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Abstract. We develop a discretization and computational procedures for the approximation of the action of
Fourier integral operators the canonical relations of which are graphs. Such operators appear, for instance, in the
formulation of imaging and inverse scattering of seismic reflection data. Our discretization and algorithms are based on
a multi-scale low-rank expansion of the action of Fourier integral operators using the dyadic parabolic decomposition
of phase space, and on explicit constructions of low-rank separated representations using prolate spheroidal wave
functions, which directly reflect the geometry of such operators. The discretization and computational procedures
connect to the discrete almost symmetric wave packet transform. Numerical wave propagation and imaging examples
illustrate our computational procedures.

1. Introduction. Fourier integral operators (FIOs), and their calculus, have played an im-
portant role in analyzing many problems involving linear hyperbolic partial differental equations.
We mention parametrix constructions, and developments in scattering and inverse scattering theo-
ries. In these developments, typically, the FIOs correspond with canonical relations, describing the
propagation of singularities by these operators, which are the graphs of canonical transformations.
In the present work, we focus on discretizing the action of FIOs in this class, and on developing
computational algorithms for their numerical evaluation.

The action of an FIO F in the mentioned class on a function u(x) in L2 is given by

(1.1) (Fu)(y) =

∫
a(y, ξ) exp(iS(y, ξ))û(ξ)dξ,

where û denotes the Fourier transform Fx→ξ of u, a(y, ξ) is the amplitude function, and the phase
S(y, ξ) the generating function. Without restriction we assume that a is homogeneous of order zero

in ξ. Furthermore, we assume that ∂2S
∂y∂ξ is non-singular. The propagation of singularities by F ,

(x, ξ)→ (y, η), follows from S and is described by the transformation

(1.2) χ :

(
∂S

∂ξ
, ξ

)
→
(
y,
∂S

∂y

)
.

The operator F has a sparse matrix representation with respect to the frame of curvelets [10, 53],
which originates from the dyadic parabolic decomposition of phase space and which will be briefly
discussed below. We will refer to curvelets ([11] and references therein) by their collective name
“wave packets”.

To arrive, through discretization, at an efficient algorithm for the action of an FIO it is natural
to seek expansions of the amplitude function and complex exponential in terms of tensor products
in phase space. (This strategy has been followed to develop algorithms for propagators since the
advent of paraxial approximations of the wave equation, their higher-order extensions, and phase-
screen methods and their generalizations. See Beylkin and Mohlenkamp [6] for a comprehensive
analysis.) In the case of pseudodifferential operators, which are included in the class of operators
considered here, χ is the identity and the generating function S(y, ξ) = 〈y, ξ〉 is linear in ξ and
naturally separated. Typically, one introduces a radial partition of unity in ξ-space, the functions
of which scale dyadically. On each annulus of this partition, the amplitude function or symbol can
then be expanded in spherical harmonics. This results in a tensor product expansion [57]; each
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term in this expansion is also referred to as an elementary symbol. Bao and Symes [2] developed a
computational method for pseudodifferential operators based on such a type of expansions: They
considered a Fourier series expansion of the symbol in the angular variables arg ξ and a polyhomo-
geneous expansion in |ξ|. More recently, other, fastly converging separated symbol expansions were
introduced by Demanet and Ying [23] in adequate systems of rational Chebyshev functions or hier-
archical splines with control points placed in a multiscale way in ξ-space. Alternative expansions, of
the action of Calderón-Zygmund operators, using bases of wavelets, were introduced and analyzed
by Beylkin, Coifman and Rokhlin [5].

Here, we consider FIOs, in the class mentioned above, and focus on expansions of the com-
plex exponential in (1.1) separated in base and cotangent coordinates. A natural way to initiate
the discretization and associated approximation is via the dyadic parabolic decomposition of phase
space, enabling a natural connection with the geometry of the operators. Recently, De Hoop et
al. [21] proposed an explicit multi-scale expansion of low phase space separation rank of the ac-
tion of FIOs associated with canonical graphs using the dyadic parabolic decomposition of phase
space. The second-order term in the expansion provides an accuracy O(2−k/2) at frequency scale
2k. For each frequency scale, the separation rank depends on k but is otherwise independent of
the problem size. The present work elaborates on this result and develops a discretization, nu-
merical approximation and procedure for computing the action (1.1). We obtain an algorithm of

complexity O(N
3d−1

2 log(N)), or O(DNd log(N)) if D is the number of significant tiles in the dyadic
parabolic decomposition of u, valid in arbitrary finite dimension d. Our separated representation
is expressed in terms of geometric attributes of the canonical relation of the FIO: We make use of
prolate spheroidal wave functions (PSWFs) in connection with the dyadic parabolic decomposition,
while the propagation of singularities or canonical transformation is accounted for via an unequally
spaced FFT (USFFT). The use of PSWFs was motivated by the work of Beylkin and Sandberg [7],
and the proposition of an efficient algorithm for their numerical evaluation by Xiao et al. [62]. We
note that it is also possible to obtain low-rank separated representations of the complex exponential
in (1.1) purely numerically, at the cost of losing the explicit relationship with the geometry. The
algorithm presented here can be applied to computing parametrices of hyperbolic evolution and
wave equations; we show that then our approximation corresponds to the solution of the paraxial
wave equation in curvilinear coordinates, i.e. directionally developed relative to the central wave
vector. However, it also forms the basis of a computational procedure following the construction
of weak solutions of Cauchy initial value problems for the wave equation if the medium is C2,1, in
which, in addition, a Volterra equation needs to be solved (de Hoop et al. [18]).

We derive our discretization from the (inverse) transform based on discrete almost symmetric
wave packets [25]. The connection of our algorithm to discrete almost symmetric wave packets is
important in imaging and inverse scattering applications, where the FIOs act on data (u in the
above). The wave packets can aid in regularizing the data from a finite set of samples through
sparse optimization (instead of standard interpolation, for example) [14, 15, 17, 58]. Moreover, the
mentioned connection enables ”multi-scale imaging” and, in the context of directional pointwise
regularity analysis [1, 30, 32, 33, 34, 35, 42], the numerical estimation and study of propagation of
scaling exponents by the FIO, extending the corresponding results for Calderón-Zygmund operators
using wavelets [43].

Imaging and inverse scattering of seismic reflection data can be generally formulated in terms
of FIOs in the class considered here. In the presence of caustics, the construction of such FIOs
requires an extension of standard (single) scattering operators; see Stolk and De Hoop [56, 54,
55]. First-order evolution equations and associated propagators play a role in implementations
of wave-equation imaging and inverse scattering; we mention time and depth extrapolation (or
downward continuation), and velocity continuation [27]. Furthermore, extended imaging can be
described in terms of solving a Cauchy initial value problem for an evolution equation (Duchkov
and De Hoop [27]), that is, an associated parametrix. We provide an explicit estimate of the
paraxial approximation of the evolution operator. In connection with paraxial approximations, we
also mention “beam” migration [9]. In the present contribution, we account for caustics only in
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parametrices of evolution equations using the semi-group property. The general case of caustics is
the subject of a forthcoming paper.

We hasten to mention the work by Candès, Demanet and Ying [12] who recently considered the
fast computation of FIOs (in dimension d = 2). In their work, the ξ-space is decomposed into angular
wedges which satisfy a parabolic relationship reminiscent of the dyadic parabolic decomposition for
the finest available scale. The separated expansion of the complex exponential makes use of the
Taylor series for the exponential function – as in the generalized-phase-screen expansions introduced
by De Hoop, Le Rousseau and Wu [20] – and a polar coordinates Taylor (or Maclaurin) expansion
of the phase function in ξ; the wedges can be chosen sufficiently narrow (which corresponds with
large k in our analysis) so that only the first term in the latter expansion needs to be accounted for.
In [13], a butterfly algorithm was obtained through a balanced tiling of the space and frequency
domain which also admits low-rank separated representations of the complex exponential. An
alternative approach is based on compressing operators by decomposing them in properly chosen
bases of L2. Once a sparse representation has been obtained, the action of the operator is carried
out by applying a sparse matrix in the transform domain. In dimension 1, such an approach was
developed by Bradie, Coifman and Grossman [8] for the computation of oscillatory integrals related
to acoustic wave scattering. Here, we present an algorithm with a controlled error of O(2−k/2),
essentially structured around the geometry (canonical graphs) of the Fourier integral operators.
Our algorithm differs, in structure, from the methods introduced in [8, 12, 13]; those methods are
accurate to arbitrary precision. In principle, in our approach, the phase function can be expanded to
higher order reducing the error accordingly; however, this would yield a significant loss of efficiency.

The outline of this paper is as follows. Below we give a brief introduction to the dyadic parabolic
decomposition of phase space, the co-partition of unity, and wave packets. In Section 2, we summa-
rize the multi-scale operator expansion proposed in [21], and we construct the separated expansion
of the complex exponential in (1.1) in explicit form using PSWFs and provide an analysis of its rank
properties. In Section 3, we establish the discretization of the operator expansion from the discrete
almost symmetric wave packet transform, which we briefly summarize for convenience. We discuss
the deformation of the phase space discretization under the operator action, suggesting strategies
for choosing the oversampling factors, and for the evaluation of the canonical transformation by
USFFT. We obtain a box (frequency tile)- , individual packet-, and hybrid packet-box- based algo-
rithm for the evaluation of (1.1) and investigate and compare their computational properties. In
Section 4, we detail their application to parametrices of evolution equations. We establish the ex-
plicit relationship with paraxial ray theory, the expansion terms of the phase in (1.1) being obtained
from the propagator matrix of the associated Hamilton-Jacobi system along paraxial rays. As a
special case, we consider solution operators of evolution equations represented as Trotter products,
highlighting the connection with phase-space localized paraxial approximations. In Section 5, the
proposed algorithms are compared and illustrated in numerical examples including wave propaga-
tion in a heterogeneous isotropic medium, and evolution-equation based (common-offset) imaging
involving a homogeneous anisotropic Hamiltonian. In Section 6, we draw conclusions on the present
work and discuss future perspectives.

Wave packets. We briefly discuss the (co)frame of curvelets and wave packets [11, 25, 53].
Let u ∈ L2(Rd) represent a (seismic) velocity field. We consider the Fourier transform, û(ξ) =∫
u(x) exp[−i〈x, ξ〉] dx.

One begins with an overlapping covering of the positive ξ1 axis (ξ′ = ξ1) by boxes of the form

(1.3) Bk =

[
ξ′k −

L′k
2
, ξ′k +

L′k
2

]
×
[
−L
′′
k

2
,
L′′k
2

]d−1

,

where the centers ξ′k, as well as the side lengths L′k and L′′k , satisfy the parabolic scaling condition

ξ′k ∼ 2k, L′k ∼ 2k, L′′k ∼ 2k/2, as k →∞.
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Next, for each k ≥ 1, let ν vary over a set of approximately 2k(d−1)/2 uniformly distributed unit
vectors. (We adhere to the convention that ν(0) = e1 aligns with the ξ1-axis.) Let Θν,k denote a
choice of rotation matrix which maps ν to e1, and

(1.4) Bν,k = Θ−1
ν,kBk.

The Bν,k are illustrated in Fig. 1 (left). We denote for later use by 1ν,k(ξ) the indicator function of
Bν,k. In the (co-)frame construction, one encounters two sequences of smooth functions, χ̂ν,k and

β̂ν,k, on Rd, each supported in Bν,k, so that they form a co-partition of unity

(1.5) χ̂0(ξ)β̂0(ξ) +
∑

k≥1

∑

ν

χ̂ν,k(ξ)β̂ν,k(ξ) = 1,

and satisfy the estimates

|〈ν, ∂ξ〉j ∂αξ χ̂ν,k(ξ)|+ |〈ν, ∂ξ〉j ∂αξ β̂ν,k(ξ)| ≤ Cj,α 2−k(j+|α|/2).

