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ABSTRACT
Multifractal analysis (MF) is a widely used signal pro-

cessing tool that enables the study of scale invariance models.
Classical MF assumes homogeneous MF properties, which
cannot always be guaranteed in practice. Yet, the local es-
timation of MF parameters has barely been considered due
to the challenging statistical nature of MF processes (non-
Gaussian, intricate dependence), requiring large sample sizes.
This present work addresses this limitation and proposes a
Bayesian estimator for local MF parameters of multivariate
time series. The proposed Bayesian model builds on a re-
cently introduced statistical model for leaders (i.e., specific
multiresolution quantities designed for MF analysis purposes)
that enabled the Bayesian estimation of MF parameters and
extends it to multivariate non-overlapping time windows. It
is formulated using spatially smoothing gamma Markov ran-
dom field priors that counteract the large statistical variability
of estimates for short time windows. Numerical simulations
demonstrate that the proposed algorithm significantly outper-
forms current state-of-the-art estimators.

Index Terms— Multifractal analysis, Bayesian estima-
tion, Multivariate time series, Whittle likelihood, GMRF

1. INTRODUCTION

Context. The paradigm of scale invariance has proven rel-
evant in a large variety of applications involving real-world
data of very different natures, cf., e.g., [1] and references
therein. Scale invariance models assume that the temporal
dynamics of data are generated at a large continuum of time
scales (instead of a few particular scales that could thus play a
privileged role in the analysis). This is revealed via the power
law behaviors, over a range of scales 2

j , of the sample mo-
ments of suitable multiresolution quantities TX(j, k) of a time
series X

S(q, j) , 1
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k
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i.e., quantities that depend jointly on scale 2

j and time in-
stance k (where nj = card(TX(k, ·)) is the number of
TX(j, k) at scale j). The relations between different scales
are thus characterized by the scaling exponents ⇣(q), and the
goal is to infer them from a given time series X . In this
work, wavelet leaders l(j, k), which can be shown to be well
adapted in this context [1, 2], are used as multiresolution
quantities (and defined in Section 2). Multifractal analysis
consists of a specific instance of scale invariance analysis
(cf. e.g., [1]). It notably permits discrimination between two
fundamental classes of scale invariance models: self-similar
models that are characterized by a linear function ⇣(q) = qH
and are tied to additive construction mechanisms [3]; mul-
tifractal multiplicative cascades (MMC), translating into a
strictly concave ⇣(q) and characterized by a multiplicative
structure [4]. The decision on which model is better adapted
for data is therefore fundamental for understanding the un-
derlying data production mechanisms. A Taylor expansion
of ⇣(q) at the origin, i.e., ⇣(q) =

P
m�1

cmqm/m!, is useful
for this discrimination, since it can be shown that the second
coefficient c

2

, called the intermittency or multifractality pa-
rameter, equals zero for self-similar processes but is strictly
negative for MMC, cf., e.g., [2, 5].
Local estimation of c2. Eq. (1) implicitly assumes that
the scaling properties are homogeneous (since the sample mo-
ments correspond to the entire time series X). Thus, when c

2

varies along time, the analysis must be localized to small time
intervals (time series segments). It can be shown that c

2

is di-
rectly related to the variance of the logarithm of l(j, k) [5]

C
2

(j) , Var [ln l(j, ·)] = c0
2

+ c
2

ln 2

j . (2)

This motivated the definition of the standard estimation pro-
cedure for c

2

as a linear regression of the sample variance
dVar [·] of the log-leaders with respect to scale j

ĉ
2

= (ln 2)

�1

Xj2

j=j1
wj

dVar [ln l(j, ·)] (3)

where wj are appropriate regression weights [2]. This simple
estimator is commonly used in applications but is known to
yield prohibitively large variance for small sample size [6, 7].



Estimation procedures with better performance were de-
scribed in, e.g., [8, 9]. However, these estimators make use
of fully parametric models or are designed for specific multi-
fractal processes, which is often too restrictive for real-world
data analysis. Alternatively, Bayesian estimators of c

2

for
time series have been studied in [6, 7]. They rely on a semi-
parametric model for the statistics of the log-leaders that is
generically valid for MMC processes. Estimating the param-
eters of this model can be achieved by a Markov chain Monte
Carlo (MCMC) algorithm with a Metropolis-Hastings within
Gibbs (MHG) sampler [6, 7, 10]. However, very recently, a
novel data-augmented Whittle likelihood based formulation
was proposed for the estimation of c

2

for images [11], which
yields a significantly more efficient algorithm.
Contributions. This paper studies a Bayesian procedure
that makes use of the dependence of neighboring components
of multivariate time series enabling the estimation of the time
evolution of c

