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Abstract—Wove paper, made on a papermaking screen or
mold having a surface of smooth tightly woven wires, was
the predominant paper type used for printing in the twentieth
century. To aid in the study and classification of fine art prints
on wove paper, the present work compares the results of five
different image processing approaches for characterizing surface
texture. Using a collection of popular and widely available wove
papers, a reference dataset of raking light close-up images was
assembled. Five research teams undertook their own processing
strategies to detect outliers and affinities among the paper
samples. Their success in identifying similarity groupings built
into the dataset are reported.

I. INTRODUCTION

The study of graphic art relies upon easily identifiable and

describable characteristics of paper. One such marker has been

the watermark, which designates the paper’s manufacturer and

provides clues for its dating, original dimensions, function,

and country of origin. Watermarks have been present in

paper for centuries. In addition, papers are identified by their

color, thickness, structure or formation, sheen, surface texture

or finish, and other visual and physical properties. These

properties, however, cannot be used to confirm that the papers

are from the same papermaking mill or belong to a particular

brand or type from that manufacturer.

Until the widespread adoption of the papermaking machine

in the early nineteenth century, paper was made by scooping up

finely macerated pulp and water from a vat using a rectangular

mold comprised of a porous screen surrounded by a removable

wooden frame. Prior to 1750, the screen was fabricated from

fine, densely spaced horizontal rows of laid wires lashed into

position by thicker, more widely spaced vertical chain wires.

When the mold was plunged into the vat and lifted out, the

wires acted as a sieve, filtering out the pulp in thinner and

thicker accumulations depending upon how much interference
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the wires produced as the water drained through [1]. The

grid-like pattern of crisscrossed chain and laid lines is thus

replicated in the structure or formation of the final sheet of

paper and is also replicated in its surface texture or finish.

Paper having this formation is called laid paper, and the pattern

left by the wire molds has been used recently to classify

these papers [2]. After 1750, a smooth-surfaced paper was

developed by using a woven screen also in a mold surrounded

by a removable frame [3]. Reconfigured as an endless belt,

the woven wire mesh was readily adopted for machine-made

papers starting in the early 19th century [4]. This paper, called

wove, eventually superseded laid paper. Its formation lacks

the regular grid pattern characteristic of laid paper; the felt-

like distribution of the paper pulp across the sheet is even

and amorphous. The surface texture or finish of wove paper

is likewise continuously smooth. The lack of unique and

quantifiable chain line intervals and laid line density make

the characterization of wove papers difficult.

Modern wove papers are identified by their proprietary

watermarks. In many prints, however, a partial sheet was used

or the sheet was trimmed down, paring off the watermark,

which, by the 20th century, had been relegated to the edges

of the sheet. Print connoisseurs, however, recognize that even

the most nondescript wove papers display unique surface

finishes. These textures vary not only from manufacturer to

manufacturer and type to type, but also between both sides of

the same sheet of paper - its front or felt side, here called the

recto, and its back or wire side, here called the verso, as shown

in Fig. 1. Subtle differences in patterns can be discerned and

recorded using a raking light [5]. Due to the complexity of the

topography, however, and the variable orientations of light, it

is impossible to match the pattern by eye.

It was wondered if the application of computer-based, image

processing tools to mark, measure, and compare the unique

finishes of each wove paper, front and back, as recorded

in raking light, could be used to identify papers from the



Fig. 1. Example raking light image of wove paper, showing recto (left) and
verso (right)

same manufacturer. As part of the Historic Photographic Paper

Classification Challenge [5], [6], a multitude of different

approaches to texture similarity have been developed [5],

[7]–[11]. These approaches were shown to yield encouraging

results when used on silver gelatin and inkjet images [12];

here, we extend those prior results by reporting on the use of

these texture similarity approaches on wove paper.

II. DATA SET

The paper samples selected for the data set are from Spec-

imens [13], a 1953 publication of the Stevens-Nelson Paper

Corporation. The samples are all of wove formation. Each

sample was either hand-made, using an individually-dipped

mold covered with a wire cloth, or mold-made, manufactured

by machine using a small, mechanically driven, cylindrical

mold. The surface texture or finish of each sample is not

embossed or otherwise manipulated after manufacture and,

thus, mimics the particular woven screen pattern favored by

each manufacturer for each type of paper. The texture on the

front and the back of each sample differs and are identified

according to their presentation in the Specimens catalog.