A function χ̂ν,k is plotted in color in Fig. 1 (left). One then forms

(1.6) ψ̂ν,k(ξ) = ρ
−1/2
k β̂ν,k(ξ) , ϕ̂ν,k(ξ) = ρ

−1/2
k χ̂ν,k(ξ),

with ρk the volume of Bk. These functions satisfy the estimates

(1.7)
|ϕν,k(x)|

|ψν,k(x)|

}
≤ CN2k(d+1)/4 ( 2k|〈ν, x〉|+ 2k/2‖x‖ )−N

for all N . To obtain a (co)frame, one introduces the integer lattice: Xj := (j1, . . . , jn) ∈ Zd, the
dilation matrix

Dk =
1

2π

(
L′k 01×d−1

0d−1×1 L′′kId−1

)
, det Dk = (2π)−dρk,

and points xν,kj = Θ−1
ν,kD

−1
k Xj , which change with (ν, k). The frame elements (k ≥ 1) are then

defined in the Fourier domain as

(1.8) ϕ̂γ(ξ) = ϕ̂ν,k(ξ) exp[−i〈xν,kj , ξ〉], γ = (j, ν, k),

and similarly for ψ̂γ(ξ). A function ϕν,k - referred to as a wave packet - as well as the corresponding

lattice with points xν,kj , are plotted in Fig. 1 (middle). One obtains the transform pair

(1.9) uγ =

∫
u(x)ψγ(x) dx, u(x) =

∑

γ

uγϕγ(x)

with the property that
∑
γ′: k′=k, ν′=νuγ′ ϕ̂γ′(ξ) = û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ), for each ν, k.

2. Expansion of Fourier integral operators.

2.1. Dyadic parabolic decomposition and separated representation. Let ϕγ(x), γ =

(j, ν, k), denote a single wave packet with central position xν,kj , orientation ν and scale k. The action
of the operator F on ϕγ(x) is:

(2.1) (Fϕγ)(y) = ρ
−1/2
k

∫
a(y, ξ) exp[i(S(y, ξ)− 〈ξ, xν,kj 〉)]χ̂ν,k(ξ)dξ,
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xν, k
j

ξ′ ′

ξ′

ν

Fig. 1. Geometry for two-dimensional wave packets: Frequency domain boxes Bν,k and window function χ̂ν,k(ξ)
for one particular box for scale k = 3 with orientation ν (left). One wave packet corresponding to the box highlighted
in the subfigure on the left and central locations of wave packets in this box (center). Orientations of ξ′ and ξ′′ in
the Taylor expansion of S(y, ξ) (right).

where ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−i〈ξ, xν,kj 〉] is the Fourier transform of ϕγ . The action (1.1) on a

function u is then recovered as

(2.2) (Fu)(y) =
∑

γ

uγ(Fϕγ)(y).

In [21], three approximations of (Fϕγ)(y) to order O(2−k/2) are obtained. They will underly
our discretization and algorithms and are briefly summarized here. The strategy of [21] consists in
replacing S(y, ξ) and a(y, ξ) by Taylor expansions near the microlocal support of ϕγ . The amplitudes
a(y, ξ) can be replaced by a(y, ν) without giving rise to errors larger than O(2−k/2) ([21], Lemma
3.1). By homogeneity in ξ of S(y, ξ), the first order Taylor expansion of S yields:

S(y, ξ)− 〈ξ, xν,kj 〉 =

〈
ξ,
∂S

∂ξ
(y, ν)− xν,kj

〉
+ h2(y, ξ),

along the ν axis, where the error term h2(y, ξ) is homogeneous of order 1 and of class S0
1
2 ,rad

on

1ν,k(ξ) (cf. [21], (22)). We introduce the “coordinate transform”:

(2.3) y → Tν,k(y) =
∂S

∂ξ
(y, ν),

which describes the propagation of the wave packet ϕγ along rays according to geometrical optics

(cf. (1.2)). Replacing S(y, ξ)−〈ξ, xν,kj 〉 by
〈
ξ, Tν,k(y)− xν,kj

〉
in (2.1) results in the approximation:

(2.4) (Fϕγ)(y) = a(y, ν)ϕγ(Tν,k(y)) +O(20).

We will use this approximation for comparison in our numerical examples and refer to it as the
zero-order approximation.

To refine the approximation to O(2−k/2), we need to include the second order terms in the
ξ′′ directions perpendicular to the radial ν = ξ′ direction in the Taylor expansion of S(y, ξ) (the
expansion directions are illustrated in Fig. 1 (right)). Making again use of the homogeneity of S in
ξ, we obtain the expansion:

S(y, ξ) =

〈
ξ,
∂S

∂ξ
(y, ν)

〉
+

1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉
+ h3(y, ξ),

where h3(y, ξ) is S
− 1

2
1
2 ,rad

on 1ν,k(ξ) (cf. [21], (22)). In view of the dyadic parabolic scaling, the

argument of the complex exponential exp
[
i 1
2ξ′

〈
ξ′′, ∂

2S
∂ξ′′2 (y, ν) ξ′′

〉]
is bounded by a constant, c say.
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The expansion leads to a tensor-product representation, separating the y and ξ variables, and yields
the result [21, Theorem 4.1]:

Theorem 2.1. With functions Tν,k(y) defined by (2.3), functions α
(r)
ν,k(y) and ϑ̂

(r)
ν,k(ξ) such that

(2.5) exp

[
i

1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉]
1ν,k(ξ) ≈

R∑

r=1

α
(r)
ν,k(y)ϑ̂

(r)
ν,k(ξ),

one may express

(2.6) (Fϕγ)(y) = a(y, ν)

R∑

r=1

α
(r)
ν,k(y)(ϑ

(r)
ν,k ∗ ϕγ)(Tν,k(y)) + 2−k/2fγ ,

with R ∼ k/ log(k), where fγ is a “curvelet”-like function (cf. [21], (23)) centered at χ(γ).
Theorem 2.1 hence approximates (1.1) to order O(2−k/2) as the sum of R modified wave packets

φ̃r;γ(x) = (ϑ
(r)
ν,k∗ϕγ)(x) with amplitude corrections a(y, ν)α

(r)
ν,k(y), followed by a coordinate transform

Tν,k(y) accounting for the canonical transformation. This expansion can be extended to any order.

Further approximations. Let yν,kj = T−1
ν,k (xν,kj ). It is possible to replace the functions a(y, ν),

∂S
∂ξ (y, ν) and ∂2S

∂ξ′′2 (y, ν) with a(yν,kj , ν), ∂S
∂ξ (yν,kj , ν) and ∂2S

∂ξ′′2 (yν,kj , ν) with error remaining of order

O(2−k/2). This yields the alternative result [21, Theorem 4.2]: With

(2.7) ϑ̂γ(ξ) = exp

[
i

1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(yν,kj , ν) ξ′′

〉]
1ν,k(ξ),

one may express:

(2.8) (Fϕγ)(y) = a(yν,kj , ν) (ϑγ ∗ ϕγ) (Tν,k(y)) + 2−k/2fγ ,

where fγ is a “curvelet”-like function centered at χ(γ) (cf. [21], (23)).
Furthermore, the change of coordinates Tν,k can be approximated by Taylor expansion of S(y, ν)

about (yν,kj , ν) ([21, Theorem 4.3]): One may express

(2.9) (Fϕγ)(y) = a(yν,kj , ν) (ϑγ ∗ ϕγ)
(
DTγ(y − yν,kj ) +Mγ · (y − yν,kj )2

)
+ 2−k/2fγ ,

where DTγ =
∂Tν,k
∂y (yν,kj ) = ∂2S

∂ξ∂y (yν,kj , ν), Mγ = 1
2
∂2S
∂y2 (yν,kj , ν)ν and fγ is a “curvelet”-like function

centered at χ(γ) (cf. [21], (23)). In this approximation, Mγ captures the curvature of a localized
plane wave attached to ϕγ under the underlying canonical transformation, and DTγ contains rigid
motion, shear along the wave front and dilations along and perpendicular to the wave front. It is
important to note that the further approximations are tied to particular wave packets, unlike the
expansion given in Theorem 2.1.

2.2. Prolate spheroidal wave functions (PSWFs) and tensor product. Here, we revisit
(2.5). The argument of the exponential on the left-hand side consists of terms each of which reveals
a separation of variables in phase space and is reminiscent of the kernel of specific operators whose
eigenfunctions are the PSWFs. Motivated by the fast decay of the corresponding eigenspectrum,

we aim at obtaining an explicit low-rank realization of (2.5) by constructing the functions α
(r)
ν,k(y)

and ϑ̂
(r)
ν,k(ξ) from PSWFs.

2.2.1. PSWFs. We give a brief summary on PSWFs and refer to e.g. [38, 39, 40, 41, 49, 50, 51]
for details, and to [44, 47, 61, 62] for recent methods for their numerical evaluation. The (generalized)
prolate spheroidal wave functions ψ are the eigenfunctions of the integral operator

(F cψ)(x) =

∫

R
exp[ic〈x, z〉]ψ(z)dz, c ∈ R+, ||x|| ≤ 1
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on the unit ball R in D ≥ 1 dimensions (for D = 1, R is the interval [−1, 1]): For each c ∈ R+, there
exists a countable set of numbers λcκ, which are either real or imaginary, such that the equation

(2.10) λcκψ
c
κ(x) =

∫

R
exp[ic〈x, z〉]ψcκ(z)dz, ||x|| ≤ 1

has a continuous solution onR, where κ is a multi-index. The functions ψcκ are bounded, purely real,
orthonormal and complete in L2(R). The eigenvalue spectrum consists of only few eigenvalues λcκ
with significant magnitude, the precise number depending on the bandwidth parameter c, and then
decays exponentially fast to values close to zero [38, 40, 41] (for example, for D = 1, the spectrum
contains roughly 2c/π eigenvalues with magnitude close to

√
2π/c and decays exponentially beyond).

For D = 1, κ = n is a simple index, and the functions ψn(x) are also the eigenfunctions of

the self-adjoint differential operator (Lc · )(x) = (1 − x2) d2

dx2 − 2x d
dx − c2x2. For their numerical

construction, expansions in Legendre polynomials are used, where the expansion coefficients are
obtained by recurrence relations derived from Lc. In D ≥ 2, PSWFs are constructed in polar
coordinates (ρ,Ω), in which their radial parts separate from their angular parts:

ψcκ = ψc(N,n,l)(ρ,Ω) = Ψc
(N,n)(ρ)Sl(Ω).

Let p = D − 2. The angular functions Sl(Ω) are given by complete sets of orthonormal surface
harmonics of degree N + p (in the practically most interesting case D = 3, these are the spherical
harmonics). The radial functions are given by Ψc

N,n(ρ) = ρ−(p+1)/2ϕcN,n(ρ), where ϕc(ρ) are the
bounded solutions to the eigen equation (JN are the Bessel functions):

(2.11) γcN,nϕ
c
N,n(ρ) =

∫ 1

0

JN+ p
2
(cρρ′)

√
cρρ′ϕcN,n(ρ′)dρ′.

The functions ϕcN,n(ρ) are also the eigenfunctions of the self-adjoint differential operator (Lc · )(ρ) =

(1−ρ2) d
2

dρ2 −2ρ d
dρ +

(
1/4−(N+p/2)2

ρ2 − c2ρ2
)

. Similar to the case D = 1, the (numerical) construction

of Ψc
N,n(ρ) is based on recurrence relations, derived from the differential operator Lc, for the coeffi-

cients of expansions in Jacobi polynomials. Recent numerical procedures allow the construction of
PSWFs for most values of c encountered in practice [47, 62] (see also e.g. [44, 61] for asymptotic re-
sults and approximations). The corresponding eigenvalues λcκ are obtained by numerical integration
of (2.10) (D = 1) and (2.11) (D ≥ 2, here λcN,n = iN (2π)1+p/2c−(P+1)/2γcN,n), cf. [47, 49]. Both the
expansion coefficients in the numerical construction and the eigenvalues λcκ can be pre-computed
and tabulated for given bandwidth parameters c.

2.2.2. Tensor product. We proceed with the construction of the tensor product functions

α
(r)
ν,k(y) and ϑ̂

(r)
ν,k(ξ) from PSWFs. The kernel of operator (2.10) admits the representation:

(2.12) exp[ic〈x, z〉] =
∑

κ

λcκψ
c
κ(x)ψcκ(z), ||x||, ||z|| ≤ 1.