2

. The method is developed here using the ex-
ample of time series organized on a planar grid (correspond-
ing, e.g., to measurements from a planar sensor array). The
procedure makes use of an adaptation for time series of the
statistical model for images introduced in [11] (described in
Section 2) and relies on the following original key ingredi-
ents (detailed in Section 3). First, the local analysis of each
component of the multivariate time series is formulated via
non-overlapping time windows and the joint likelihood of all
windows is expressed as the product of the augmented like-
lihood of each individual time window. Then, a joint prior
for the multifractality parameters associated with the different
windows is assigned, using a hidden gamma Markov random
field (GaMRF) [12] with eight-fold temporal-spatial elemen-
tary cells and modeling the dependence between the parame-
ters of neighboring (in space and time) windows. The design
of the proposed Bayesian model is such that the conditional
distributions of the resulting joint posterior can be sampled
without MHG steps, and the associated Bayesian estimator
can be approximated efficiently by means of an MCMC algo-
rithm. The performance of the proposed estimator of param-
eters c

2

associated with short time intervals of multivariate
time series is assessed by numerical simulations conducted
with synthetic multifractal data (cf., Section 4). The proposed
method significantly outperforms the linear regression (3), re-
ducing standard deviation by up to one order of magnitude,
and permits, for the first time, to accurately assess the time-
evolution of c

2

of multivariate time series.

2. STATISTICAL MODEL FOR LOG-LEADERS

2.1. Time-domain statistical model

Wavelet leaders. A mother wavelet  
0

(t) is a reference
pattern with narrow supports in both time and frequency do-
mains that is characterized by its number of vanishing mo-
ments N � 1 (8k = 0, 1, . . . , N � 1,

R
R tk 

0

(t)dt = 0

and
R
R tN  

0

(t)dt 6= 0). It is chosen such that the collection
{ j,k(t) ⌘ 2

�j/2  
0

(2

�jt � k), j 2 N , k 2 N} forms a
basis of L2

(R). The discrete wavelet transform coefficients
of X are defined as dX(j, k) = hX, j,ki, cf., e.g., [13] for
further details. Let �j,k = [k2j , (k+ 1)2

j
) denote the dyadic

interval of size 2j and 3�j,k the union of �j,k with its 2 neigh-
bors. The wavelet leaders are defined as the largest wavelet
coefficient within 3�j,k over all finer scales [1, 2]

l(j, k) , sup

�0⇢3�j,k

|dX(�0)|. (4)

Statistical model. We denote by `j the vector of all log-
leaders `(j, ·) , ln l(j, ·) at scale j after subtracting the mean
(which does not convey any information on c

2

). It can be
shown that the statistics of `j of MMC-based processes can
be well approximated by a multivariate Gaussian distribution
whose covariance Cj(k,�k),Cov[`(j, k), `(j, k+�k)] is [6]

Cj(k,�k) ⇡ %j(�k;✓) ,
(
%0j (|�k|;✓) |�k|  3

%1j (|�k|;✓) 3 < |�k|
(5)

where ✓ = (c
2

, c0
2

), %1j (r;✓) , c
2

ln(4r/nj)I
[0,nj/4](r),

IA is the indicator function of the set A and %0j (r;✓) ,
ln(1+r)

ln 4

(%1j (3;✓)�c0
2

�c
2

ln 2

j
)+c0

2

+c
2

ln 2

j . Furthermore,
independence is assumed between different scales j, which
leads to the following likelihood for ` , [`Tj1 , . . . , `

T
j2 ]

T

p(`|✓)/
Yj2

j=j1
|⌃j,✓|�

1
2
exp

⇣
� 1

2

`Tj ⌃
�1

j,✓`j
⌘

(6)

where / means “proportional to” and where the elements of
⌃j,✓ are defined by %j(|�k|;✓), | · | is denoting the determi-
nant and T the transpose operator.
Whittle approximation. The evaluation of the above like-
lihood is problematic even for moderate sample size since it
requires computing the matrix inverses ⌃�1

j,✓ . Therefore, it has
been proposed in [7] to approximate (6) with an asymptotic
Whittle likelihood [14], which can be written as

pW (`|✓)/|�✓|�1

exp

�
�yH

�

�1

✓ y
�
, (7)

y , [yT
j1 , ...,y

T
j2 ]

T , yj = F(`j).