Specimens, produced in an edition of over 5,000 copies, is

an important reference today for graphic art curators, art histo-

rians, and paper conservators. Leading European and Ameri-

can artists, including Picasso, Matisse, Dubuffet, Lichtenstein,

and Motherwell, or frequently their printers, selected printing

papers from popular paper manufacturers, most of whom are

represented in Specimens. The papers chosen to create printed

works of art needed to have visual properties best suited to the

printing technique at hand, i.e., silk screen, lithography, letter

press, etc. Foremost among desirable characteristics was a

smooth, continuous, and non-distracting surface. The samples

from Specimens represent the wove papers often encountered

in the study of mid-20th century graphics, a time of enormous

changes in the genre of fine art prints.

Close up images of the surfaces of selected papers in

Specimens were acquired while using a raking light, which is

a linear light source at an oblique angle to the surface which

enhances the highlights and shadows so that surface features

are more clearly visible during image capture. Each sample

consists of 1×1.3 cm2, scanned at a resolution corresponding

to 6.512 = 42.4µm2 per pixel.

The dataset consists of 180 close up images (90 recto, 90

verso) drawn from 36 different papers, and from 10 unique

copies of Specimens to account for manufacturer variation. The

dataset contains three levels of similarity: (1) samples from one

same paper (3 subsets of 10 samples, labeled from 1 to 30,

both recto and verso), (2) samples from identical sheets but

different copies of Specimens (3 subsets of 10 samples, labeled

from 31 to 60, both recto and verso); (3) and 30 papers (labeled

from 61 to 90) of interest to paper conservators representing

the diversity of wove papers (both recto and verso).

III. TEXTURE CHARACTERIZATION TOOLS

As they were fully described elsewhere [7]–[11], we only

provide here a qualitative description of the five texture

characterization image processing tools, emphasizing features

and distances they rely on.

A. Anisotropic Multiscale Analysis (AMA)

Anisotropic multiscale analysis (AMA) [14] has been

proposed in the context of the analysis of scale-free (or scale

invariant) textures. It relies on the use of the Hyperbolic

Wavelet Transform (HWT) [15]. The HWT consists of a

variation of the 2D-Discrete Wavelet Transform (2D-DWT)

[16], that explicitly takes into account the possible anisotropic

nature of image textures. Indeed, instead of relying on a

single dilation factor a used along both directions of the

image (as is the case for the 2D-DWT), HWT relies on the

use of two independent factors a1 = 2j1 and a2 = 2j2 along

directions the horizontal (x1) and vertical (x2) directions.

The HWT coefficients of imaged paper i are defined as inner

products against wavelet templates, dilated with horizontal

and vertical factors a1; a2 and translated at location k1, k2:

Ti((a1, a2), (k1, k2)) = 〈i(x1, x2),
1√
a1a2

ψ(x1−k1

a1

, x2−k2

a2

)〉.
Structure functions, consisting of space averages of the

Ti((a1, a2), (k1, k2)) at scales a1, a2, are computed:

Si((a1, a2), q) = 1
na

∑

k |Ti((a1, a2), (k1, k2))|
q, with

na the number of Ti((a1, a2), (k1, k2)) actually computed. To

ensure that features do not depend on image intensity and that

all scales contribute to texture characterization, the features

consist of log-transformed normalized structure functions

S̃i(a, q) = ln Si(a,q)∑
a′ Si(a′,q) . We use here q = 2 and a vector of

seven dyadic scales a = 2l, ranging from 2 pixels (6.51µm)

to 27 (834µm), for a total of 7× 7 = 49 features S̃i(a, q).
To measure proximity between two images i and j, a

Lp norm cepstral-like distance is computed: D(i, j) =
(

∑

a |S̃i(a, q)− S̃j(a, q)|
p
)

1

p

. We use here p = 1.