Our strategy is to manipulate the left hand side of (2.5) to match this expression. We begin with

extracting from the matrices ∂2S
∂ξ′′j ∂ξ

′′
l

(y, ν) and
ξ′′j ξ
′′
l

ξ′ the vector-valued functions f̃ν : Rd → RD(d)

g̃ : Rd → RD(d):

f̃m(j,l)(y) =

[
(2− δjl)

∂2S

∂ξ′′j ∂ξ
′′
l

(y, ν)

]
, g̃m(j,l)(ξ

′, ξ′′) =

[
(2− δjl)

ξ′′j ξ
′′
l

ξ′

]
, m(j, l) = 1, · · · ,D,

where, due to symmetry in partial derivatives and in ξ′′j ξ
′′
l :

D(d) = (d− 1)d/2.
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g2( ξ )

ξ ′ ′2
2 /ξ ′

1

ρ
Ω1

Ω2

1

g3( ξ ) ξ ′ ′
1ξ ′ ′

2/ξ ′

1

g1( ξ )

ξ ′ ′2
1 /ξ ′

Fig. 2. Illustration of PSWF coordinates for g(ξ) and D = 3 (d = 3). The Cartesian boxes f(y) and g(ξ) are
included in the unit ball R on which ψcκ(ρ,Ω) form an orthonormal basis.

Proper normalization confines the (transformed) Cartesian boxes f̃(y) and g̃(ξ′, ξ′′) to the unit ball
R (cf. illustration in Fig. 2):

(2.13) f(y) =
f̃(y)

supy

∣∣∣f̃(y)
∣∣∣
, g(ξ′, ξ′′) =

g̃(ξ′, ξ′′)
sup1ν,k(ξ) |g̃(ξ′, ξ′′)| .

We absorb the normalization constants in the bandwidth parameter

(2.14) c = c(ν) =
1

2
sup

1ν,k(ξ)

|g̃(ξ′, ξ′′)| sup
y

∣∣∣f̃(y)
∣∣∣ .

With these definitions, we obtain, by elementary manipulations of the left hand side of (2.5):

(2.15) exp

[
i

1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉]
1ν,k(ξ) = exp


i

1

2

d∑

j,l=2

ξ′′j ξ
′′
l

ξ′
∂2S

∂ξ′′j ∂ξ
′′
l

(y, ν)


1ν,k(ξ) =

exp


i

1

2

D(d)∑

m=1

g̃m(ξ′, ξ′′)f̃m(y)


1ν,k(ξ) = exp [ic〈f(y), g(ξ′, ξ′′)〉] 1ν,k(ξ) =

=
∑

κ

λcκψ
c
κ(f(y))ψcκ(g(ξ′, ξ′′)) 1ν,k(ξ).

Now let the sequence of multi-indices κ1, κ2, · · · correspond to the sorted sequence of eigenvalues
|λcκ1
| ≥ |λcκ2

| ≥ · · · , and truncate the infinite sum over the multi-index κ at the Rth term, to within
precision ε(k):

(2.16) exp

[
i

1

2ξ′

〈
ξ′′,

∂2S

∂ξ′′2
(y, ν) ξ′′

〉]
1ν,k(ξ) =

Rν,k∑

r=1

λcκrψ
c
κr (f(y))ψcκr (g(ξ′, ξ′′)) 1ν,k(ξ) + ε(k)

=

Rν,k∑

r=1

α
(r)
ν,k(y)ϑ̂

(r)
ν,k(ξ) + ε(k).
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Fig. 3. Plots of numerical evaluation of (2.24) for c = {10, 20, 30, 50} (blue solid line) in − log(ε) (left) and
in − log(ε)/ log(− log(ε)) (right) vs. R coordinates. Dashed solid lines correspond to linear fits in the respective
coordinates. Plot of bound (2.22) (left, red dotted line).

Here, in view of Theorem 2.1, ε(k) ∼ 2−k/2 in order to achieve accuracy O(2−k/2) at frequency scale
k. We identify the functions:

α
(r)
ν,k(y) = ψcκr (f(y)),(2.17)

ϑ̂
(r)
ν,k(ξ) = λcκrψ

c
κr (g(ξ′, ξ′′)),(2.18)

which completes the construction of the tensor-product (2.5), given by (2.16)-(2.18). The eigenvalues

λcκ can alternatively be absorbed in either of the functions1 α
(r)
ν,k(y) and ϑ̂

(r)
ν,k(ξ).

Rank properties. The rank R of the separated expansion (2.16) is controlled by the desired
precision ε and by the bandwidth parameter c defined in (2.14). The bandwidth is in turn determined

by the largest value that the function | ∂2S
∂ξ′′2 (y, ν)| attains over y on the calculation domain, and by

the size of the boxes Bk in the frequency tiling (cf. (1.3)) through the values that ξ′′2

ξ′ can attain
on them. Under our assumption that there are no caustics, the former is always bounded on finite
domains over y, and the latter also is by virtue of the dyadic parabolic decomposition, hence c is
bounded. The exponentially fast decay of the eigenvalue spectrum and the orthonormality of the
functions ψcj then guarantee the fast convergence of (2.16) and finite rank R for finite precision ε.
The choice of frequency tiling can be seen as a trade off between the number of frequency boxes
Bν,k to be computed in (2.2), and the number of tensor product terms to be included in (2.16).
We note that in view of the parabolic scaling, the bandwidth parameter (2.13) is (asymptotically)
independent of scale. Indeed, supj,l,1ν,k(ξ) ξ

′′
j ξ
′′
l /ξ
′ = supj,l,1ν,1(ξ)(ξ

′′
j 2k/2)(2k/2ξ′′l 2k/2)/ξ′/(ξ′2k) =

supj,l,1ν,1(ξ) ξ
′′
j ξ
′′
l /ξ
′ and ∂2S

∂ξ′′2 (y, ν) are scale independent. In the following, we revisit bounds on the

precision ε for given rank R for D = 1 (d = 2). From [48], we have the following estimates:

(2.19) |λcr| =
√
πcr(r!)2

(2r)!Γ(r + 3
2 )

exp

[∫ c

0

(
2(ψbr(1))2 − 1)

2b
− r

b

)
db

]
≤
√
πcr(r!)2

(2r)!Γ(r + 3
2 )

and |ψcr(1)| <
√
r + 1/2, hence

(2.20) |λcr| ≤
√
πcr(r!)2

(2r)!Γ(r + 3
2 )
≤
√
πcrr!

(2r)!
≤ √πcr2−r log2(r) =

√
π2−r[log2(r)−log2(c)],

1With the exception of the next paragraph, we will omit explicit reference to the bandwidth parameter c hereafter
for convenience of notation.
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and, for r ≥ 2c,

(2.21) |λcr| ≤ 2−r+1,

which together with M c
r = maxs≤r max−1≤x≤1 |ψcs(x)| ≤ 2

√
r gives the following L∞ bound

ε∞(R) =

∣∣∣∣∣F (x, y)−
R∑

r=1

λcrψ
c
r(x)ψcr(y)

∣∣∣∣∣
∞
≤

∞∑

r=R+1

|λcr|(M c
r )2 ≤ 8(R+ 2)

2R
,

valid for R ≥ 2c. By orthonormality on the unit ball of the functions ψr, we obtain the L2 bound:

(2.22) ε(R) =

∣∣∣∣∣

∣∣∣∣∣
∞∑

r=R+1

λrψ
c
r(x)ψcr(z)

∣∣∣∣∣

∣∣∣∣∣
L2(−1,1)

=

√√√√
∞∑

r=R+1

|λr|2 ≤
4√
3

2−(R+1),

valid for R ≥ 2c, and the corresponding rank estimate:

(2.23) R(ε) ≥ − log2(ε) + log2(4/
√

3)− 1.

The bounds (2.22) and (2.23) are based on (2.21), which enables to obtain closed form expressions,
but is a very conservative estimate. A refined estimate on the order of R(ε) is obtained from the
right most inequality in (2.20). Results for the numerical evaluation of:

(2.24) ε(R) =

√√√√
∞∑

r=R+1

|λr|2 ≤
√
π

√√√√
∞∑

r=R+1

2−2r[log2(r)−log2(c)]

are plotted in Fig. 3 for different bandwidths c, together with (2.23), clearly indicating that:

(2.25) R(ε) = O(− log(ε)/ log(− log(ε))).

For accuracy ε(k) = O(2−k/2) we therefore have, in agreement with Theorem 2.1:

(2.26) R(k) = O(k/ log(k)).

3. Discretization. We develop an algorithm, based on the operator expansion Theorem 2.1
and on the separated representation (2.16)-(2.18), for the evaluation of the approximate action of F
on a function u for discrete space and frequency points yn and ξl, respectively. Our discretization
is chosen to match the structure of the discrete wave packet transform [25]. This enables to switch
from the coefficients of the wave packet transform to data in the frequency domain – the input to

(1.1) – efficiently through standard FFTs. We assume here that the partial derivatives ∂2S
∂ξ′′2 (y, ν)

and the functions Tν,k(y) and T−1
ν,k (x) are known.

3.1. Discrete almost symmetric wave packets and operator action. We initiate the
discretization of Theorem 2.1 from the adjoint discrete almost symmetric wave packet transform.

We begin with writing the convolutions (ϑ
(r)
ν,k ∗ ϕγ)(Tν,k(y)) in (2.6) in the Fourier domain:

(3.1) φ̃γ(y) = (Fϕγ)(y) ≈ a(y, ν)ρ
−1/2
k

Rν,k∑

r=1

α
(r)
ν,k(y)

∑

ξ∈1ν,k
ei〈Tν,k(y),ξ〉ϑ̂(r)

ν,k(ξ)χ̂ν,k(ξ),

and obtain the action (2.2) on an input function u(x):

(3.2) (Fu)(y) ≈
∑

γ

uγ φ̃γ(y) =
∑

ν,k

a(y, ν)

Rν,k∑

r=1

α
(r)
ν,k(y)

∑

ξ∈1ν,k
ei〈Tν,k(y),ξ〉û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ)ϑ̂

(r)
ν,k(ξ).
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Below, the amplitudes a(y, ν) are, with slight abuse of notation, absorbed in the functions α
(r)
ν,k(y).

The structure of (3.2) is reminiscent of the (adjoint) wave packet transform (1.9):

(3.3) u(x) =
∑

γ

uγϕγ(x) =
∑

ξ

∑

ν,k

ei〈x,ξ〉û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ),

and we will indeed use the same discretization, which we briefly summarize for convenience (see
[25] for details). We assume that the data u(xi) are given in discrete form at sampling points2

xi = N−12πi, i ∈ Rd, −N2 ≤ in < N
2 . Following the discretization of the ”inner” forward transform:

(3.4) ũj,ν,k =
1

ρ
1/2
k

1

(2π)d
1

σ′k(σ′′k )d−1

∑

l

û(ξν,kl )β̂ν,k(ξν,kl ) exp[i〈xν,kj , ξν,kl 〉] ≈ uγ ,

the discretization of the “inner” adjoint transform û(ξ)β̂ν,k(ξ)χ̂ν,k(ξ) =
∑
γ′:ν′=ν,k′=k uγ′ ϕ̂γ′(ξ) is

obtained as:

(3.5) û(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl ) = ρ
−1/2
k


∑

j

ũj,ν,k exp
[
−i〈xν,kj , ξν,kl 〉

]

 χ̂ν,k(ξν,kl ).

The points ξν,kl are chosen on a (regular) rotated grid. Specifically, we let

(3.6) Ξk =

{
l ∈ Zd

∣∣∣∣∣ −
N ′k
2
≤ l1 <

N ′k
2
, . . . ,−N

′′
k

2
≤ ld <

N ′′k
2

}
.

The points in this set are denoted by Ξkl . The parameters (N ′k, N
′′
k ) are even natural numbers

with N ′k > L′k and N ′′k > L′′k , while σ′k = N ′k/L
′
k and σ′′k = N ′′k /L

′′
k are the oversampling factors,

determining the accuracy of approximation (3.4) to the inverse Fourier transform. The set Ξk

contains Nk
ξ ∼ σ′k(σ′′k )d−1N

d+1
2 points. We choose the ξν,kl (covering the box Bν,k) as

(3.7) ξν,kl = Θ−1
ν,k

(
DkS

−1
k Ξkl + ξ′ke1

)
,

where the matrix Sk is defined as Sk = 1
2π

(
N ′k 01×d−1

0d−1×1 N ′′k Id−1

)
. The dot product in the phase of

the exponential in (3.5) then becomes

(3.8) 〈xν,kj , ξν,kl 〉 =
(
DkS

−1
k Ξkl + ξ′ke1

)t
D−1
k Xj =

2πj1ξ
′
k

L′k
+ 2π

(
j1l1
N ′k

+
j2l2 + . . .+ jdld

N ′′k

)
.

