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ABSTRACT

Despite widespread adoption of multifractal analysis as a sig-
nal processing tool, most practical multifractal formalisms
suffer from a major drawback: since they are based on Legen-
dre transforms, they can only yield concave estimates for mul-
tifractal spectrum that are, in most cases, only upper bounds
on the (possibly nonconcave) true spectrum. Inspired by ideas
borrowed from statistical physics, a procedure is devised for
the estimation of not a priori concave spectra that retains the
simple and efficient Legendre transform formalism structure.
The potential and interest of the proposed procedure are illus-
trated and assessed on realizations of a synthetic multifrac-
tal process, with theoretically known nonconcave multifractal
spectrum.

Index Terms— multifractal analysis; wavelet leaders;
nonconcave multifractal spectrum; Legendre transform; gen-
eralized ensemble

1. INTRODUCTION

Multifractal analysis. Nowadays, multifractal analysis has
become a standard signal processing tool, fruitfully used for
the analysis of highly irregular signals in a wide range of ap-
plications, including biomedical [1], geophysics [2], finance
[3], and art investigation [4], to name but a few. It essentially
amounts to estimating the multifractal spectrum D(h), which
quantifies the distribution of points with a given regularity ex-
ponent h. This spectrum characterizes signals in terms of its
regularity, and is thus used in standard classification or mod-
eling tasks.
Multifractal formalism. In practice,D(h) cannot be directly
computed from its definition. For this reason, it is indirectly
estimated by means of a procedure known as multifractal for-
malism. It is based on the scale-invariance properties of the
data, measured by the so-called scaling exponents ζ(q). The
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Legendre transform of ζ(q), which is called Legendre spec-
trum L(h), provides an upper bound L(h) ≥ D(h).
Concavity of the Legendre spectrum. Despite its wide-
spread use, a fundamental problem concerns the Legendre
spectrum L(h): since it is defined through a Legendre trans-
form, it will always be a concave function of h [5]. In those
cases where D(h) is concave to begin with, L(h) can provide
an exact estimate. In this situation it is said that the mul-
tifractal formalism holds. If the true spectrum D(h) is not
a concave function, L(h) will only provide a concave upper
bound for D(h).

The vast majority of the multifractal analysis that has been
performed on real data has made use of different variants of
Legendre-transform-based multifractal formalisms (e.g. the
wavelet leader method [6, 7], the wavelet transform modu-
lus maxima method [8], and multifractal detrended fluctua-
tion analysis [9]; see a contrario the large deviation spec-
tra [10]). Therefore, it is not known whether concave spec-
tra that have been observed in real data are actually correct,
or if, on the contrary, they are just upper bounds that reflect
limitations of the analysis tools, which hide their true non-
concave nature. In consequence, the development of methods
that enable an efficient and practically feasible estimation of
nonconcave spectra is an important open issue for practical
multifractal analysis.
Related work. Attempts have been made to address the
practical estimation of nonconcave spectra. A strategy based
on the large deviation spectrum was proposed in [10]. More
recently, a method relying on the estimation of the quantiles
of wavelet leaders was proposed in [11–13], and shown to be
able to estimate certain types of nonconcave spectra. How-
ever, these methods lack the simplicity and efficiency of the
Legendre-transform-based multifractal formalism, which al-
lows to compute all relevant estimates by simple linear re-
gressions of straightforward quantities [7].
Goals and outline. In this work we propose a novel method
to estimate nonconcave spectra that still relies on a (gener-



alized) Legendre transform structure, thus enabling a simple
and efficient practical implementation. We borrow ideas that
have been previously used for the estimation of nonconcave
entropy functions in statistical mechanics [14–16]. After a re-
view of the basic concepts of multifractal analysis in Sec. 2,
we detail the generalized Legendre transform multifractal for-
malism in Sec. 3. Then, in Sec. 4 we show the method at work
on a synthetic random process with nonconcave and multi-
fractal spectrum which is known theoretically.