B. Pseudo-area-scale analysis (PASA) [8]

The PASA approach uses fractal analysis to decompose

a surface into a patchwork of triangles of a given size.

As the size of the triangles is increased, smaller surface

features become less resolvable and the ‘relative area’ of the

surface decreases. The topological similarity of two surfaces



is computed by comparing relative areas at various scales.

Though wove samples do not provide a direct measure for

height, light intensity is used as a proxy for height.

PASA first extracts a square N×N region from the center of

the image (where N was chosen to be 1024), and normalizes

the intensity of the resulting extracted image. The grid of

N2 equally spaced points (representing pixel locations) is

decomposed into a patchwork of 2(N−1
s

)2 isosceles right

triangles where s is a scale parameter representing the length

of two legs of each triangle. The pixel values at each of the

triangle vertices are then taken as the ‘pseudo-height’ of each

of the vertices. The area of each triangle in 3-D space is then

computed and the areas of all triangular regions are summed,

resulting in the total relative area As at the chosen scale s,
serving as features. a vector S of scales s ranging from 1

pixel to 34 pixels, (6.51 µm to 0.221 mm), for a total of 8

features. To assess the similarity of two images i and j, a χ2

distance measure d(i, j) is computed via

D(i, j) =
∑

s∈S

(

A
(i)
s −A

(j)
s

)2

A
(i)
s +A

(j)
s

.

C. Eigentexture Analysis (EGA) [9]

In the eigentexture approach (EGA), a collection of small

patches are chosen from each samples. These patches are

gathered into a large matrix and then simplified to retain

only the most relevant eigendirections using a singular value

decomposition (SVD) [17]. Features are extracted as follows:

First, for each imaged paper j, N p × p pixel patches

Xj,k ∈ R
p×p are randomly picked (with N = 2000 and

p = 25 in this case). The Xj,k are lexicographically reordered

into column vectors aj,k ∈ R
p2

and stacked into matrices

Aj = [aj,1 aj,2 · · · aj,N ]. Second, to reduce dimensionality,

SVD is applied Aj = UjΣVj for all j and the m columns of

Uj corresponding to the m largest singular values, labeled

Uj , are retained (here, m = 15). The M × m = 3000
features Uj are the representatives of the images and may be

thought of as vectors pointing in the most-relevant directions.

They concentrate on the analysis of patches of size p2 pixels,

corresponding to 162.75µm2.

To compute similarity between images j and i, on first

extract Q = 2000 p× p pixel patches Qk from image i image

and reorder them into vectors qk ∈ R
p2

. A distance from the

kth patch to the jth image is computed as:

d(k, j) = ||qk −Uj(U
⊤
j qk)||2.

For each patch k of image i, one records the best match image

zk,i = argminf d(k, f). Similarity between image i and j is

then computed by a majority vote as the percentage of best

matches from image i that belong to image j: Dm(i, j) =
(#k ∈ {1, . . . , Q}, |zj(k) = i) /Q and D(i, j) = (Dm(i, j)+
Dm(j, i))/2.

D. Tensor aggregation of deep convolutional neural networks

(CNN-VLAT) [10]

This method can be considered as a computer vision base-

line. First, local features are extracted from image i as the out-

put of a deep convolutional neural network (CNN) trained on

natural images. The third convolutional layer of AlexNet [18]

was used here, resulting into 13×13 localized features of size

384 each. PCA is further used to reduce dimensionality from

384 to 56, each component being potentially interpretable as a

combination of non-linear filters detecting basic patterns such

as angles, crosses or combinations of blob like patterns.

Second, we aggregate the local features into a single repre-

sentation using the VLAT approach developed in [19], which

has been shown to perform very well on similarity search

tasks. The main idea is to cluster the local descriptors space

and then to compute second order statistics for each cluster.

Let {µk}k be the set of cluster centers and {Ck = {xi|k =
argminj‖µj −xi‖}}k the associated sets of local descriptors

xi belonging to each cluster. For each cluster, the VLAT

representation is then the following matrix:

Tk =
∑

xi∈Ck

(xi − µk)(xi − µk)
⊤

Then, the matrices Tk for all k are flatten into vectors and

concatenated into a vector v. The final features r are obtained

by a non linear transformation ensuring an ℓ2 normalization:

r =
sign(v)

√

|v|

‖v‖

We used here 16 clusters, for a resulting dimension of

16 × 56 × 56 = 50176. Distances between images i and j
are computed by inner product between the features of each

images: D(i, j) = 2− 〈ri, rj〉.

