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ABSTRACT

This work aims to segment a texture into different regions,
each characterized by a priori unknown multifractal proper-
ties. The multifractal properties are quantified using the mul-
tiscale function C1,j that quantifies the evolution along anal-
ysis scales 2j of the empirical mean of the log of the wavelet
leaders. The segmentation procedure is applied to local esti-
mate of C1,j . It involves a multivariate Mumford-Shah relax-
ation formulated as a convex optimization problem involving
a structure tensor penalization and an efficient algorithmic so-
lution based on primal-dual proximal algorithm. The perfor-
mances are evaluated on synthetic textures.

Index Terms— Local regularity, multifractal spectrum,
segmentation, convex optimization, wavelet Leaders

1. INTRODUCTION

Multifractal texture characterization. Multidimensional
multifractal analysis is now considered as a classical tool
for texture characterization (cf. e.g. [1]). It notably per-
mits to capture in a refined manner the detailed fluctuations
of regularity of a texture along space and thus grounds tex-
ture characterization on the measurement of global and local
smoothness. Local regularity is technically measured via the
concept of Hölder exponent, and the multifractal spectrum
provides practitioners with a global and geometrical charac-
terization of the statistical fluctuations of Hölder exponents
measured across the texture of interest. Multifractal tools
have been used to characterize real-world textures from a
large variety of applications of different natures ranging from
biomedical (cf. e.g., [2]) to art investigations [3, 4]. It is
also well documented that multifractal analysis should be
grounded on wavelet leaders, consisting of local supremum
of 2D wavelet transform coefficients taken across all finer
scales [5, 1].
Texture segmentation. However, in its current formulation,
multifractal analysis, as most texture characterization proce-
dures, assumes a priori that the texture to analyze consists of
a single piece with homogeneous properties, that is, texture
properties of any subpart of the image available are identical.
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In most applications, however, texture analysis combines two
different issues: Segmentation of the images into pieces or
regions, of a priori unknown boundaries, where texture prop-
erties can be considered homogeneous and characterization of
texture properties in each different homogeneous parts.

Solutions for image segmentation have been envisaged in
many different ways [6, 7, 8, 9, 10, 11]. However, none of
these algorithmic solutions appears to be robust to noise, un-
supervised and exploiting the correlations through different
components. To derive a new algorithmic solution satisfying
all these constraints, we focus on a segmentation procedure
derived from [12].
Goals and contributions. The present contribution elab-
orates on earlier works [13, 14, 15], aiming to segment a
texture into local regularity piecewise constant regions, by
proposing one of the first and rare attempt to segment a tex-
ture into regions, with unknown boundaries, and within which
multifractal properties can be considered homogeneous. The
proposed procedure thus aims to segment a texture into dif-
ferent regions, each characterized by a different a priori
unknown multifractal spectrum. To that end, wavelet leader
based characterization of texture is first recalled in Section 2.
In the present work, multifractal properties are quantified
using multiscale quantity C1,j that quantifies the evolution
along analysis scales 2j of the empirical mean of the log of
the wavelet leaders at a given scale. This function is deeply
related to the average or global regularity of the texture. Thus,
it does not account for the entire multifractal properties of the
texture, but provides us with a satisfactory partial description
of multifractal properties that can be involved into texture
segmentation. The multivariate segmentation procedure is
detailed in Section 3. It consists of a multivariate Mumford-
Shah relaxation formulated as a convex optimization problem
involving a tensor structure penalization. An efficient algo-
rithmic solution based on primal-dual proximal algorithm is
proposed in Section 4. In Section 5, preliminary results are
conducted on synthetic textures, designed to have piecewise
constant multifractal properties.

2. MULTIFRACTAL ANALYSIS

Local regularity and multifractal spectrum. We denote
X = (X`)1≤`≤N the image to analyze having N pixels.



Its local regularity around position ` can be quantified by
the Hölder exponent h`: while large h` points to a locally
smooth portion of the field, low h` indicates local high irreg-
ularity. Texture regularity fluctuations can be described by
the so-called multifractal spectrum D(h) that describes the
fluctuations of h` along space in a global and geometrical
manner (cf. e.g., [16, 5, 1] for details). For practical pur-
poses, the multifractal spectrum can often be approximated
as a parabola: D(h) = 2 + (h − c1)2/(2c2). The practical
estimation of D(h) requires the use of wavelet leaders.
Wavelet leaders. We denote d(m)

j,k = 〈X,ψ(m)
j,k 〉 the (L1-

normalized) 2D discrete wavelet coefficients of X at loca-
tion k = 2−j`, at scale 2j with j ∈ {1, . . . , J}, and where
m stands for the horizontal/vertical/diagonal subband. For
a detailed definition of the 2D-DWT, readers are referred to
e.g., [17].