Thus, the specific choice of points ξν,kl allows for a fast evaluation of û(ξν,kl )β̂ν,k(ξν,kl ) from the data
wave packet coefficients ũj,ν,k (cf. (3.4), (3.5)) for l ∈ Ξk:

(3.9) û(ξν,kl )β̂ν,k(ξν,kl ) exp(2πij1ξ
′
k/L

′
k) = ρ

−1/2
k N ′k(N ′′k )d−1

∑

j

ũj,ν,k exp [−i〈xj , ξl〉] .

where ξl = l and xj = S−1
k j with j ∈ Ξk, while (N ′k(N ′′k )d−1) = (2π)d detSk. One can use a

d-dimensional FFT for the evaluation of û(ξν,kl ) and β̂ν,k(ξν,kl ) in (3.9) when the values for ũj,ν,k
are given. The discrete “outer” adjoint transform completes the discretization of (3.3):

(3.10) u(xi) ≈
∑

ν,k

∑

l∈Ξk

ei〈xi,ξν,kl 〉û(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl ).

2When the data u(xi) are sampled at sampling intervals ∆x
n in direction n, then xphysn = N∆x

nxln and ξphysn =

ξln/(N∆x
n). Below, the normalization constants are assumed to be absorbed in the functions α

(r)
ν,k(y), ϑ̂

(r)
ν,k(ξ) and

Tν,k.
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It is evaluated by USFFT [3, 28, 29] from the irregularly spaced set of points ξν,kl to xi.

Now let yi = T−1
ν,k (xi). Then, the dot product in the phase of the complex exponential in (3.2)

becomes

〈Tν,k(yi), ξl〉 = 〈xi, ξl〉,

and we obtain the discretization of (3.2):

(3.11) (Fu)(yi) ≈
∑

ν,k

Rν,k∑

r=1

α
(r)
ν,k(yi)

∑

l∈Ξk

e2πi〈xi,ξν,kl 〉û(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl )ϑ̂
(r)
ν,k(ξν,kl ).

As above, d-dimensional FFT is used for the fast evaluation of û(ξν,kl ) and β̂ν,k(ξν,kl ) from the wave

packet transform of the data. Unlike (3.10), the “outer” transform USFFT ξν,kl → xi now has to

be evaluated for each box (ν, k) separately, since the functions Tν,k(y), α
(r)
ν,k(y) differ for each box:

Denoting by uν,k the data component corresponding to the box (ν, k),

(3.12) uν,k(xi) =
∑

γ′:k′=k,ν′=ν

uγ′ϕγ′(xi),

reveals the organization by boxes of (3.11), (Fu)(yi) ≈
∑
ν,k(Fuν,k)(yi).

3.2. Deformation, compression and oversampling. Here, we consider the deformation
of phase space induced by the operator and account for it in the discretization (3.11) of (3.2).
The action of F on the data components (3.12) is twofold: Modification of their spatial support,
and deformation under the coordinate transformation y → Tν,k(y). We account for both by the
introduction of additional oversampling factors, while keeping the structure of the discrete wave
packet transform.

Oversampling. We first consider the operator action (Fuν,k) for one single box (3.12) as a
function of x within the frame of reference

(3.13) E(x) = T−1
ν,k (x).

The data component uν,k(x) has spatial support Uν,k = suppuν,k(x) ⊂
(
−π2 , π2

]d
. As a result of

the application of the frequency domain windows ϑ̂
(r)
ν,k, the functions φ̃γ(E(x)) = (Fϕγ)(E(x)) which

constitute (Fuν,k)(E(x)) spread out in the ξ′′ directions and have enlarged spatial support w.r.t.

ϕγ(x): Ũν,k = supp (Fuν,k)(E(x)) ⊂
(
−ζ π2 , ζ π2

]d
with ζ ≥ 1 and Uν,k ⊆ Ũν,k. Consequently, the

sampling density in ξ has to be increased by a factor ζ ≥ 1 w.r.t. the original discretization ξν,kl .
We account for this by initiating the above discretization for zero-padded data uzp(xi), consisting
of the data u(xi) augmented in each direction with d(ζ − 1)Ne zeros (cf. Fig. 4). We denote the
corresponding box data components by uzpν,k.

We can relate the amount of spreading of φ̃γ(E(x)) (and hence the oversampling factor ζ) to

the partial derivatives ∂2S
∂ξ′′2 (E(x), ν) and to the size of the boxes Bν,k by geometrically imposing

connectivity, under the action of F , of wave packets sharing scale and position at neighboring
orientations. For instance, if l′′k and l̃′′k are measures for the width of the effective numerical support

of ϕγ(x) and φ̃γ(E(x)), respectively, in d = 2 dimensions, l̃′′k ≈ max(l′′k ,
1
2
∂2S
∂ξ′′2 tan(Cπ/2/Nν(k))),

where the constant C depends on the overlap of two neighboring boxes, and Nν(k) the number of
boxes at frequency scale k. We note that φ̃γ(E(x)) (and consequently (Fuν,k)(E(x))) as functions

of x have compact support 1ν,k(ξ), as is clear from (3.11) and the fact that χ̂ν,k(ξ) and β̂ν,k(ξ) have
compact support 1ν,k(ξ).
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uν, k(x )

uν, k(Tν, k(y ) )

V ν, k

Wν, k

Tν, k

Ũ ν, k

T − 1
ν, k (Ũ ν, k)

Ṽ ν, k

W̃ν, k

(Fuν, k)(T
− 1
ν, k (x))

(Fuν, k)(y)

Tν, kϕγ −→ φ̃ γ &

⋃
νW̃ν, k

∑
ν uν, k(x)

(F
∑

ν uν, k) (y)

Fig. 4. Illustration of oversampling and ”compression” of computational domain for one single wave packet
(top; zero order approximation (left), approximations to O(2−k/2)) (center), and for three wave packets with common
central position and frequency scale and neighboring orientations (right; approximation to O(2−k/2)). The domains
Vν,k =

⋃
j bj,ν,k and Wν,k = Tν,k(Vν,k) with effective non-zero data components are schematically indicated with

black borders; the upper and lower rows are related through the coordinate transform Tν,k.

Deformation and spatial grid resolution. Now we apply the coordinate transform y −→
x = Tν,k(y) and map the frame of reference E(x) onto y. We obtain the functions φ̃j,ν,k(y) in
(y, η) phase space, which are translated, rotated and deformed versions of the (x, ξ) phase space
functions φ̃γ(E(x)). The map x −→ T−1

ν,k (x) contracts and expands locally, inducing a local change

in frequency; indeed, for two points x̃ and ỹ connected by ỹ = T−1
ν,k (x̃), it follows from (2.9) that:

(3.14) DT (ỹ, ν) =
∂x

∂y
(y, ν)

∣∣∣∣
ỹ

=
∂2S(ỹ, ν)

∂ξ∂y
,

and the sampling density in y has to be chosen accordingly. Furthermore, the map yi = T−1
ν,k (xi)

yields irregularly spaced samples yi from regularly spaced samples xi, placed differently for each box
(ν, k). We point out that the evaluation of the sum over boxes

∑
ν,k in (3.11) requires (Fuν,k)(y) to

be evaluated on discrete points yn that are common for all boxes. We therefore compute (Fuν,k)(yn)
for points yn on a rectangular grid defined by an (arbitrarily chosen) common reference point yn,0,
and global sampling density ∆y = (1/N) infi,ν ev(DT−1(xi, ν)). Alternatively, we can adapt the
grid resolution locally through a hierarchical set of resolution levels {∆ly}, reflecting (3.14) and
constructed, for instance, in a multiresolution manner as {∆ly = 2l∆y}, l = 0, 1, · · · . The USFFTs

in (3.11) are now evaluated from discrete frequencies ξν,kl ∈ 1ν,k(ξ) to irregularly spaced discrete
samples xn = Tν,k(yn) and realize the coordinate transform onto the grid yn. This completes our
discretization (3.11) of (3.2).

Computational domain. In general, only a fraction of the wave-packets ϕγ′ , γ
′ : k′ = k, ν′ =

ν yield numerically significant contributions to uν,k and (Fuν,k), resulting in effective compression
in the wave packet domain [10, 53]. This reduces the computational domain on which (Fuν,k)(yn)
actually needs to be evaluated (cf. schematic illustration in Fig. 4). Indeed, the wave packets ϕγ(x)

and φ̃j,ν,k(E(x)) have, to precision ε, support in a box bj,ν,k = l′k × (l′′k)d−1 and b̃j,ν,k = l̃′k × (l̃′′k)d−1,

respectively, with l′k, l̃
′
k ∼ 2−k, l′′k , l̃

′′
k ∼ 2−k/2, and their volumes decay as O

(
2−k2−k

d−1
2

)
with scale

k (cf. (1.7)).
The rate of compression and the resulting reduction in computational domain, the output

sampling density ∆y and the oversampling factor ζ are data- and problem-dependent. Below, we
consider them as being absorbed in one common oversampling factor ζ.

3.3. “Box” algorithm. We can now summarize and analyze the sequence of operations for
the evaluation of (3.11). We first consider a single box and evaluate (Fuν,k)(yn). Assuming that the
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“inner adjoint” discrete transform (3.9) for zero-padded data uzp(xi), û
zp(ξν,kl )β̂ν,k(ξν,kl ), is given,

we perform the following operations:

“box algorithm” (for single box (ν, k))
1. for each tensor product term, r = 1, · · · , Rν,k:

(a) evaluate tensor product functions α
(r)
ν,k(yn) and ϑ̂

(r)
ν,k(ξν,kl ), ξν,kl ∈ 1ν,k

(b) multiply ûzp(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl ) with ϑ̂
(r)
ν,k(ξν,kl )

(c) compute adjoint USFFT of (b) from ξν,kl ∈ 1ν,k(ξ) to xn = Tν,k(yn):

Φ
(r)
ν,k(xn) =

∑
ξν,kl ∈1ν,k(ξ) e

i〈xn,ξν,kl 〉ûzp(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl )ϑ̂
(r)
ν,k(ξν,kl )

(d) multiply Φ
(r)
ν,k(xn) with amplitudes α

(r)
ν,k(yn)

2. sum Rν,k tensor-product contributions:

(Fuν,k)(yn) ≈∑Rν,k
r=1 α

(r)
ν,k(yn)Φ

(r)
ν,k(xn)

The number of operations, including explicitly the constants involved, is:

- O(cRν,k(ζN)d) for evaluation of tensor product functions3

- O(Rν,k(ζN)d) for multiplications and additions
- O(dRν,k(σuζN)d log(N)) for USFFTs, where σu is the oversampling factor of the USFFT

and the complexity of the box algorithm is therefore:

(3.15) ∼ O
(
dNd log(N)

)
.

We can slight modify the algorithm and reduce the number of USFFTs by substitution with standard
FFTs, decreasing the constants in (3.15) and hence computation time. We assume here that the

“inner adjoint” discrete transform (3.9) of the original data u(xi), û(ξν,kl )β̂ν,k(ξν,kl ), is given. We
first obtain the box contribution uν,k(xi) via USFFT, zero-pad it, and compute its FFT, inducing

regularly spaced frequencies ξ̃j . Now computations are performed on xi and ξ̃j , and standard FFTs
replace the USFFTs in 1.(c). Eventually, the change of coordinates to xn = Tν,k(yn) is evaluated
by a single USFFT:

modified “box” algorithm (for single box (ν, k))

1. adjoint USFFT of û(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl ) from ξν,kl ∈ 1ν,k(ξ) to xi
2. zero-pad and compute FFT
3. for each tensor product term, r = 1, · · · , Rν,k:

(a) evaluate tensor product functions α
(r)
ν,k(yi) and ϑ̂

(r)
ν,k(ξ̃l), ξ̃j ∈ 1ν,k

(b) multiply ûzp(ξ̃j)β̂ν,k(ξ̃j)χ̂ν,k(ξ̃j) with ϑ̂
(r)
ν,k(ξ̃j)

(c) compute inverse FFT of (b):

Φ
(r)
ν,k(xi) =

∑
j e

i〈xi,ξ̃j〉ûzp(ξ̃j)β̂ν,k(ξ̃j)χ̂ν,k(ξ̃j)ϑ̂
(r)
ν,k(ξ̃j)

(d) multiply Φ
(r)
ν,k(xi) with amplitudes α

(r)
ν,k(yi)

4. sum Rν,k tensor-product contributions α
(r)
ν,k(yi)Φ

(r)
ν,k(xi) and compute FFT of sum

5. compute adjoint USFFT of (4) from ξ̃j ∈ 1ν,k(ξ) to xn = Tν,k(yn):

(Fuν,k)(yn) ≈∑Rν,k
r=1 α

(r)
ν,k(yn)Φ

(r)
ν,k(xn)

This modified algorithm requires Rν,k + 2 FFTs and only two USFFTs. The computational com-
plexity remains the same as for the original box algorithm and is given by (3.15).