E. Local radius index (LRI) [11]

A texture contains repetitive smooth regions, called texture

elements, and transitions between them, i.e., edges. The Local

Radius Index (LRI) [11], [20] aims to capture the sizes and

shapes of the texture elements by considering the distances, at

various angles, between the edges that surround them. More

precisely, one version of LRI (LRI-A) is designed to capture

inter-edge distance distributions in different directions by fo-

cusing on pixels adjacent to edges. The LRI-A feature consists

of eight histograms, one for each direction corresponding to an

adjacent pixel, where given a pre-specified threshold T > 0,

the value m (or −m) of the n-th histogram is the frequency

with which m successive pixels in direction n have intensity

at least T larger (or smaller) than the current pixel. The value

0 of the n-th histogram equals the frequency with which the

adjacent pixel in direction n differs by less than T . To limit

histogram sizes, the frequencies for all values m greater than

some upper limit K are lumped into the frequency for m = K,

and similarly, for m < −K. Typically, K = 4 works well, and

the threshold T is taken to be one half an image’s standard

deviation. Histograms of all 8 directions are concatenated into

a feature vector h, hence of size 8×(2×4+1) = 72, analyzing

essentially the fine scales of the image, from 1 to 9 pixels (i.e.,

from 6.51 to 58.59µm.

A texture similarity metric is obtained as the Kullback-

Leibler divergence between the histogram feature vectors of

images i and j: D(i, j) = hi ln(hi/hj) + hj ln(hj/hi).



In the results reported in the next section, the LRI-A based

metric is combined with metrics based on complementary

features [11], [20], such as LBP [21] and measures of intensity

in various frequency bands. Further, the LRI-A feature used

here is the version in [11], previously found to be effective

in photographic paper classification. This version is sensitive

to rotations and is therefore not rotationally invariant. The

principal improvement of this version over conventional LRI-A

is that instead of keying the threshold T to an image’s standard

deviation, T is keyed to the empirical cumulative distribution

function of adjacent pixel differences.

IV. WOVE PAPER AUTOMATED CHARACTERIZATION

[•] Context. In the context of wove paper characterization, the

goal is usually not to perform supervised learning classification

as datasets often consists of unlabelled samples, that should

be grouped in a priori unknown numbers of classes. The

proposed image processing texture characterization techniques

are thus rather essentially extracting features from wove paper

samples and computing distances between features of two

different samples, which could served as inputs for classical

unsupervised clustering strategies, e.g., spectral clustering.

Each of the 5 teams was provided a version of the dataset

with scrambled labels, and no expert information, to preclude

any form of supervised learning. Results were reordered a

posteriori to ease comparisons and interpretation, as in Fig. 2.

Further, the goal of the present contribution is not to compare

performance achieved by each method but rather to assess

whether or not different image processing texture characteri-

zation tools, relying on features very different in nature, and on

distances based on metrics different in spirit, are able or not to

successfully assess similarities amongst wove paper samples.

Expert assessment was constructed from experts involved

in this study by in visual inspection of paper surfaces and

using six qualitative levels of match from perfect to very

poor. Expert assessment are used to evaluate both qualitatively

and quantitatively the automated quantifications of distances

between all pairs of images.

[•] Qualitative description of performance. Fig. 2 reports,

in the form of matrices, distances computed between each

pair of wove paper samples, independently for the recto and

verso, and compares them to the expert assessment. Fig. 2 thus

permits either visual qualitative comparisons of distances yield

by different image processing texture characterization tools or

comparisons against the expert assessment. Fig. 2 shows that

most computed distances reproduce the 10× 10 black squares

along the main diagonal, clearly visible on expert assessment

matrices, materializing the very low distances amongst the

different samples from the same sheet, or between samples

from different copies of the same paper. This holds for the

analysis of both recto and verso. Further, intermediate gray

levels quantifying proximity between samples 1-10 and 11-20,

or 1-10 and 21-30, or 11-20 and 21-30, for the recto expert

assessment matrix are also satisfactorily reproduced by several

image processing tools. This also holds for proximity between

samples 1-10 and 11-20 for the recto expert assessment matrix,

but much less clearly for proximity between samples 21-30

and 31-40.