Here, yj , F(`j) is the periodogram of `j , where the
operator F(·) computes and vectorizes the discrete Fourier
transform coefficients for the positive frequencies !

m

=

2⇡m/
p
nj , m 2 N+, H is the conjugate transpose op-

erator and �✓ is an NY ⇥ NY diagonal covariance ma-
trix, with NY , card(y), defined as �✓ , c

2

F + c0
2

G
with F , diag (f), G , diag (g), f , [f

T
j1
, ..., fTj2 ]

T

and g , [g

T
j1
, ...,gT

j2
]

T . The diagonal elements of �✓

correspond to the discretized parametric spectral densities
c
2

fj(m) + c0
2

gj(m) associated with the model (5), where fj

and gj do not depend on ✓ and can be precomputed using the
fast Fourier transform and stored.



2.2. Data augmented Fourier domain statistical model

The parameter vector ✓ is encoded in ⌃

�1

j,✓ , and its condi-
tional distribution is not standard. Sampling the posterior
distribution with an MCMC method would hence require ac-
cept/reject procedures [6, 7]. A more efficient algorithm can
be obtained by interpreting (7) as a statistical model for the
Fourier coefficients y [11]. Assuming that �✓ is positive def-
inite, (7) amounts to modeling y by a random vector with
a centered circular-symmetric complex Gaussian distribution
CN (0,�✓), hence the use of the likelihood

p(y|✓)/|�✓|�1

exp

�
�yH

�

�1

✓ y
�
. (8)

Reparametrization. The matrix �✓ is positive definite
when the parameters ✓=(c

2

, c0
2

) belong to the admissible set
A = {✓ 2 R�

?⇥ R+

? |c2f(m) + c0
2

g(m) > 0,m = 1,..., NY}.
Since 8m, c0

2

g(m) > 0 (while c
2

f(m) < 0), the set A can
be mapped onto independent positivity constraints by a one-
to-one transformation from ✓ 2 A to v 2 R+2

? defined as

✓ 7! v = (v
1

, v
2

),(�c
2

, c0
2

/� + c
2

)

where � = sup

m

f(m)/g(m) [11]. Consequently, (8) can be
expressed using v 2 R+2

? as

p(y|v) /|�v|�1

exp

�
�yH

�

�1

v y
�

(9)

�v = v
1

˜F + v
2

˜G, ˜F = �F +

˜G, ˜G = G�

with positive definite diagonal matrices ˜F , ˜G and �v .
Data augmentation. The introduction of an NY ⇥1 vector
of latent variables µ allows the following augmented model
to be defined, y|µ, v

2

⇠ CN (µ, v
2

˜G), µ|v
1

⇠ CN (0, v
1

˜F ),
which is associated with the extended likelihood [11]

p(y,µ|v) / v
2

�NY
exp

⇣
� v�1

2

(y � µ)H ˜G
�1

(y � µ)
⌘

⇥ v
1

�NY
exp

⇣
� v�1

1

µH
˜F
�1

µ
⌘
. (10)

One easily verifies that marginalization of (10) with respect
to µ yields (9) and that (10) leads to standard conditional dis-
tributions when inverse-gamma priors are used for v.

3. LOCAL BAYESIAN ESTIMATION FOR
MULTIVARIATE TIME SERIES

3.1. Likelihood

We formulate a joint Bayesian model for the time-localized
analysis of multivariate time series based on the likeli-
hood (10) for one single time series X(t). Let Xm, m ,
(m

1

,m
2

), mi = 1, . . . ,Mi, denote M
1

⇥ M
2

discrete time
series of length N that have been simultaneously recorded at
positions m on an equally-spaced planar grid as illustrated in
Fig. 1. Each time series Xm is sub-divided, using nS non-
overlapping windows of length L = N/nS , into segments
X

(m,n) = (Xm(k))nLk=(n�1)L+1

, n = 1, . . . , nS . Denote

as y
(m,n), µ(m,n) and v

(m,n) the Fourier coefficients, latent
variables and parameter vector associated with X

(m,n) and as
Y , {y

(m,n)}, M , {µ
(m,n)}, and V , {V

1

,V
2

} (where
V i , {vi,(m,n)}, i = 1, 2) the corresponding collections of
parameters for all segments {X

(m,n)}. Under the assumptions
of Section 2, the joint likelihood of Y is given by

p(Y ,M |V ) /
Y

m,n
p(y

(m,n),µ(m,n)|v(m,n)). (11)

3.2. Gamma Markov random field prior

Inverse-gamma distributions IG(↵i,(m,n),�i,(m,n)) are con-
jugate priors for the parameters vi,(m,n) in (11). We propose
to specify (↵i,(m,n),�i,(m,n)) such that the resulting prior
for V i is a hidden GaMRF [12]. A GaMRF relies on the
use of a set of positive auxiliary variables Z = {Z