2. MULTIFRACTAL ANALYSIS

Hölder regularity. Let X : R → R, denote the locally
bounded signal to be analyzed; it belongs to the local Hölder
spaceCα(t0) if there existK > 0 and a polynomial Pt0 (with
deg(Pt0) < α) such that |X(t)−Pt0(t−t0)| ≤ K|t−t0|α for
t → t0. The Hölder exponent of X at t0 is h(t0) = sup{α :
X ∈ Cα(t0)}. It quantifies the local regularity of X: the
smaller h(t0), the “rougher” X is at t0.
Multifractal spectrum. For multifractal models, direct es-
timation of the function h(t) is of little interest since it is a
highly irregular function itself. Rather, one is interested in the
distribution of the values it takes. This is achieved by the mul-
tifractal spectrumD(h), which is defined as the Hausdorff di-
mension of the set of points t where h(t) = h. Since neither
Hausdorff dimensions nor pointwise Hölder exponents can be
estimated reliably from their definitions in practice, a proce-
dure termed multifractal formalism has been proposed for its
estimation [17].
Legendre-Fenchel transform. In the context of multifractal
analysis, the Legendre-Fenchel (LF) transform 1 of f : R →
R is defined as [5, 6]

f?(y) = inf
x∈R
{1 + xy − f(x)}. (1)

We denote the double LF transform as f??(x) = infy∈R{1 +
xy − f?(y)}. The following properties, which we state with-
out proof (cf. e.g. [5] for a detailed and rigorous analysis), are
of interest to us.
Property 1. f?(y) is always a concave function of y.
Property 2. f??(x) = f(x) if and only if f(x) is concave at
x.
Property 3. f?(y) is differentiable at all y if and only if f(x)
is strictly convex for all x.
Property 4. If f?(y) is not differentiable at yc, then f(x)
is nonconcave or affine over the open interval (xl, hh), with
xl = f?′(y−c ) and xh = f?′(y+c ).
Wavelet coefficients and leaders. Let ψ denote the mother
wavelet, a zero-average compactly supported function char-
acterized by a number Nψ ∈ N, which encapsulates both its
order of Hölder regularity and vanishing moments, i.e. such

1In the literature on multifractal analysis the LF transform is simply re-
ferred to as the “Legendre transform”. In fact, the latter is simply a special
case of the former for the case of differentiable functions.

that f ∈ CNψ and
∫
R t

kψ(t)dt = 0, ∀k = 0, . . . , Nψ − 1.
Further, let {ψj,k(t) = 2−jψ(2−jt − k)}(j,k)∈N2 be the or-
thonormal basis of L2(R) formed by dilations and transla-
tions of ψ. The (L1-normalized) discrete wavelet transform
coefficients are defined as cj,k = 〈ψj,k|X〉 (cf., e.g., [18], for
more details on wavelet transforms).

Now let λ = λj,k = [k2j , (k + 1)2j) denote a dyadic
interval and 3λ =

⋃
m∈{−1,0,1} λj,k+m the union of λ and

its two neighbours. Further, let λj(x) denote the only inter-
val at scale j that contains x. Wavelet leaders are defined as
Lλ = Lj,k , supλ′⊂3λ |cλ′ |, where the supremum involves
all wavelet coefficients in a narrow time neighbourhood of
t = 2−jk for all finer scales j′ ≥ j. A key property of wavelet
leaders is that their local decay reproduces exactly the Hölder
exponent, in the limit of fine scales [6]:

h(x) = lim inf
j→−∞

log2 Lλj(x)

j
. (2)

Multifractal formalism. The wavelet leader multifractal for-
malism allows for the estimation of D(h) from easily com-
putable quantities. It is based on the power-law decay at fine
scales of the sample moments of Lj,k, which are called struc-
ture functions S(q, j):

S(q, j) =
1

nj

2j∑
k=1

(
L
(p)
λj,k

)q
∼ 2jζ(q), j → −∞, (3)

where nj denotes the number of Lλj,k at scale j. The scaling
function ζ(q) is computed in practice by means of linear re-
gressions of log2 S(q, j) versus j [7]. One can show (see [6]
and Sec. 3) that ζ(q) ≤ D?(q). Thus, inversion of the LF
transform yields a concave upper bound of D:

D(h) ≤ L(h) = ζ?(h) = D??(h). (4)

Note that, by Property 1 above, L will always be concave,
regardless of the shape of D. Further, equality between D
and L can only follow when the former is concave (property
2). Otherwise L will only provide a concave upper-bound for
D.

3. GENERALIZED LEGENDRE TRANSFORM
MULTIFRACTAL FORMALISM

Principle. As discussed in the previous section, if the spec-
trum D of a function X is not concave, then it will not
coincide with its Legendre spectrum L. Inspired by a method
proposed in the context of nonconcave entropy functions in
statistical mechanics [14, 15, 19], we propose the following
method which allows to estimate a nonconcave spectrum
while still using the Legendre transform of a proper scaling
function.