Wavelet leaders were recently introduced [16, 5] to per-
mit an accurate characterization of the multifractal properties
of a texture. The wavelet leader Lj,k, located around position
` = 2jk, is defined as the local supremum of all wavelet co-
efficients taken within a spatial neighborhood across all finer
scales 2j

′ ≤ 2j , that is,

Lj,k = sup
m=1,2,3,
λj′,k′⊂Λj,k

|d(m)
j′,k′ |, (1)

with λj,k = [k2j , (k+1)2j) and Λj,k =
⋃
p∈{−1,0,1}2 λj,k+p

[16, 5].
Multifractal analysis. We define C1,j ∈ RN and C2,j ∈
RN as the sample estimates of the mean and variance of the
variable lnLj , i.e., averages across space ` at each given scale
2j . It has been shown that functions C1,j and C2,j are related
to the multifactal spectrum D(h) via the coefficients c1 and
c2 involved in its approximate expansion [1]:

EC1,j = c01 + c1 ln 2j , (2)
EC2,j = c02 + c2 ln 2j . (3)

Multifractal segmentation. To segment textures, one
could naturally consider estimating C1,j and C2,j locally in
a neighborhood of each pixel `, estimate the corresponding
local parameters c1,` and c2,`, and then perform a multivari-
ate segmentation of {c1,`, c2,`}. This, however, relies on the
strong assumption that real-world textures follow precisely
the scaling behaviors prescribed in Eqs. (2) and (3) above.
In the present contribution, it has been chosen to relax this
requirement. Therefore, the proposed segmentation relies on
the multiscale function C1,j =

(
C1,j,`

)
1≤`≤N as a function

of scales 2j , defined as a local sample mean estimate,

C1,j,` =
1

|Sj,`|
∑

k′∈Sj,`

lnLj,k′ , (4)

where Sj,` denotes a (small) spatial neighborhood of ` = 2jk
at scale 2j and where |Sj,`| is the number of coefficients in
that neighborhood.

3. MULTIVARIATE SEGMENTATION

Original formulation. The original Mumford-Shah prob-
lem consists in labeling an image Y into Q distinct areas hav-
ing a mean value of vq , with by convention vq ≤ vq+1. The
minimization problem is

min
Ω1,...,ΩQ

Q∑
q=1

∫
Ωq

(Y − vq)2dx+
1

2

Q∑
q=1

Per(Ωq)

subj. to

{⋃Q
q=1 Ωq = Ω,

(∀q 6= p), Ωq ∩ Ωp = ∅,
(5)

where the penalization Per(Ωq) imposes the solution to have a
minimal perimeter and the constraints over theQ areas ensure
non-overlapping of the partition.

In several work [18, 19], a relevant convexification of
this criterion has been proposed. The resulting minimization
problem is specified for our study where the usual univariate
quantity Y is replaced by the multivariate (C1,j)1≤j≤J , so
that Eq. (5) consists in labeling C1,j by estimating, for every
q ∈ {1, . . . , Q+ 1}, Θq = (θq,j)1≤j≤J ∈ RJN such that

minimize
Θ1,...,ΘQ+1

Q∑
q=1

J∑
j=1

(θq,j − θq+1,j)
>(C1,j − vq,j)2

+ λ

J∑
j=1

Q∑
q=1

TV(θq,j)

subj. to


Θ1 = 1,

ΘQ+1 = 0,

1 ≥ Θ2 ≥ . . . ≥ ΘQ ≥ 0,

(6)

where λ > 0 and where TV denotes the usual total-variation
penalization as defined in [20], i.e., for every θ ∈ RN ,

TV(θ) =

N∑
`=1

‖(Dθ)`‖2 (7)

where D ∈ R2N×N denotes the discrete horizontal/vertical
difference operator and thus (Dθ)` ∈ R2. The choice of
vq,j ∈ R will be discussed later. It clearly appears that this
criterion, separable over j, does not impose coupling between
the scales 2j .
Proposed solution. We propose to introduce correlations
by modifying the criterion as

minimize
Θ1,...,ΘQ+1

Q∑
q=1

J∑
j=1

(θq,j − θq+1,j)
>(C1,j − vq,j)2

+ λ

Q∑
q=1

STV(Θq)

subj. to


Θ1 = 1,

ΘQ+1 = 0,

1 ≥ Θ2 ≥ . . . ≥ ΘQ ≥ 0,

(8)



where, for every q ∈ {1, . . . , Q}, the structure tensor penal-
ization reads

STV(Θq) =

N∑
`=1

‖ζq,`‖p with p ≥ 1

and where ζq,` = (ζq,`,1, ζq,`,2) ∈ R2 is defined from the
singular value decomposition of (Dθq,·)` ∈ RJ×2 that is

(Dθq,·)` = Uq,`Xq,`(Vq,`)
> (9)

where
(Uq,`)

>Uq,` = IdJ ,

Vq,`(Vq,`)
> = Id2,

Xq,` =

(
ζq,`,1 0 . . . . . . 0

0 ζq,`,2 0 . . . 0

)>
.