1

,Z
2

},
Zi = {zi,(m,n)}, to induce positive dependence between the
neighbooring elements of V i [12] and hence spatial/temporal
regularization. More precisely, each vi,(m,n) is connected
to its eight neighboring auxiliary variables zi,(m0,n0

)

> 0,
(m0, n0

) 2 Vv((m, n)) , {((m
1

+ i
1

,m
2

+ i
2

), n +

j)}i1,i2,j=0,1 (and thus, each zi,(m,n) to vi,(m0,n0
)

, m0 2
Vz((m, n)) , {((m

1

+ i
1

,m
2

+ i
2

), n + j)}i1,i2,j=�1,0),
via edges weighted by ri. Here, the weights ri, i = 1, 2, are
hyperparameters that control the amount of smoothness. This
GaMRF can be shown to be associated with the density [12]

p(V i,Zi|ri) = C(ri)
�1

Y
m,n

e

(8ri�1) log zi,(m,n)

.⇥ e

�(8ri+1) log vi,(m,n)
e

� ri
vi,(m,n)

P
(m0,n0)2Vv(m) zi,(m0,n0) (12)

which is used here as a joint prior for (V i,Zi), where C(ri)
is a normalization constant.
Posterior. Assuming prior independence between (V

1

,Z
1

)

and (V
2

,M ,Z
2

), the joint posterior distribution associated
with the proposed model is obtained using Bayes’ theorem

p(V ,Z,M |Y , r
1

, r
2

) / p(Y |V
2

,M) p(M |V
1

)

⇥ p(V
1

,Z
1

|r
1

) p(V
2

,Z
2

|r
2

). (13)

3.3. Bayesian estimators

We consider the marginal posterior mean estimator for
the parameters of interest V i, denoted MMSE (minimum
mean square error) estimator and defined as V MMSE

i ,
E[V i|Y , ri], where the expectation is taken with respect to
the marginal posterior density p(V i|Y , ri). The direct com-
putation of V MMSE

i is not tractable since it requires integrating
(13) over the variables Z and M . Here, we consider a Gibbs
sampler (GS) drawing samples ({V (q)

i },M (q), {Zi
(k)})Nmc

q=0

that are asymptotically distributed according to (13). An
approximation of V MMSE

i can then be obtained as [10]

bV
MMSE
i ⇡ (Nmc �Nbi)

�1

XNmc

q=Nbi

V (q)
i (14)

where Nbi is the length of the burn-in period.
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Fig. 1. Prescribed time evolution of c
2

for 32⇥32 time series
Xm(t) (left panel). A single realization for the time series at
position (m

1

,m
2

) = (16, 16) highlighted in red on the left
panel and the corresponding c

2

profile (right panel).

3.4. Gibbs sampler

The GS considered in this paper successively generates sam-
ples from the conditional distributions associated with the
posterior (13) [10] which are easily calculated and given by

µ |Y ,V ⇠ CN
⇣
v
1

˜F�

�1

v y,
⇣
(v

1

˜F )

�1

+(v
2

˜G)

�1

⌘
�1
⌘

(15a)

v
1

|M ,Z
1

⇠ IG
�
NY+↵1

, ||µ||
F̃

�1
+�

1

�
(15b)

v
2

|Y ,M ,Z
2

⇠ IG
�
NY+↵2

,||y�µ||
G̃

�1
+�

2

�
(15c)

zi |V i ⇠ G(↵̃i, ˜�i) (15d)

where we have omitted the subscript
(m,n) for notational con-

venience and where ||x||
⇧

, x

H
⇧x, ↵i,(m,n) = ↵̃i,(m,n) =

8ri, �i,(m,n) = ri
P

(m0,n0
)2Vv((m,n)) zi,(m0,n0

)

, ˜�i,(m,n) =

(ri
P

(m0,n0
)2Vz((m,n)) v

�1

i,(m0,n0
)

)

�1 and G is the gamma
distribution. Note that all conditionals (15a–15d) are stan-
dard distributions that can be sampled efficiently, with-
out Metropolis-Hastings steps. Moreover, when indepen-
dence is assumed between the parameters vi,(m,n), that have
IG(ci, di) priors instead of (12), a Bayesian model without
spatial/temporal regularization as in [11] is obtained that can
also be sampled using the GS steps defined in (15a–15c) with
parameters given by ↵i,(m,n) = ci and �i,(m,n) = di.