[•] Quantitative description of performance. To further

quantify similarity assessment performance, we adopt metrics

used in the informational retrieval community to assess the

performance of each approach. Such metrics are based not on

the distances or affinities themselves, but on the rank of true

matches when, for a given query image, all other images in

the dataset are ordered by increasing distance (or decreasing

affinity) to the query image. In particular, we consider three

performance metrics: (i) precision at one (P@1) which is

the mean fraction of time that the top ranked match (having

smallest distance to the query image) is a true match, (ii) mean

reciprocal rank (MRR) which measures the mean inverse rank

of the first true match [22], and (iii) mean average precision

(MAP) [23]. The MAP is calculated as follows: for each query

image and positive integer n less than or equal to the size of

the data set, compute the fraction of the n highest ranked

images that are true matches, and then average these fractions

over all values of n for which the nth highest ranked image

was actually a true match; then, average these values across

all images. The compared performance metrics are reported in

Table I. Despite differences, Table I shows that most image

TABLE I
PERFORMANCE METRICS FOR EACH APPROACH

recto verso
P@1 MRR MAP P@1 MRR MAP

AMA 98.3% 99.2% 95.1% 100.0% 100.0% 97.7%
PASA 95.0% 96.9% 73.6% 88.3% 92.2% 65.7%
EGA 43.3% 59.8% 44.7% 48.3% 62.4% 50.3%

CNN-VLT 68.3% 81.5% 64.3% 88.3% 92.9% 72.4%
LRI 95.0% 97.5% 94.4% 100.0% 100.0% 96.8%

processing approaches achieve satisfactory performance in

comparing wove paper performance. In addition, the verso side

appears easier to characterize as the performance is generally

better compared to that achieved on the recto.

V. CONCLUSIONS AND PERSPECTIVES

Reporting satisfactory performance, when compared to ex-

pert assessment, in the quantification of wove paper similar-

ities for several different image processing texture character-

ization tools, this contribution demonstrates, as a proof-of-

concept, that the computerized and automated assessment of

similarities between wove papers can be achieved.

We believe that twentieth century wove paper popular for

fine art prints display a variety of complex surface textures

that can be characterized in several ways. In fact, the experts

themselves admit to the difficulty in producing consistent

ground-truth observations. Therefore, rather than comparing

the performance achieved by each approach, we emphasize

here that this automated assessment of similarity between

wove papers can be achieved from tools very different in

principle: they rely on features that are different in size, nature,

and physical scale, as well as on different distances (L1-norm,

L2-norm, Chi-square, Kullback Leibler). With such a diversity



Fig. 2. Expert assessment (most left) compared to the distance matrices computed from the five different image processing texture characterization techniques.
Distances range from dark blue (low) to red (high). Top: Recto; Bottom: Verso.

of differences, these different techniques can be used jointly

to induce robustness in automated assessment. Indeed, several

approaches consistently indicate similarities between samples

that were not tagged as close in the expert assessment matrices.

This may provide feedback to experts on the procedure to

revise ground-truth, an involved issue from the expert’s own

experience. The ability to identify and differentiate wove paper

in an automated manner based upon its surface texture will

add immeasurably to print connoisseurship by objectively

documenting an artist’s preference and intent, or by revealing

attributes of papers having specific functional and aesthetic

aims. Further, the automated calculations of distances between

all pairs of samples pave the road towards automated unsuper-

vised clustering, e.g., using spectral clustering, our next goal.

This will require addressing issues such as the status of recto

and verso, so far analyzed independently, or, more classically,

that of the optimal number of clusters. Interestingly, this

latter issue can not be considered without interaction with

wove paper experts, detailing explicitly the final goal of the

clustering.
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