(10)

This multivariate formulation could be interpreted as a dis-
crete version of the relaxation proposed in [12].

4. PRIMAL-DUAL ALGORITHM

Reformulation To propose an efficient algorithm for min-
imizing such a criterion, we first rewrite (8) as

minimize
Θ=(Θ2,...,ΘQ)

Q∑
q=2

J∑
j=1

θ>q,j

(
(C1,j−vq,j)2−(C1,j−vq−1,j)

2
)

+ λ

Q∑
q=2

STV(Θq) + ιE0
(Θ) + ιE1

(Θ) + ιE2
(Θ) (11)

where, for every k ∈ {0, 1, 2}, ιEk denoted the indica-
tor function of the non-empty closed convex set Ek ⊂
R(Q−1)JN , that is ιEk(Θ) = 0 if Θ ∈ Ek and +∞ oth-
erwise. E0 denotes a dynamic range constraint that imposes
Θ to belong to [0, 1](Q−1)JN , i.e.,

E0 = {Θ ∈ [0, 1](Q−1)JN}
and where

E1 =
{

Θ ∈ R(Q−1)JN |Θ2q −Θ2q+1 ≥ 0,

(∀q ∈ {1, . . . , b(Q− 1)/2c}
}

(12)
and

E2 =
{

Θ ∈ R(Q−1)JN |Θ2q+1 −Θ2q+2 ≥ 0,

(∀k ∈ {1, . . . , b(Q− 2)/2c}
}
. (13)

Criterion (11) is the sum of five convex, lower-semiconti -
nuous and proper functions, possibly non-smooth, and whose
structure tensor penalization involves a linear operator. We
thus propose iterations resulting from the proximal algorithm
introduced in [21, 22]. The iterations are summarized in Al-
gorithm 1. Under some technical assumptions insuring the

Algorithm 1 Multivariate segmentation algorithm.
Initialization

Set τ > 0 and σ ∈
]
0, τ−1

(
‖D>D‖+ 3

)−1
[
.

Set Θ[0] = (θ
[0]
q,j)2≤q≤Q,1≤j≤J ∈ R(Q−1)JN

Set ỹ[0] ∈ R(Q−1)J(2N) and ˜̃y[0]
, ȳ[0], ¯̄y[0] ∈ R(Q−1)JN

For n = 0, 1, . . .

Primal steps: update θ[n+1]

For each q ∈ {2, . . . , Q}⌊
For each j ∈ {1, . . . , J}⌊
z

[n]
q,j = θ

[n]
q,j − τ

(
D>ỹ

[n]
q,j − ˜̃y[n]

q,j − ȳ
[n]
q,j − ¯̄y

[n]
q,j

)
Θ[n+1] = PE0z

[n]

Θ̃[n+1] = 2Θ[n+1] −Θ[n]

Dual steps: update ỹ[n+1], ˜̃y[n+1]
, ȳ[n+1], ¯̄y[n+1]

For each q ∈ {2, . . . , Q}⌊
For each j ∈ {1, . . . , J}⌊
ũ

[n+1]
q,j = ỹ

[n]
q,j + σDθ̃

[n+1]
q,j˜̃u[n+1]

= ˜̃y[n]
+ σΘ̃[n+1]

ū[n+1] = ȳ[n] + σΘ̃[n+1]

¯̄u[n+1] = ¯̄y[n] + σΘ̃[n+1]

For each q ∈ {2, . . . , Q}

For each ` ∈ {1, . . . , N} Compute ζ [n+1]
q,`,1 and ζ [n+1]

q,`,2 from ũ
[n+1]
q,·,` (cf. (9))

η
[n+1]
q,`,· = ζ

[n+1]
q,`,· −

σ
λproxλ

σ ‖·‖p
(λσ ζ

[n+1]
q,`,· )

Compute ỹ[n+1]
q,` from η

[n+1]
q,`,· (cf. (9))

For each j ∈ {1, . . . , J}⌊ ˜̃y[n+1]

q,j = ˜̃u[n+1]

q,j − σproxσ−1ψq,j (σ
−1˜̃u[n+1]

q,j )

ȳ[n+1] = ū[n+1] − σPE1
(σ−1ū[n+1])

¯̄y[n+1] = ¯̄u[n+1] − σPE2
(σ−1 ¯̄u[n+1])

existence of a solution (see [21, 22]), the iterates
(
Θ[n]

)
n∈N

converges to the minimizer of (11).