4. SIMULATION RESULTS

The proposed procedure, denoted GaMRF, was applied to 50

independent realizations of 32⇥32 multifractal random walks
(MRW) of length N = 2

14 with prescribed time-evolution of
c
2

. It was compared to its counterpart with IG priors for vi
(denoted IG) and to linear regression (3) (denoted LF). MRW
is an MMC process whose multifractal properties mimic those
of Mandelbrot’s multiplicative log-normal cascades and has
scaling exponents ⇣(q) = (H � c

2

)q + c
2

q2/2, see [15] for
more details. We set H = 0.72 and prescribe shifts from
c
2

= �0.02 to c
2

= �0.04 around t = 0.5 for the time se-
ries located in an ellipsoid at the center of the (m

1

,m
2

) plane
(c

2

= �0.02 is constant outside this ellipsoid) as shown in

Fig. 2. Time-localized estimation of c
2

for a single realization
of 32 ⇥ 32 time series of length N = 2

14 with time-varying
c
2

as plotted in Fig. 1. From left to right: decreasing window
size L. Top panel: estimates in the (m

1

, t) plane for m
2

= 16

fixed. Bottom panel: Estimates in the (m
1

,m
2

) plane with
t = 0.5 fixed. The estimates in rows 1 to 3 of the panels are
obtained with LF, IG and GaMRF, respectively.

Fig. 1. This piece-wise constant evolution for c
2

was chosen
as a limit test case for GaMRF (which is designed for smooth
evolutions). The cases of nS = 2

W , W = 2, . . . , 6, windows
(resulting in window lengths L = {212, 211, 210, 29, 28}, re-
spectively) were investigated, using j

1

= 2 and j
2

the largest
available scale. The hyperparameters ri were fixed a priori
for each window size independently by preliminary visual in-
spection of estimates obtained for a single realization.
Illustration for a single realization. Fig. 2 plots esti-
mates obtained with nS = {4, 8, 16, 32, 64} (left to right
column, respectively) in the (m

1

,m
2

= 16, t) plane (hence
illustrating the time resolution capability; top panel) and in
the (m

1

,m
2

, t=1/2) plane (i.e., illustrating the spatial coher-
ence across time series; bottom panel) for LF, IG and GaMRF
(rows 1 to 3, respectively). Clearly, LF fails to provide rele-
vant local estimates of c

2

for any window size L (due to large
variance). The Bayesian estimator IG improves the estima-
tion accuracy with respect to LF and allows us to identify,



Table 1. RMSE values for different window sizes L (the
lower, the better; best results are marked in bold).

nS / L 4 / 212 8 / 211 16 / 210 32 / 29 64 / 28

LF 0.020 0.026 0.037 0.058 0.102
IG 0.011 0.013 0.018 0.024 0.036

GaMRF 0.008 0.008 0.009 0.009 0.013

at least visually, the spatial/temporal c
2

profile for intermedi-
ate window sizes L = {2048, 1024}. Yet, for smaller win-
dows (L < 1024), the variability of IG is too large, and the
time evolutions of c

2

cannot be finely resolved. In contrast,
GaMRF provides excellent estimates of the evolution of c

2

for any of the considered window sizes. Even for the small-
est window (L = 256), local estimates obtained with GaMRF
accurately reproduce the time evolution of c

2

and the spatial
coherence across time series.
Estimation performance. The estimation performance for
c
2

is quantified via the root mean squared error defined as
RMSE =

�
(

bE[ĉ
2

]�c
2

)

2

+

cVar[ĉ
2

]

� 1
2 , which is given in Tab.

1 as a function of the number of used time windows (the
bias is found to be comparable for all three estimators). The
RMSE values of LF and IG are dominated by the variance for
L  2048 and accordingly scale as L� 1

2 . A comparison of
the three estimators yields the following conclusions. First,
IG decreases RMSE values to 1

2

to 1

3

times those of LF, with
larger performance gains for small window size L. Second,
GaMRF further and dramatically decreases RMSE values to
as little as 1

8

times those of LF (for L = 256). Finally, the
RMSE values of GaMRF increase only slowly with decreas-
ing window size L, thus enabling the accurate local estimation
of c

2

even for small time windows.

5. CONCLUSIONS AND PERSPECTIVES

This work proposed a Bayesian model for the local estimation
of c

2

(in non-overlapping time windows) for multivariate time
series in a plane. It relies on the use of an extended Whittle
likelihood for log-leaders and a GaMRF joint prior for the pa-
rameters for each windowed time series that counteracts the
variance increase induced by short time windows. The pro-
cedure significantly improves the estimation performance as
compared to linear regression and enables, for the first time,
reliable and accurate assessment of small changes of c

2

along
time, at the price of moderately increased computational cost
(by a factor 10 as compared to linear regression). Future work
will include incorporation of the regularization parameters ri
in the model and extensions of the model to other types of
multivariate data, e.g., volumetric time series (voxels in 3D).
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