Let D : R+ → R be the (possibly nonconcave) multifrac-
tal spectrum of X ∈ L∞(R), and let g : R→ R be a function



such thatD+g is strictly concave. Suppose that, givenX , we
can build another function Xg such that its multifractal spec-
trum is D+ g. Then, we can apply the multifractal formalism
to Xg and expect to get a Legendre spectrum Lg that coin-
cides withD+g (because of concavity ofD+g and Property
2). Finally, we obtain a sharper and nonconcave upper bound
for the original spectrum as: Lg(h)− g(h).

An explicit construction of the function Xg can be ad-
vantageously replaced by a construction of the corresponding
wavelet leaders, which can be obtained by a simple transfor-
mation from those of X . This will be detailed further ahead.

Following [14], in this work we will concentrate on the
choice g(h) = γh2, which corresponds to the Gaussian En-
semble in statistical physics.
Quadratic Multifractal Formalism. Let us denote φλj(x) =
log2(Lλj(x))/j and define new multiresolution coefficients

P
(γ,q)
λ with quadratic perturbation, such that

log2 P
(γ,q)
λj(x)

= j
(
qφλj(x) + γφ2λj(x)

)
. (5)

It follows from (2) that

lim inf
j→−∞

log2 P
(γ,q)
λj(x)

j
= qh(x) + γh2(x). (6)

The generalized structure functions are given by

Sγ(q, j) =
1

nj

∑
k

P
(γ,q)
λj,k

∼ 2jζγ(q), (7)

where ζγ(q) is the generalized scaling exponent.
Following [6], we adapt the heuristic argument for the

multifractal formalism. By definition of the fractional di-
mension, there are ∼ 2−jD(h) cubes λj which cover points
where h(x) = h. According to (6), each one contributes
∼ 2qh(x)+γh

2(x) to Sγ(q, j). Also, nj ∼ 2−j . Therefore
Sγ(q, j) ∼ 2j(1+qh(x)+γh

2(x)−D(h)). In the limit of fine
scales, the smallest exponent dominates and thus

ζγ(q) = inf
h

{
1 + qh+ γh2 −D(h)

}
= inf

h

{
1 + qh− D̃γ(h)

}
, (8)

where D̃γ(h) = D(h)− γh2. Eq. (8) shows that ζγ(q) is the
LF transform of the modified spectrum D̃γ(h). Inversion of
(8) thus yields:

D(h)− γh2 = D̃γ(h) ≤ Lγ(h) = ζ?γ(h). (9)

In practice, for a large enough γ > γc, D̃γ will be strictly
concave and equality in (9) will hold. In this case D̃γ(h) =
Lγ(h), and the spectrum D can be recovered from Lγ . In
general, from (9) we can define an estimate ofD parametrized
by γ: Dγ(h) = Lγ(h) + γh2, such that

Dγ(h) = D(h) for γ ≥ γc. (10)

Minimization over γ. In principle, the use of a sufficiently
large value of γ should be enough to recover aC2 nonconcave
spectrum D using (10). In practice, however, such large val-
ues are numerically unstable and prevent the estimation of the
full spectrum (this issue will be further discussed in Sec. 4).
The estimate of a nonconcave spectrum in (10) can be im-
proved by selecting the optimal parabola for each possible
value of h [15]:

Dmin(h) = inf
γ≥0

{
Lγ(h) + γh2

}
. (11)

This procedure allows for the use of small values of γ in the
concave regions of the spectrum, and then switch to larger
values only when needed. The quality of this estimate will be
discussed in Sec. 4.

4. NUMERICAL ILLUSTRATIONS

α-stable Lévy process. Let M(dx) be a symmetric α-
stable random measure, with 0 ≤ α ≤ 2. Linear α-
stable Lévy motion Lα is defined by the stochastic inte-
gral: Lα(x) =

∫
R f(x, u)M(du), with kernel f(x, u) =

1x−u≥0(u) − 1−u≥0(u) [20]. Its multifractal spectrum is
given by [21]:

D(h) =

{
hα 0 ≤ h ≤ 1

α ,

−∞ otherwise.
(12)

The computation of the Legendre transform from (12) yields:

ζ(q) =

{
1
αq −∞ < q ≤ α,
1 otherwise.