The action of F on u is now given by
∑
ν,k(Fuν,k)(yn), the sum of the contributions of all

significant boxes (ν, k). Assuming that all D ∼ N d−1
2 boxes contribute, the complexity of the above

algorithms for the evaluation of (3.11) is:

(3.16) ∼ O
(
dN

3d−1
2 log(N)

)
.

3The evaluation of a PSWF at one point is O(c) [62]
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Fig. 5. Computation time as a function of sample size N (red dots and broken line) and complexity estimate
(3.16) (black solid) for parametrix of half-wave equation (cf. Section 5.1) in d = 2 dimensions in homogeneous
medium (v = 2km/s; evolution time is T = 5s).

Actual computation time as a function of problem size N for d = 2 (D = 1) is plotted in Fig. 5 and
compared to the complexity estimate (3.16). The diagrams in Tab. 3.1 schematically summarizes
the box algorithm and the modified box algorithm.

3.4. Further approximations: “Packet” algorithms. We proceed with the further ap-
proximations (2.8) and (2.9) and describe algorithms for their evaluation on the discrete set of

points yn. Both approximations are tied to individual wave packets, since the functions ϑ̂γ(ξ)

are identified with a single wave packet ϕγ(x). Consequently, the modified packets φ̃j,ν,k(E(xn)) =
(ϑγ ∗ ϕj,ν,k) (E(xn)) have to be constructed one at a time. Note that under approximation (2.9), the
expansion of the coordinate transform also ties the change of coordinates to individual wave packets,
yielding a pure “packet” algorithm, whereas under approximation (2.8) the change of coordinates
can still be evaluated for all packets of a box (ν, k) at once since the coordinate transform Tν,k is
independent of index j, and we obtain a “hybrid packet-box” algorithm. The input to both algo-
rithms are the data wave packet coefficients uγ (cf. (3.4)), assumed to be obtained for zero-padded
data uzp(xi):

“hybrid packet-box algorithm” for approximation (2.8)
- for each box (ν, k):

1. for each coefficient, γ′ : k′ = k, ν′ = ν:
(a) set uγ |j 6=j′ = 0, FFT uγ to ξν,kl ∈ 1ν,k(ξ)

(b) evaluate window function ϑ̂γ′(ξ
ν,k
l )

(c) multiply ûγ′(ξ
ν,k
l )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl ) with a(yν,kj , ν)ϑ̂γ′(ξ

ν,k
l )

2. sum Φ̂ν,k(ξν,kl ) =
∑
γ′ ûγ′(ξ

ν,k
l )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl )a(yν,kj , ν)ϑ̂γ′(ξ

ν,k
l )

3. compute adjoint USFFT of Φ̂ν,k(ξν,kl ) from ξν,kl ∈ 1ν,k(ξ) to xn = Tν,k(yn):

(Fuν,k)(yn) ≈∑ξν,kl ∈1ν,k(ξ) e
i〈xn,ξν,kl 〉Φ̂ν,k(ξν,kl ) =

∑
j a(yν,kj , ν) (ϑγ ∗ ϕγ) (xn)

- sum the contributions of the individual boxes (ν, k).

“packet algorithm” for approximation (2.8)
- for each coefficient γ:

1. set uγ |j 6=j′ = 0, FFT uγ to ξν,kl ∈ 1ν,k(ξ)

2. evaluate window function ϑ̂γ(ξν,kl )

3. multiply (a) and (b): Φ̂γ(ξν,kl ) = ûγ(ξν,kl )β̂ν,k(ξν,kl )χ̂ν,k(ξν,kl )a(yν,kj , ν)ϑ̂γ(ξν,kl )

4. compute adjoint USFFT of Φ̂γ(ξν,kl ) from ξν,kl ∈ 1ν,k(ξ)

to xn =
(
DTγ(yn − yν,kj ) +Mγ · (yn − yν,kj )2

)
:

(Fϕγ)(yn) ≈∑ξν,kl ∈1ν,k(ξ) e
i〈xn,ξν,kl 〉Φ̂γ(ξν,kl )

- sum the contributions (Fϕγ)(yn) of the individual packets.
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û · β̂ν,k · χ̂ν,k (ξν,k
l )

usfft

!!
uzp(xi)

fft

!!

u(xi) → uzp(xi)

fft

!!

(ûzp · β̂ν,k) (ξν,k
l )

!!

(ûzp · β̂ν,k · χ̂ν,k) (ξ̃)

!!∗
window

""

ϑ̂
(r)
ν,k(ξν,k

l )## ∗
window

""

ϑ̂
(r)
ν,k(ξ̃)##

(ûzp · β̂ν,k · β̂ν,k · ϑ̂(r)
ν,k) (ξν,k

l )

usfft ξν,k
l →xn

""

(ûzp · β̂ν,k · β̂ν,k · ϑ̂(r)
ν,k) (ξ̃)

fft

""∗

""

α
(r)
ν,k(yn)## ∗

""

α
(r)
ν,k(yi)##

∑
r

a(yn,ν)

!!

∑
r

a(yi,ν)

!!

a(yn, ν)
∑

r

∑
j α

(r)
ν,k(yn)

(
ϑ

(r)
ν,k ∗ ϕj,ν,k

)
(xn) a(yi, ν)

∑
r

∑
j α

(r)
ν,k(yi)

(
ϑ

(r)
ν,k ∗ ϕj,ν,k

)
(xi)

fft yi→ξ̃; usfft ξ̃→xn

!!

a(yn, ν)
∑

r

∑
j α

(r)
ν,k(yn)

(
ϑ

(r)
ν,k ∗ ϕj,ν,k

)
(xn)

uγ′

fft
""

uγ′

fft
""

(ûγ′ · β̂ν,k) (ξν,k
l )

window, amp

""

(ûγ′ · β̂ν,k) (ξν,k
l )

window, amp

""

a(yν,k
j , ν)(ûγ′ · β̂ν,k · χ̂ν,k · ϑ̂γ′) (ξν,k

l )

""

a(yν,k
j , ν)(ûγ′ · β̂ν,k · χ̂ν,k · ϑ̂γ′) (ξν,k

l )

""∑
γ′:k′=k,ν′=ν

usfft ξν,k
l →xn

!!

usfft ξν,k
l → xn =

(
DTγ · (yn − yν,k

j ) + Mγ · (yn − yν,k
j )2

)

P
γ′:k′=k,ν′=ν

!!∑
j a(yν,k

j , ν) (ϑγ ∗ ϕγ) (xn)
∑

j a(yν,k
j , ν) (ϑγ ∗ ϕγ) (xn)

9

Table 3.1
“Box” algorithm (left), with FFTs replacing USFFTs (right), for one box (ν, k). Double arrows indicate opera-

tions performed for each individual tensor-product term, r = 1, · · · , Rν,k.

Evaluated for a single wave packet ϕγ(x), both algorithms have complexity:

(3.17) ∼ O
(
dNd log(N)

)
.

Assuming that all O(Nd) data wave packets are significant4, the evaluation of (Fu)(yn) requires

O
(
dN2d log(N)

)
operations with the packet algorithm, and O

(
dN

3d+1
2 log(N)

)
operations with

the hybrid packet-box algorithm. The hybrid packet-box algorithm hence has complexity above
the box-algorithm, but below the packet algorithm, since we can perform the coordinate transform
via a USFFT per box (ν, k). 3.2. The diagrams in Tab. 3.2 schematically summarizes the hybrid
packet-box algorithm and the packet algorithm.

4. Parametrix. The evaluation of approximations (2.6), (2.8) and (2.9) with the proposed
algorithms requires knowledge of the values of the first and second order derivatives of the generating
function S(y, ξ). Here, we detail how these derivatives can be computed numerically for parametrices
of evolution equations. Evolution equations play an important role in inverse scattering applications
and general extended imaging [26, 27]. We obtain the derivatives of S from the Hamilton system
describing the propagation of singularities and from the fundamental matrix of the Hamilton-Jacobi
system for perturbations of the bicharacteristics.

Effectively, the numerical procedures described in the previous section yield (approximate)
solvers for Cauchy initial value problems for evolution equations from the initial time to arbitrarily
large later time. As a special case, we revisit in Subsection 4.2 “thin-slab” propagation, in which
straight rays and closed form expressions approximate the first and second order terms of the phase
expansion for small time steps, and obtain a directionally developed paraxial approximation. The
result is closely related to so-called “beam migration” [52].

4Note that this assumption is in unrealistic in many applications, where typically the number of data wave packets
with practically non-zero coefficients amounts to a small fraction.
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û · β̂ν,k · χ̂ν,k (ξν,k
l )

usfft

!!
uzp(xi)

fft

!!

u(xi) → uzp(xi)

fft

!!

(ûzp · β̂ν,k) (ξν,k
l )

!!

(ûzp · β̂ν,k · χ̂ν,k) (ξ̃)

!!∗
window

""

ϑ̂
(r)
ν,k(ξν,k

l )## ∗
window

""

ϑ̂
(r)
ν,k(ξ̃)##

(ûzp · β̂ν,k · β̂ν,k · ϑ̂(r)
ν,k) (ξν,k

l )

usfft ξν,k
l →xn

""

(ûzp · β̂ν,k · β̂ν,k · ϑ̂(r)
ν,k) (ξ̃)

fft

""∗

""

α
(r)
ν,k(yn)## ∗

""

α
(r)
ν,k(yi)##

∑
r

a(yn,ν)

!!

∑
r

a(yi,ν)

!!

a(yn, ν)
∑

r

∑
j α

(r)
ν,k(yn)

(
ϑ

(r)
ν,k ∗ ϕj,ν,k

)
(xn) a(yi, ν)

∑
r

∑
j α

(r)
ν,k(yi)

(
ϑ

(r)
ν,k ∗ ϕj,ν,k

)
(xi)

fft yi→ξ̃; usfft ξ̃→xn

!!

a(yn, ν)
∑

r

∑
j α

(r)
ν,k(yn)

(
ϑ

(r)
ν,k ∗ ϕj,ν,k

)
(xn)

uγ′

fft
""

uγ′

fft
""

(ûγ′ · β̂ν,k) (ξν,k
l )

window, amp

""

(ûγ′ · β̂ν,k) (ξν,k
l )

window, amp

""

a(yν,k
j , ν)(ûγ′ · β̂ν,k · χ̂ν,k · ϑ̂γ′) (ξν,k

l )

""

a(yν,k
j , ν)(ûγ′ · β̂ν,k · χ̂ν,k · ϑ̂γ′) (ξν,k

l )

""∑
γ′:k′=k,ν′=ν

usfft ξν,k
l →xn

!!

usfft ξν,k
l → xn =

(
DTγ · (yn − yν,k

j ) + Mγ · (yn − yν,k
j )2

)

P
γ′:k′=k,ν′=ν

!!∑
j a(yν,k

j , ν) (ϑγ ∗ ϕγ) (xn)
∑

j a(yν,k
j , ν) (ϑγ ∗ ϕγ) (xn)

9

Table 3.2
“Hybrid box-packet” algorithm (left) and “packet” algorithm (right) for one box (ν, k). Double arrows indicate

operations performed for each individual wave packet.