Proximity operator. In Algorithm 1, the notation prox
denotes the proximity operator [23]. For any convex, lower
semi-continuous convex function ϕ from RM to ]−∞,+∞],
the proximity operator proxϕ is defined and reads, for every
u ∈ RM , proxϕ(u) = arg minv∈RM

1
2‖u−v‖

2+ϕ(v). When
ϕ = ιC with C being a non-empty closed convex subset of
RM then the proximity operator reduces to the projection, de-
noted PC , onto the convex set.

The proximity operators involved in Algorithm 1 have a
closed-form expression. Indeed, the closed form expression
for prox‖·‖p with p = 2 is given in [24], while the case
p = 1 reduces to the soft-thresholding operator. Note that
when p = 2, the singular value decomposition step could be
avoided [25]. On the other hand, we have denoted

(∀θ ∈ RN ) ψq,j(θ) = θ>
(

(C1,j−vq,j)2−(C1,j−vq−1,j)
2
)



Mask Original X C1,1 C1,2 C1,3

Solution of (6) : θ0,1 − θ1,1 θ0,2 − θ1,2 θ0,3 − θ1,3

Misclassified coefficients : 17.1% 16.2% 13.0%

Proposed solution (i.e., (8)) : θ0,1 − θ1,1 θ0,2 − θ1,2 θ0,3 − θ1,3

Misclassified coefficients : 15.5% 15.2% 12.9%

Fig. 1. Results of the proposed multivariate segmentation against a segmentation procedure done for each component separately.
1st line (left to right): mask allowing to generate the data, original data, estimates of the mean of C1,j for j = 1, j = 2, and
j = 3. 2nd line (left to right): Results of the segmentation procedure described in (6) for j = 1, j = 2, and j = 3. 3rd line (left
to right): Results of the proposed segmentation procedure described in (8) for j = 1, j = 2, and j = 3.

whose proximity operator reduces to

proxσ−1ψq,jθ = θ−σ−1
(

(C1,j−vq,j)2−(C1,j−vq−1,j)
2
)
.

Finally, the projections onto E0, E1, and E2 reduce to
projection onto hyperslabs [26, Example 28.17]

Some other primal-dual solution could have been pro-
posed such as the one derived in [27, 28]. For a summary on
primal-dual strategies, the reader could refer to [29].

5. EXPERIMENTS

Performance of the proposed segmentation procedure are as-
sessed on synthetic data, numerically produced by inclusion
of a 2D-MRW patch [30] into a 2D-MRW background with
different multifractal parameters: (c1, c2) = (0.8,−0.005)
and (0.5,−0.05) respectively. Patch and background have
been normalized to ensure that the local variance does not
depend on the image location. An example of such texture is
shown in Figure 1.

Our simulations are performed using a standard 2D DWT
with orthonomal tensor product Daubechies mother wavelets
with 2 vanishing moments over J = 3 scales. We propose
to compare the performance of the proposed multivariate so-
lution against a segmentation proceeded for each C1,j sepa-
rately. In our simulations Q = 2, λ = 20, and p = 2. For
every scale j ∈ {1, . . . , J}, (vq,j)1≤q≤Q are chosen to be
equally distributed between the minimum and maximum val-
ues of C1,j . The proposed solution, whose result is depicted

in Fig. 1-(bottom line), achieves a smaller rate of misclassi-
fied coefficients for each scale, which illustrate the interest of
such a multivariate approach. The information of each scale
can then be combined to achieve a segmentation of the orig-
inal texture X . Segmentation have been performed over sev-
eral realizations and similar conclusions can be drawn.

6. CONCLUSIONS AND PERSPECTIVES

Elaborating on our previous works aiming to segment textures
into local regularity piecewise constant regions, the contribu-
tion of the present work is twofold : (i) it constitutes a first at-
tempt to achieve texture segmentation into regions, each char-
acterized with homogeneous multifractal properties and (ii) it
proposes a multivariate segmentation procedure to take into
account correlations between several components.

Instead of making direct use of multifractal attributes
parametrizing the multifractal spectrum (c1, c2,. . . ), it has
been chosen here to recourse to the multiscale quantity C1,j

from which c1 can theoretically be extracted.
We have shown that the multivariate (multiple scales)

segmentation of C1,j permits to detect the change of texture
through the scales in order to identify regions with homo-
geneous multifractal properties. These results on synthetic
data thus pave the way to promising results on mixtures of
fractal-like real-world textures (cloud and snow) previously
investigated in [15]
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