(13)

Note that ζ(q) has a nondifferentiable point at q = α since
D(h) is affine, as indicated by Properties 3 and 4 in Sec. 3.
Nonconcave spectrum. To simulate a process with a non-
concave spectrum, we analyze the concatenation of two α-
stable processes. Let Lα1

and Lα2
, with spectra D1 and D2,

respectively, be defined on [0, 1]. Let us also impose the re-
striction Lα(0.5−) = Lα(0.5

+). Then, we define

L̃α1,α2(x) =

{
Lα1

(x) 0 ≤ x ≤ 0.5

Lα2
(x) 0.5 < x ≤ 1

. (14)

In this case, the multifractal spectrum of the concatenation
L̃α1,α2

is D(h) = sup(D1(h), D2(h)).
Simulation setup. We analyzed NMC = 50 independent re-
alizations of length N = 218, and hereafter report the mean
values of the estimates computed from these realizations. We
used a Daubechies wavelet with Nψ = 3 vanishing moments,
and computed scaling exponents using unweighted linear re-
gressions (cf. [7]), in the scaling range 3 ≤ j ≤ 10. We
computed structure functions for orders q ∈ [−50, 50].
Logscale diagrams. Fig. 1 shows the logscale diagrams for
q = −2 (left) and q = 2 (right), for several values of γ. It can
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Fig. 1. Logscale diagrams. log2 Sγ(q, j) for q = −2 (left)
and q = 2 (right), and for several values of γ.

be seen that the scaling behavior of structure functions com-
puted from the quantity Pγ is excellent, with linear behavior
over a wide range of scales for all values of γ. This evidence
indicates that scaling exponents can be readily estimated by
linear regressions on these logscale diagrams, and the gener-
alized Legendre transform multifractal formalism applied for
the estimation of the spectrum.
Multifractal spectra. Fig. 2 shows the generalized scaling
functions (left) and multifractal spectra (right) computed for
different values of γ. Regarding Fig. 2 (left), it can be seen
that increasing the value of γ has the effect of “smoothing”
the point of nondifferentiability at q = α. In fact, for large
enough values of γ (e.g. red and black lines) the function ζγ
appears to be differentiable in all its domain.

In concordance with the smoothing effect of the scaling
function, Fig. 2 (right) shows that, as γ increases, Dγ(h) is
more and more able to “dig into the hole” of the multifractal
spectrum, and satisfactorily estimate the nonconcave region.
This can be understood in light of Property 3 in Sec. 2. Since
ζγ is differentiable for large γ, the corresponding “modified”
spectrum D̃γ is strictly concave, and therefore exactly recov-
ered by the Legendre spectra: Lγ(h) ≡ D̃γ(h). Thus, the
addition of the parabola produces a more precise estimate of
D(h).

It is also noteworthy that the support of Dγ(h) is smaller
as γ increases (note that the same values of q were used for all
γ). Because of the construction of the multiresolution quan-
tity in (5), the effective value of q is modified by gamma. In
consequence, estimation of the endpoints of Dγ for large γ
would require huge values of q. However, as q and γ increase,
the computation of P (γ,q) becomes numerically difficult for
finite size data. Therefore, estimation of the full nonconcave
multifractal spectrum must rely on the joint use of several val-
ues of γ, as proposed in (11).

Fig. 3 shows the estimated spectrum Dmin(h), which
achieves a good agreement with the theoretical spectrum,
over the entire support. For comparison, the standard con-
cave Legendre spectrum, i.e. the case corresponding to γ = 0,
is also shown. Besides the fact that it misses the nonconcave
region, its performance is even slightly worse in the linear
region around h = 0.5.
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Fig. 2. Dependence on γ. Scaling exponents ζγ(q) (left)
and multifractal spectra Dγ(h) for several values of γ. The
theoretical multifractal spectrum is showed in gray solid lines.

0 0.5 1 1.5
0

0.5

1

h

D(h)

Theory

D0(h)

Dmin(h)

Fig. 3. Infimum over γ. Theoretical spectrum D(h), tra-
ditional Legendre spectrum D0(h), and nonconcave estimate
Dmin(h), computed from all values of γ as in (11). 95%
confidence intervals for Dmin(h) are of similar size to the
markers and barely visible.

5. CONCLUSIONS

In this contribution we have proposed an efficient method
for the estimation of nonconcave multifractal data. Inspired
by ideas from statistical mechanics, our method relies on a
modification of the multiresolution quantities upon which the
analysis is based to compute instead a “modified” spectrum.
Then, the original spectrum is computed from this modified
version by a simple deterministic correction to the Legendre
transform. Thus, the proposed algorithm maintains the simple
nature of the Legendre transform multifractal formalism, and
can be efficiently implemented in practice. We have shown its
good performance through numerical simulations on a syn-
thetic multifractal process. This contribution only presented
preliminary results; a forthcoming paper will deal with a thor-
ough validation of the method for a larger class of multifractal
processes, the comparison with other estimation methods, the
use of other functions g and its applications to real life data.
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