4.1. Hamiltonian system and perturbed system. We consider evolution equations of type

(4.1) [∂t + ip(t, x,Dx)]u(t, x) = 0, u(t0, x) = u0(x),

on a domain X ⊂ Rd and on the interval t ∈ [t0, T ], where p is a pseudodifferential operator with
symbol P in S1

1,0 (in the case of the half wave equation, P = P (x, ξ) =
√
c(x)2||ξ||2), and denote the

associated parametrix by F , u(t, y) = (F (t, t0)u0)(y), F (t0, t0) = Id. We introduce the Hamiltonian
system that gives the propagation of singularities, cf. (1.2), for (4.1). For every (x, ξ) ∈ Rd×Rd\{0},
the integral curves (y(x, ξ; t, t0), η(x, ξ; t, t0)) of

(4.2)
dy

dt
=
∂P (t, y, η)

∂η
,

dη

dt
= −∂P (t, y, η)

∂y

with initial conditions y(x, ξ; t0, t0) = x and η(x, ξ; t0, t0) = ν at time t = t0 define the mapping from
(x, ξ; t, t0) to (y, η), which is the canonical relation of the solution operator of (4.1). Integrating the
system (4.2) from t0 to T hence yields the map:

(4.3) y(x, ν;T, t0) = T−1
ν,k (x).

Under the assumption of absence of caustics, ξ and y determine η and x. We note that for T
sufficiently close to t0 the assumption is always satisfied. In approximations (2.6) and (2.8), the
numerical evaluation of Tν,k for the pre-defined (regular) grid yn, xn = Tν,k(yn), is performed by
backward ray tracing from yn subject to ξn/||ξn|| = ν. Alternatively, we first integrate (4.2) for
initial conditions (xm, ν) with xm a discrete set of points on Ṽν,k and obtain the map xm = Tν,k(yTm);
interpolation on the grid yn then yields the desired map xn = Tν,k(yn) (cf. Fig. 6).

Now consider the perturbations of (y, η) w.r.t. initial conditions (x, ξ):

(4.4) W (x, ξ; t, t0) =

(
W1 W2

W3 W4

)
=

(
∂xy ∂ξy
∂xη ∂ξη

)
.

The system for the 2d× 2d matrix W is given by the Hamilton-Jacobi equations:

(4.5)
dW

dt
(x, ξ; t, t0) =

(
∂ηyP (t, y, η) ∂ηηP (t, y, η)
−∂yyP (t, y, η) −∂yηP (t, y, η)

)
W (x, ξ; t, t0)

which are integrated for initial conditions W |t=t0 = I2d. Note that under our assumptions, the d×d
sub-matrix W1 is always invertible. Since x = ∂S

∂ξ and η = ∂S
∂y (cf. (1.2)), integration of (4.5) along
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Fig. 6. Schematic illustration of discrete evaluation of the coordinate transform Tν,k: ym = T−1
ν,k (xm) from

regularly spaced xm (left); interpolation of xm = Tν,k(ym) at regularly spaced yn gives xn = Tν,k(yn) (right).

(y, η) for t0 to T yields:

∂2S

∂y∂ξ
(y, ξ;T, t0) =

∂x

∂y
= W−1

1(4.6)

∂2S

∂ξ2
(y, ξ;T, t0) =

∂x

∂ξ
=
∂x

∂y

∂y

∂ξ
= −W−1

1 W2(4.7)

∂2S

∂y2
(y, ξ;T, t0) =

∂η

∂y
=
∂η

∂x

∂x

∂y
= W3W

−1
1 ,(4.8)

which we evaluate at the points (yn, ν).
The leading-order amplitude follows to be

(4.9) a(y, ν;T, t0) =
√

1/detW1(xt0(y, ν;T, t0), ν;T, t0),

where xt0(y, ν;T, t0) is the backward solution to (4.2) with initial time T , evaluated at t0. The
system (4.5) is given in Cartesian coordinates and can be reduced to a paraxial system evaluated
in Fermi- or ray-centered coordinates, see e.g. [36] and [59]. This reduced paraxial system and the

expressions for the matrices ∂2S
∂ξ′′2 , DTγ and Mγ in terms of its fundamental matrix are given in

Appendix A. We finally detail the expression for the propagation of a wave packet ϕγ ,

(F (t, t0)ϕγ)(y) =

∫ √
1

detW1(y, ν)
ei〈ξ,xt0 (y,ν)−xν,kj 〉χ̂ν,k(ξ)e

−i 1
2ξ′ 〈ξ

′′,[W−1
1 (y,ν)W2(y,ν)]

′′
ξ′′〉
dξ.

Here, (·)′′ indicates the square submatrix with entries corresponding to the coordinates of ξ′′.

4.2. Example: Trotter product. We analyze approximations (2.6), (2.8) and (2.9) for the
evolution equation (4.1) for the specific case of discretization of evolution time into a sequence of
small time steps. The solution operator F (t, t0) can be written in the form of a Trotter product,
resulting in a computational scheme driven by marching-on-in-t. If t ≥ tN > tN−1 > · · · > t0,
we let the operator WN (t, t0) be defined as WN (t, t0) = F̄ (t, tN ) Π1

i=N F̄ (ti, ti−1), assuming that
T ≥ tN+1 ≥ t ≥ tN . We have ∆i = ti − ti−1, ∆i ≤ ∆ = O(N−1) as N →∞. We consider a single
component operator F̄ (ti−1 + ∆i, ti−1), and set t′ = ti−1 and ∆ = ∆i. It can be approximated by
the “short-time” propagator, given by

(4.10) F̄ (t′ + ∆, t′)u(t′, .)(y) = (2π)−n
∫

exp[i (P (t′, y, ξ)∆− 〈ξ, y〉)] û(t′, ξ) dξ.

This is a Fourier integral operator of order 0 in the class considered in this paper, with the simple
substitution

(4.11) a(y, ξ) = 1, S(y, ξ) = P (t′, y, ξ)∆− 〈ξ, y〉.
18



The associated canonical transformation is given by

χ : (−∂ξP (t′, y, ξ)∆ + y, ξ)→ (y,−∂yP (t′, y, ξ)∆ + ξ);

with the Hamilton system,

(4.12)
dx

dt
=
∂P

∂ξ
(t, x, ξ) ,

dξ

dt
= −∂P

∂x
(t, x, ξ) ,

it follows that

χ :

(
y − dx

dt
(t′, y, ξ)∆, ξ

)
→
(
y, ξ +

dξ

dt
(t′, y, ξ)∆

)

which describes straight rays in the interval [t′, t′ + ∆]. The canonical transformation χ reflects a
numerical integration scheme for the Hamilton system, viz., the Euler method.

The first-order term in the expansion of the phase yields Tν,k = ∂ξP (t′, y, ν). Under the map
Tν,k, y follows from solving x + ∂ξP (t′, y, ν)∆ = y which involves backtracking a straight ray that
connects (t′+∆, y) with (t′, x). The second-order term in the expansion, (∂ξ′′2P )(t′, y, ν), is directly
related to solving the Hamilton-Jacobi system for paraxial rays (in ray centered coordinates) using
Euler’s method and discretization step ∆, as discussed in detail in the previous section.

In the case of so-called depth extrapolation [16], t is replaced by the depth z and x is replaced
by the transverse coordinates and time, (x, t) ∈ Rn. The principal symbol of P becomes

(4.13) P (z, (x, t), (ξ, τ)) = −τ
√
c(z, x)−2 − τ−2|ξ|2,

and

(4.14) S((y, t), (ξ, τ)) = P (z′, (y, t), (ξ, τ))∆− 〈ξ, y〉 − τ t.

We introduce (ξν , τν) using projective coordinates (τ−1
ν ξν , 1)/

√
τ−2
ν |ξν |2 + 1 = ν, τν 6= 0; ν deter-

mines τ−1
ν ξν , and the propagation direction at depth z′, c(z′, y)(τ−1

ν ξν ,
√
c(z′, y)−2 − τ−2

ν |ξν |2). The

expansion of S yields the (principal) symbol of the paraxial wave equation, directionally developed
relative to ν:

(4.15)
∂P

∂ξ
(z′, (y, t), ν) =

τ−1
ν ξν√

c(z′, y)−2 − τ−2
ν |ξν |2

,
∂P

∂τ
(z′, (y, t), ν) = − c(z′, y)−2

√
c(z′, y)−2 − τ−2

ν |ξν |2
,

(in the classical paraxial expansion, ξν = 0), and

(4.16) τν
∂2P

∂ξ2
(z′, (y, t), ν) =

[c(z′, y)−2 − τ−2
ν |ξν |2] I − τ−2

ν ξν ⊗ ξν[
c(z′, y)−2 − τ−2

ν |ξν |2
]3/2 ,

τν
∂2P

∂τ2
(z′, (y, t), ν) = − c(z′, y)−2τ−2

ν |ξν |2[
c(z′, y)−2 − τ−2

ν |ξν |2
]3/2 ,

τν
∂2P

∂ξ∂τ
(z′, (y, t), ν) = − c(z′, y)−2τ−1

ν ξν[
c(z′, y)−2 − τ−2

ν |ξν |2
]3/2 .

Hence, with (ξ′, ξ′′) = R−1
ν (ξ, τ) and ξ′′ = R̃−1

ν (ξ, τ) 5, and with:

∂(ξ′,ξ′′)P (., (., .), Rν(ξ′, ξ′′)) = R−1
ν (∂(ξ,τ)P )(., (., .), Rν(ξ′, ξ′′)),

∂ξ′′2P (., (., .), Rν(ξ′, ξ′′)) = R̃−1
ν

[
R̃−1
ν (∂(ξ,τ)2P )(., (., .), Rν(ξ′, ξ′′))

]T
,

5That is, R̃−1
ν is R−1

ν without the first row.
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Fig. 7. A ”beam” of wave packets in homogeneous background under approximation (2.6) for the half-wave
equation, in Cartesian coordinates (x, z) (left; z horizontal) and elliptic coordinates x = a cosh(µ) cos(ς), z =
a sinh(µ) sin(ς) (right; µ horizontal); elliptic coordinate system (black grids). The horizontal elliptic coordinate axis
on the right has been transformed according to µ̃ = sinh(µ) in order to achieve regular horizontal spacing. Propagation
is confined to a tube in curvilinear coordinates.

the expression for the phase expansion of the operator is:

(4.17)

〈
ξ,
∂P

∂ξ
(z′, (y, t), ν)

〉
+ τ

∂P

∂τ
(z′, (y, t), ν) +

1

2ξ′

〈
ξ′′,

∂2P

∂ξ′′2
(z′, (y, t), ν) ξ′′

〉

=
〈ξ, τ−1

ν ξν〉 − τ c(z′, y)−2

√
c(z′, y)−2 − τ−2

ν |ξν |2
+

1

2ξ′

〈
ξ′′,


R̃

−1
ν


τ−1

ν R̃−1
ν




[c(z′,y)−2−τ−2
ν |ξν |2] I−τ−2

ν ξν⊗ξν
[c(z′,y)−2−τ−2

ν |ξν |2]3/2
− c(z′,y)−2τ−1

ν ξν

[c(z′,y)−2−τ−2
ν |ξν |2]3/2

T

− c(z′,y)−2τ−1
ν ξν

[c(z′,y)−2−τ−2
ν |ξν |2]3/2

− c(z′,y)−2τ−2
ν |ξν |2

[c(z′,y)−2−τ−2
ν |ξν |2]3/2







T

 ξ′′

〉
.

Indeed, for ξν = 0 (that is, ξ′ = τ and ξ′′ = ξ), this expression reduces to the standard paraxial

(15◦) approximation −τc(z′, y)−1 + 1
2
|ξ|2
τ c(z′, y); then Tν,k defines the so-called comoving frame of

reference. We refer to the corresponding “short-time” propagator as the “thin-slab” propagator.
The operatorWN (z, z0) is reminiscent of the Trotter product representation of the parametrix 6;

it converges in Sobolev operator norm to F (t, t0) as ∆s/2, with s depending on the Hölder regularity
α of P w.r.t. z: For 1

2 ≤ α, s = 1, and the balance of accuracies O(∆1/2) and O(2−k/2) requires
∆ ∼ 2−k [19, 45]. The underlying multiproduct of Fourier integral operators can be estimated using
the Kumano-go-Taniguchi theorem [37].

We can now construct a process similar to (back) propagation in “beam migration”. We de-
compose the data into its wave packet components. Each wave packet initializes a solution to the
(half-)wave equation, which, through the Trotter product representation, reveals a phase-space local-
ized paraxial approximation. The standard paraxial approximation is commonly exploited in beam
migration, for example, expressed in terms of geodesic coordinates. In Fig. 7 (left), we show curvi-
linear coordinates particular to wave packets, which enable to define tubes to which the propagation
is confined7 (see e.g. [9], Fig. 1 and 2).

