo-
graphic distributions of MIC values (across the 90 EEG
channels) extracted for the two experimental conditions (i.e.
CPT and resting state) were investigated using Wilcoxon
non-parametric tests for paired samples. The use of non-
parametric tests was justified by the non-gaussian distribution
of samples, as MIC may assume only positive values in the
[0− 1] range.

The threshold for statistical significance was corrected in
accordance with the Bonferroni rule considering a total of
10 multiple comparisons (5 EEG bands × 2 MF cumulants),
thus α = α1/10 = 0.005, with α = 0.05 the uncorrected
significance threshold.

III. EXPERIMENTAL RESULTS

Figures 2 and 3 show the topographic distribution of MIC
differences between CPT and resting phase for c1 and c2,
respectively. Particularly, while the c1 parameter show non-
specific patterns among channels with positive and negative
values in the [−0.5, 0.5] range, c2 shows MIC values within

Fig. 4: Negative logarithm10 of the p−values from Wilcoxon
non-parametric tests for the resting state vs. CPT comparison
using MIC values at all EEG channels. Rows indicate MF
cumulants, and columns indicate EEG-PSD frequency bands
vs. µRR. Significant values are higher than −log10(α =
0.005) = 2.301.

a [−0.2, 0.2] range with a prevalence for negative values
(i.e., higher MIC values are associated with resting state),
especially in the β and γ bands. Consequently, the functional
relationship between brain and heart MF cumulants is higher
during resting state than CPT.

Figure 4 shows the outcome of statistical comparisons
between MIC values derived from resting state vs. CPT
expressed in terms of −log10(P − value). The significance
threshold is set to −log10(α) = −log10(0.005) = 2.301
because of the Bonferroni correction. While no statistically
significant comparisons are associated with the first-order
MF cumulant c1, several significant differences were found
at all EEG frequency bands for c2.

IV. DISCUSSION AND CONCLUSION

We reported on a novel methodology for quantifying brain-
heart interplay based on functional relationships between MF
cumulants. The method was tested on experimental EEG
and heartbeat series gathered from 24 healthy volunteers
undergoing a CPT elicitation that follows a resting state



session. Linear and nonlinear features were derived from
the cumulants of the MF spectrum of brain and heartbeat
series similarly to [25], [26], and their concurrent variation
across time-scales was estimated through the MIC. Results
suggest that significant statistical differences between the two
experimental conditions may be associated with the nonlinear
MF feature c2, and no differences may be linked to the linear
quantifier c1. Higher c2 values are in the resting state session
with respect to the CPT session.

Previous studies investigated MF properties of EEG and
heartbeat series separately during CPT and showed that the
stressful condition leads to a decrease in MF properties
towards a more linear dynamics [25], [26]. Here, we found
that the functional coupling between brain- and heartbeat-
derived MF metrics, quantified through MIC, follow the
same trend as the single systems. These results confirm
lower brain’s and heart’s multifractality during CPT than
resting state, and suggest that a consistent decrease in their
functional coupling exists in case of a CPT elicitation. On
the other hand, linear properties of the MF spectrum (c1)
seem to be associated with a high inter-subject variability,
therefore minimizing eventual statistical difference between
experimental sessions. Note that p-values associated with
the c2 cumulant are as low as 10−8, and more pronounced
differences between the two experimental conditions are
associated with higher EEG oscillations in the β and γ bands.

The proposed methodology presents a limitation related to
the non-quantification of the directionality of the functional
coupling between brain and heartbeat dynamics. Moreover,
statistical analyses were performed at a channel-wise level,
thus limiting any inference regarding specific brain regions.

This study represents a first attempt for the quantification
of linear and nonlinear dependence between MF properties of
brain and heartbeat dynamics. We conclude that a functional
nonlinear relationship between brain- and heartbeat-related
MF cumulants exist, and higher values are associated with
the resting state than the CPT. Further endeavours will
be directed to the investigation of other features derived
from the MF spectrum, as well as to the application of
physiological data collected during different experimental
conditions.
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