5. Applications and numerical examples. Here, we illustrate and compare the proposed
approximations for (Fu)(y) in numerical examples for propagators corresponding to evolution equa-
tions in d = 2 dimensions. In the first examples, we illustrate Cauchy initial value problems for the

6 Geometrically, WN (z, z0) has some similarities with the wavefront construction method for computing the
propagation of singularities.

7Here, we use elliptic coordinates x = a cosh(µ) cos(ς), z = a sinh(µ) sin(ς). In d = 3 dimensions, the
corresponding curvilinear coordinates are the oblate spheroidal coordinates, x = a cosh(µ) cos(ς) cos(φ), y =
a cosh(µ) cos(ς) sin(φ), z = a sinh(µ) sin(ς), with tubes in the z direction.
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the half-wave equation in isotropic homogeneous medium and in isotropic heterogeneous medium.
The second example demonstrates evolution equation based imaging and involves an anisotropic,
but homogeneous Hamiltonian.

5.1. Wave propagation – isotropic, heterogeneous case. We consider the initial value
problem (4.1) for the half-wave equation, i.e. with symbol

(5.1) P (x, ξ) =
√
c(x)2||ξ||2,

where c(x) is the medium velocity. We compare the accuracy of the ”box” algorithm for approxima-
tion (2.6), the ”hybrid packet-box” algorithm for approximation (2.8), and the ”packet algorithm”
for approximation (2.9) to zero order approximation (2.4) for large evolution time T . The initial
data u0(x) are a band-limited Dirac, defined in the ξ domain as:

(5.2) û0(ξ) =
∑

k′

∑

|ν−νc|≤∆

χ̂ν,k′(ξ),

i.e., û0 defines a wedge with half-opening angle ∆ and smooth cut-off. We set νc = (0, 1) (vertical
downwards), ∆ = 21 degrees, and let the initial data domain extend over x ∈ [−5km, 5km] ×
[−5km, 5km], and insert u0(x) in its center. The initial data consist of N ×N = 256× 256 samples,
resulting in maximum scale kmax = 4. We consider two background velocities: homogeneous with
c(x) = c0, and heterogeneous with a low velocity lens

(5.3) c(x) = c0 + µ exp(−|x− x0|2/σ2),

with c0 = 2km/s, µ = −0.3km/s, σ = 5km and x0 = (0, 35)km. The output spatial sampling
density ∆y is set equal to the initial sampling density ∆x. We consider evolution time T = 30s for
the homogeneous case, and T = 20s for the heterogeneous case8 (t0 = 0 throughout this section).

Fig. 8 (homogeneous case) and Fig. 10 (heterogeneous case) compare the different approx-
imations of (Fu)(yn): zero-order approximation (2.4) (top row); ”box” algorithm approximation
(2.6), ”hybrid packet-box” algorithm approximation (2.8) and ”box” algorithm approximation (2.9)
(second row for homogeneous case, second to fourth row for heterogeneous case). The bottom row
compares the amplitudes along the wavefront. The left columns correspond to initial condition (5.2)
with frequency scale limited to k′ = 3 only, the columns on the right includes all frequency scales
k′ = 1− 4.

We start with investigating the homogeneous case (cf. Fig. 8). Note that in this case, ap-

proximations (2.6), (2.8) and (2.9) are equivalent, since ∂2S
∂ξ′′2 (y, ν) = c0T is independent of y, Tν,k

describes, for fixed ν, parallel straight rays of path length c0T , DTγ = Id×d and Mγ = 0d×d. Also,
the zero order approximation is equal to rigid motion. As observed in [24], the wave front breaks
apart under the zero order approximation, with constituting wave packets at given scale ending up
disconnected (top row): The wave packets do not receive any deformation and are merely de-placed
data wave packets, resulting in large gaps in the wave front due to the geometry of propagation
when c0T is large w.r.t. initial data domain x. As a further consequence, only the center points
of the wave packets sit exactly on the wave front. The error of the zero order approximation does
not decrease with increasing scale. Indeed, including all scales k′ = 2− 4 does not fill up the gaps.
In contrast, under the approximations to order O(2−k/2), the wave packets spread out and bend
to perfectly align and overlap along the wave front, without any visible artifacts. These differences
between zero order approximation and the proposed algorithms are also reflected by amplitudes
along the wave front (bottom row): Unlike zero-order approximation, which results in strong fluc-
tuations regardless of scale k, amplitudes under approximations (2.6), (2.8) and (2.9) are essentially
constant.

8With this parameter setup, the calculation domains containing (Fu)(y) are rectangles of roughly N1 × N2 =
1900× 300 and 1100× 300 samples for the homogeneous and for the heterogeneous case, respectively.
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Fig. 8. Wave propagation in isotropic, homogeneous medium for initial conditions (5.2) with k′ = 2 (left
column) and k′ = 1 − 4 (right column): zero order approximation (top row), approximations (2.6), (2.8) and (2.9)
(center row), and corresponding amplitudes along wave front (bottom row, solid black line corresponds to zero order
approximation). The white dot-dashed lines indicate rays of seven wave-packets at scale k = 3. Note that the aspect
ration is not equal to one.
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Fig. 9. Central cross-sections of wave packets at frequency scale k = 2 propagating in isotropic, homogeneous
medium for evolution times t = [1.6s, 4.8s, 8s], respectively: zero-order approximation (blue dashed line), approxima-
tion (2.6) (red solid line), time domain finite difference computation (black dots).

Furthermore, we point out the difference in phase between the zero order approximation and
approximations (2.6), (2.8) and (2.9), which we illustrate in Fig. 9. A wave packet evolving under
the action of a propagator is subject to a phase rotation, which resides in the second order term of
the phase expansion on the frequency support of the wave packet entering the approximations to
order O(2−k/2). These precisely match a finite difference reference computation both in phase and
amplitude. It can not be reproduced by the zero order approximation which relies purely on the
travel-time and ray-geometry for the central orientation ν.

We now turn our attention to the heterogeneous case, cf. Fig. 10. As above, the wave front
breaks apart under the zero order approximation (top row), with error not decreasing when scale k is

increased. Only center points yν,kl sit precisely on the singularity. In contrast, under approximation
(2.6) (second row), the data wave packets bend, spread out and connect along the singularity and
form a visually perfect wave front. We note the dilations in the vicinity of the vertical symmetry
axis at x = 0 caused by the low velocity lens, resulting in packets being ”squeezed” in their direction
of propagation. Results obtained under approximation (2.8) (third row) are very similar, since in

this example the dependence of ∂2S
∂ξ′′2 (y, ν) on y is weak within the support of the individual wave
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Fig. 10. Wave propagation in isotropic, heterogeneous medium for initial conditions (5.2) with k′ = 2 (left
column) and k′ = 1 − 4 (right column) including physical amplitudes a(y, ν): zero order approximation (top row),
approximation (2.6) (second row), (2.8) (third row) and (2.9) (fourth row); corresponding amplitudes along wave
front (bottom row): zero order approximation (solid black), approximation (2.6) (red dot), approximation (2.8) (black
circle), approximation (2.9) (triangle). The white dot-dashed lines indicate rays of seven wave-packets at scale k = 3.
Note that the aspect ration is not equal to one.

packets. Note that under approximation (2.9) (fourth row), significant artifacts result from the
additional approximate (second order) expansion of the coordinate transform: The spatial extent of
the background perturbation is too small w.r.t the spatial extent of the modified wave packets for
the expansion to be accurate on the entire support of the packets. In particular, we observe artifacts
from wave packets that ”stick out” of the wave front into regions towards the vertical symmetry
axis, close to which the coordinate transform gradually contracts more and more violently due to
the low velocity lens at position (0, 35)km. Nevertheless, approximation (2.9) appears to produce
a more accurate image of the wave front than the zero-order approximation. The above statements
are further confirmed by investigation of the amplitudes along the wave fronts (bottom row): zero
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Fig. 12. Retrofocus experiment. Top row: initial single wave packet ϕγ(x) at scale k = k0 = 3 (left), and

retrofocussed wave packet ψ̃γ(x) = (FF ∗ϕγ)(x) (right). Bottom row: downwards propagated wave packet φ̃γ(y) =
(F ∗ϕγ)(y) (left) and difference ((FF ∗ − I)ϕγ)(x) (right, magnified by a factor 8).

order approximation produces large gaps, while amplitudes under approximation (2.6) and (2.8) are
nearly fluctuation free. Note that, unlike zero-order approximation, amplitude fluctuation under
approximation (2.9) decrease for finer scales.

Remark 5.1. We note that by using the semi-group property, we can apply the procedures
developed in this work also in the presence of caustics. We illustrate this in Fig. 11 where we step-
wise continue in time a wave front initiated by (5.2) with νc = (0, 1), ∆ = 40, k′ = 3, through the
low velocity lens (5.3) with parameters c0 = 2km/s, µ = −0.4km/s, σ = 3km and x0 = (0, 5)km.

Limited aperture array retrofocussing via phase space localization. We apply the ”box
algorithm” for approximation (2.6) in a retrofocus experiment for one single wave packet ϕγ :

(5.4) F (0, T ) (F (0, T )∗ϕγ) (x),
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Fig. 13. Decay properties of c̃γ′,γ = 〈ϕγ′ , FF ∗ϕγ〉 versus cγ′,γ = 〈ϕγ′ , ϕγ〉. Logarithmic magnitude of cγ′,γ
(left) and c̃γ′,γ (center left) for the box Bν=ν0,k=k0 . Decay of coefficients maxj |cγ′,γ | and maxj |c̃γ′,γ | for ν′ = ν0
fixed as a function of k′ = k0 ± [0, 1, 2] (center right), and for k′ = k0 fixed as a function of ang(ν′, ν) (right); blue
dots correspond to cγ′,γ , red circles to c̃γ′,γ .

where F is the solution operator to (4.1) with symbol (5.1). As the background c we use a high
velocity lens, given by (5.3) with c0 = 2km/s, µ = +0.3km/s, σ = 6km and x0 = (5, 16)km.
The initial conditions u(x, t0) consist of one single wave packet ϕγ(x) at scale k = k0 = 3, with
ν = ν0 = (0, 1) in vertical direction, depicted in Fig. 12 (top left). The initial data are discretized at
N ×N = 512× 512 sample points. Spatial sampling density ∆y is set to equal the initial sampling
density ∆x, and the evolution time is T = 8s.
We begin with evaluating φ̃γ(y) = (F (0, T )∗ϕγ)(y), plotted in Fig. 12 (second row, left). Then, we

compress φ̃γ(y) by simple hard thresholding of wave packet coefficients with magnitude below 10%
the magnitude of the largest coefficient. Note that significant boxes are concentrated in a narrow
cone about the central wave vector of φ̃γ(y). Finally, we evaluate ψ̃γ(x) = (F (0, T )φ̃γ)(x) on the

limited aperture array detected by φ̃γ(x), and obtain the retrofocussed wave packet (Fig. 12, top

right). Fig. 12 (second row, right) depicts the difference ψ̃γ(x) − ϕγ(x) between retrofocused and
the original wave packet, i.e., (FF ∗ − I)ϕγ(x) (magnified by a factor 8). In Fig. 13, we visualize in

more detail the decay of c̃γ′,γ = 〈ϕγ′ , ψ̃γ〉 = 〈ϕγ′ , FF ∗ϕγ〉 away from the diagonal and compare it
to the decay of the original wave packet, cγ′,γ = 〈ϕγ′ , ϕγ〉: magnitude of cγ′,γ (left) and c̃γ′,γ (center
left) for the box (k′ = k0, ν

′ = ν0); maxima of cγ′,γ and c̃γ′,γ as a function of scale k′ (ν′ = ν0,
center right) and of orientation ν′ (k′ = k0, right). Note that this corresponds to the analysis of the
decay properties of the kernel of the pseudo-differential operator FF ∗. The propagated wave packet
φ̃γ(y) = (F ∗ϕγ)(y) remains well-localized in space. The original and retrofocussed wave packets

ϕγ(x) and ψ̃γ(x) are visually very close, and ψ̃γ(x) essentially preserves the decay properties of

ϕγ(x) while detecting φ̃γ(y) on a limited aperture array only. These properties can be exploited in
illumination analysis [60], interferometry [46] and partial reconstruction [21].

5.2. Common-offset imaging – anisotropic, homogeneous case. Many processes in seis-
mic data analysis and imaging can be identified with solution operators of evolution equations. In
[26], isochrons defined by imaging operators are identified with wave fronts of solutions of evolution
equations. The bicharacteristics of the Hamiltonian associated with such evolution equations provide
a natural way for implementing prestack map migration by evolution in the pre-stack imaging vol-
ume. We illustrate the principle of imaging with common offset isochrons for homogeneous medium
in d = 2 dimensions. The Hamiltonian governing the evolution of the common offset isochron fronts
is given by [26]:

(5.5) H(y, z, ω, ky, kz) = ω − c

kyz
√

2

( √
Q−Q+√

Q− +
√
Q+

)
,

Q± = z2(k2
y + k2

z)2 + (2hkykz ± z(k2
y − k2

z))q±, q± = 2hkykz ±
√

4h2k2
yk

2
z + z2(k2

y + k2
z)2.

Note that the formulation of imaging operators in terms of solution operators of evolution equations
is in general obtained through embedding in an extended image domain [26, 27] in at least d = 3
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Fig. 14. Source-receiver geometry and initial band-limited isochron front (left). Geometry of evolution of initial
isochron front under the flow of Hamiltonian (5.5) (right): Initial isochron and front after evolution for T = 5s (small
and large black solid curves, respectively) and isochron rays (red solid). The small dashed rectangle corresponds to
the region of the initial data depicted in the left figure, the larger dashed rectangle to the calculation domain.

dimensions. Restriction from the pre-stack imaging volume formulation to d = 2 dimensions implies
that the Hamiltonian (5.5) has a singularity at z = 0. Hence, evolution must be initialized at z > 0:
the initial data have to be isochrons at early two-way travel times T0 [31]. Hamiltonian (5.5) is
anisotropic and can create caustics for initial conditions that differ from isochron fronts (e.g. for
local plane waves).

We use background c = c0 = 2km/s and half-offset h = 100m. The initial condition is an isochron
front for T0 = 0.39s (resulting in maximum initial depth z < 400m), hard-thresholded in the wave
packet domain and plotted in Fig. 14 (left). We evaluate approximation (2.9) for the evolution of the
isochron front for T = 5s and compare it to zero order approximation. The geometry of the problem
is depicted in Fig. 14 (right). Note that the area including the calculation domain is significantly
larger than the area including the initial conditions. Results are plotted in Fig. 15 for frequency
scales k = 2 and k = 3, and including all frequency scales k. The zero-order approximation fails
to correctly image the isochron front at the different frequency scales and produces an image with
large gaps and amplitude fluctuations along the isochron. Resorting to finer scales or including all
scales does not improve the image. In contrast, approximation (2.9) produces a very satisfactory
image isochron that is sharply aligned along the theoretical position of the front, without gaps or
major amplitude variations9.

6. Discussion. We have devised numerical procedures enabling the discrete evaluation of the
action of Fourier integral operators on general input functions through approximations, yielding
accuracy O(2−k/2) at frequency scale k. While numerical examples have been given in d = 2
dimensions, the procedures are valid for arbitrary dimension. The discretization being initiated
from the dyadic parabolic decomposition of phase space, the algorithms reflect the geometry of the
operators and are tightly interwoven with discrete almost symmetric wave packet transforms. (We
mention that it would be possible to construct alternative discretizations, potentially resulting in
faster algorithms, yet at the price of losing the explicit connection with discrete almost symmetric
wave packets and the geometry of the operators. An alternative method, following the decomposition
into wave atoms, has been introduced in [22].) This aspect accounts for the inherent practical
flexibility common to all of the three approximations (2.6), (2.8) and (2.9): They naturally enable,
for instance, the embedding of data regularization, emphasis or muting of coherent data structures,

9The smooth amplitude variation results from the initial conditions we have used: The hard-thresholding pre-
processing step does not guarantee that the energy from different orientations ν is kept balanced. Indeed, it is clear
from inspection of the amplitudes of the zero order approximation in Fig. 15 (left) that different box orientations do
not contribute equal energy, and that amplitude fluctuations under approximation (2.9) depicted in Fig. 15 (right)
merely reflect these variations.
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Fig. 15. Evolution of CO isochron under Hamiltonian (5.5): zero order approximation (left column) and
approximation (2.9) (right column). Isochron front band-limited to frequencies scales k = 2 (top row) and k = 3
(third row) and corresponding amplitudes along the fronts (second and fourth row, respectively); Isochron fronts and
amplitudes including all frequencies scales k (fifth and sixth row). Bottom row: magnification of the image regions
indicated in the fifth row by red dashed rectangles (theoretical position of the isochron indicated red dotted line).

and modeling or imaging with subsets of wave packets at selected orientations, frequency scales and
spatial positions, viz. phase-space filtering. The elementary building blocks being directly connected
to geometric phase-space attributes, such operations are particularly useful in modeling, illumination
analysis, partial reconstruction and target-oriented imaging applications. Moreover, in the case of
parametrices of hyperbolic evolution equations, which also generate extended imaging, we obtain
effective one-step procedures for (large) time steps that are insensitive to numerical dispersion.
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Any of the described algorithms is embarrassingly parallel, since computations per individual
box, tensor product term or packet can be performed independently. The parallelization of the
(global) USFFT in the forward transform of the data has been described in [25]. Also, the proce-
dures offer the possibility of incorporating “real-time” image visualization: Computations can be
hierarchically organized such that useful intermediate results – for instance, successively finer scales
(as e.g. in Figs. 10 or 15), and updated output points for successively refined grid resolution – can
be visualized as they become available during computations, which can be favorably exploited in
data intensive and computationally demanding real-world applications.

When all boxes contribute to the output, the computational complexity of our “box” algorithm
is O(RN (d−1)/2 log(N)) above a diagonal approximation. The additional factor R is fundamental
in the approximation (2.6) leading to the algorithm, stemming from the necessity for separating
a complex exponential and reflecting its (numerical) rank, while the factor O(N (d−1)/2) results
from the total number of boxes that have to be evaluated separately. The action of (Fuν,k)(y) on
portions uν,k(x) of data corresponding to different boxes does in general result in contributions to
different regions in the output domain. Consequently, (Fu)(y) potentially provides information on
an output image that can be (significantly) larger than the original Nd data cube u(x). Obviously,
the output is practically restricted to the domain on which a model is given (i.e., on which a(y, ν)
and derivatives of S(y, ν) are accessible).

In the context of imaging, comparison with the Generalized Radon Transform (GRT) is fa-
vorable: In d = 2 (d = 3) dimensions, the “box” algorithm yields complexity O(N2.5 log(N))
(O(N4 log(N))), as compared to the GRT with O(N3) (O(N5)), respectively.

Our “hybrid packet-box” and “packet” algorithms for approximations (2.8) and (2.9) appear
very attractive at first, since no tensor product representation as in approximation (2.6) needs
to be constructed. Indeed, when applied to one single wave packet, they yield low complexity
O(dNd log(N)). Yet, when used as approximations to the global operator action for input data with
diverse coherent structures, they become less advantageous since the organization of computations
by boxes (ν, k) is partially lost, and certain computations need to be performed packet-by-packet,
worsening overall complexity.

We note that the procedures developed in this paper aid in understanding and estimating the
accuracy of so-called “beam migration”. Here, we obtain “beams” as data wave packets which
are propagated using a phase-space localized paraxial approximation in geodesic coordinates. For
approximations (2.6) and (2.8), we can also form “boxed beams” from data wave packets that share
the same frequency scale and dip. We finally mention the effective reduction in calculation domain
per beam resulting from the spatial decay properties of individual wave packets.

Future work will include the extension of the proposed procedures to the presence of caus-
tics. This is currently being investigated. The idea of further separation of variables – within y
and within ξ – to uni-directional separated representations has been put forward for computations
in high dimensions by Beylkin et al. [4, 7]. Incorporation of such strategies promises computa-
tional advantages, in particular for dimensions d > 3, while typically resulting in purely numerical
algorithms.
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Appendix A. System for perturbations in Fermi coordinates. To simplify notation, let
(x, ξ) and t0 be fixed. Let fI , I = 2, · · · , d be a set of orthonormal vectors in the plane tangent to
the wave front at time t0, and let f1(t0) = ∂y

∂t (t0). The subset fI(t0) can be chosen with arbitrary
orientation in the tangent plane and will be fixed here to coincide with the unit vectors of the ξ′′

axes (cf. Fig. 1, right). Denote by fi(t) the coordinate system fi transported parallel along the
integral curve (ray) (y(t), η(t)). The Fermi or ray-centered coordinates yf (t) are coordinates in this
system, where yf,1(t) = t is time along ray, and yf,2(t), · · · , yf,d(t) essentially describe the distance
from (y(t), η(t)). The transformation matrices with global Cartesian coordinates read:

(A.1) Hij(t) =
∂yi
∂yf,j

(t) = f ij(t), H̄jl(t) =
∂yf,j
∂yl

(t), HH̄ = Id×d,

where f ij is the i-th component of fj with corresponding cotangent vectors denoted by ηif . The

components fI satisfy: dfI(t)
dt = −1/〈η(t), η(t)〉

〈
fI(t),−∂P (t,y,η)

∂y

〉
η(t), and f1(t) is known from

integration of (4.2). Transformation of the system (4.5) to Fermi coordinates and reduction to the
subsystem fI , I = 2, · · · , d, in the tangent plane yields the system (cf. e.g. [59]):
(A.2)
d

dt

∂(yf,I(t), ηf,I(t))

∂(yf,I(t0), ηf,I(t0))
(yf,1(t))

∣∣∣∣
yf,I(t)=0

=

(
AfI (t) BfI (t)
CfI (t) DfI (t)

)
· ∂(yf,I(t), ηf,I(t))

∂(yf,I(t0), ηf,I(t0))
(yf,1(t))

∣∣∣∣
yf,I(t)=0

,
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AfI ,MN (t) = H̄Mn(t)HmN (t)

(
∂2P (t, y, η)

∂ηn∂ym
− 1

〈η(t), η(t)〉ηn
∂P (t, y, η)

∂ym

)
(A.3)

BfI ,MN (t) = H̄Mn(t)H̄Nm(t)
∂2P (t, y, η)

∂ηn∂ηm
(A.4)

CfI ,MN (t) = HnM (t)HmN (t)
∂2P (t, y, η)

∂yn∂ym
(A.5)

DfI ,MN (t) = HnM (t)H̄Nm(t)

(
∂2P (t, y, η)

∂yn∂ηm
− ∂P (t, y, η)

∂yn

∂P (t, y, η)

∂ym

)
.(A.6)

From the fundamental matrix W =
∂(yf,I(T ),ηf,I(T ))
∂(yf,I(t0),ηf,I(t0)) of (A.2) (cf. (4.4)) we obtain:

(A.7)
∂2S

∂ξ′′2
(y(T ), ν) = −W−1

1 W2.

We finally give expressions for the matrices DTγ and Mγ in approximation (2.9). Let Gt, Ḡt be the
transformation matrices between global Cartesian coordinates and the local Cartesian coordinate
system gi(t) = {g1(t), f2(t), . . . , fd(t)} defined as in (A.1), where g1(t) is the unit vector normal to
the wavefront at its intersection with ray (y(t), η(t)). The matrix DTγ consists of dilation terms in
directions gi(T ), shear terms in directions gI(T ), and rotation from gi(T ) to gi(t0), or equivalently,
dilations in fi(T ) and transformation from fi(T ) to fi(t0), and is given by:

(A.8) DTγ = H̄(t0)(H(T )Qγ,T ) where Qγ,T =

[
1 01×d−1

0d−1×1 W1

]−1

.

The matrix Mγ consists of quadratic terms in the fi(T ) directions, and rotation from gi(T ) to gi(t0)
and can be obtained as:
(A.9)

Mγ · (y− yν,kj )2 = Ḡ(t0)[(y− yν,kj )T (GT (T )Pγ,TG(T ))(y− yν,kj )e1], Pγ,T =

[
0 01×d−1

0d−1×1 W3W
−1
1

]
.
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