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Summary

Hybrid systems are a wide category of systems consisting of multiple computers, linked together by
some means and interacting with physical devices. Usually cheap, adaptable and incredibly versatile,
these systems rapidly found their place in our everyday life, and can be found in basic devices like
smart light bulbs, or in more complex structures such as smart factories or autonomous vehicles. In
particular, due to their numerous advantages, they can nowadays be found in safety-critical domains,
including avionics, self-driving cars or energy distribution.

The complex and hybrid nature of hybrid systems make them quite hard to design in a safe
way: while formal methods are mostly able to deal with their discrete parts and control theory
with their continuous part, we lack some kind of formalism that would be able to deal with both of
these aspects and their integration with one another. The formal modelling of safety-critical hybrid
systems is thus a major challenge of the domain.

To overcome this challenge, we propose a generic formal framework, aimed at safely modelling hy-
brid systems in a correct-by-construction fashion, inherited from the Event-B method the framework
is based on.

This framework takes the form of an extensive set of theories that expands Event-B with
mathematical features necessary to model continuous behaviours (e.g. continuous functions and
differential equations), a generic model that encodes a generic hybrid system, complete with its
controller and continuous plant, and a series of patterns, based on refinement, that allow easing the
design process.

In particular, we defined three formal patterns, inspired by general practice in hybrid system
designs: approximation (substituting an equation system with an approximately equivalent one),
centralised control with multiple plants (splitting a plant into a set of plant with a centralised
controller) and distributed hybrid systems (system made of components that each consist of a
controller and a plant, enforcing a global invariant).

This framework is designed to be extensible: adding a new component is done by describing it
as a refinement of the generic model, and possibly to accompany it with relevant theories.

We used our framework on various problems taken from control theory, including computer-
assisted cars, water tanks, robots and inverted pendulums.
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Résumé

Les systeme hybrides représentent une large catégorie de systémes, composés d’une multitude de
calculateurs qui communiquent entre eux tout en interagissant avec des systémes physiques. En
général peu coliteux, adaptables et versatiles, ces systemes ont rapidement su trouver leur place dans
notre vie de tous les jours. Il peut s’agir d’objets simples comme des ampoules connectées, mais
aussi de structures plus complexes, telles que des usines intelligentes ou des véhicules autonomes.
En particulier, et grace a leur nombreux avantages, on les croise de plus en plus dans des domaines
critiques, par exemple dans l'avionique, les véhicules autonomes ou encore la distribution d’énergie.

La nature complexe et hybride de ces systémes les rend assez difficile a concevoir de manieére
stire : les méthodes formelles se sont penchées sur la partie discrete de ces systemes, tandis que leur
partie continue est étudiée par la théorie du controle ; mais dans ’ensemble, une approche formelle
prenant en charge ces deux aspects simultanément, ainsi que leurs interactions réciproques nous fait
défaut. La modélisation formelle de systemes hybrides critiques est, de ce fait, un défi important du
domaine des méthodes formelles.

Afin de répondre & ce défi, nous proposons un cadre générique et formel, avec pour but la
modélisation de certains types de systemes hybrides. Ce cadre, hérité de la méthode Event-B, permet
la conception siire et correcte par construction de ce type de systémes. Il prend la forme d’un ensemble
de théories, qui étendent la méthode Event-B avec les éléments mathématiques indispensables a la
modélisation de comportements continus (par ex. : fonctions continues, équations différentielles),
un modele générique qui encode et abstrait les systémes hybrides, intégrant simultanément leurs
controleurs et leurs processus continus au méme niveau, et une panoplie de patrons, construits sur
le raffinement, qui permettent de faciliter la conception de ces systémes.

En particulier, nous définissons trois patrons formels, naturellement inspirés par les pratiques
communes du domaine de la conception de systémes hybrides : ’approximation (remplacer un
systéme d’équations par un systéme approximativement équivalant), le controle centralisé de plusieurs
processus continus (décomposer un processus en plusieurs composantes avec un contrdle centralisé
de ces composantes), et la gestion distribuée de systémes hybrides (un systéme composé de plusieurs
composants, qui sont chacun constitué d’un contréleur et d’un processus continu, et qui ensemble
maintiennent un invariant global).

Ce cadre de conception a été concu pour étre extensible : pour ajouter un nouveau patron, il suffit
de le décrire sous la forme d’un raffinement du modele générique, en 'accompagnant éventuellement
de diverses théories, si nécessaire.

Ce cadre formel a été utilisé sur divers exemples empruntés a la théorie du contréle ou a I'industrie,
et notamment dans le domaine de la conduite assistée par ordinateur, des cuves hydrauliques, des
robots ou des pendules inversés.
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Introduction

The idea of delegating a manual task to a device that would be (fairly) automatic has probably
emerged at the same time mankind discovered the first complex tools. Traces of documented
automatic systems can be found in the work of Hero of Alexandria (c. 10 AD — c¢. 70 AD), and
already feature a complex arrangement of user commands and automatically controlled physical
phenomena.

The academic study of such controlled systems emerged in the 19" century with the advent of
the industrial revolution. The famous paper by James C. Maxwell, On Governors [Max68§], is often
taken as the first academic resource on control theory. Since then, automatic control with physical
means — that is, controlling a physical phenomenon using another physical phenomenon, typically
mechanical or electrical — has greatly evolved, always pushing the capabilities of automatic machines
further.

Less than a century later, when computers emerged in the scientific landscape, replacing imprecise
and costly physical phenomena by digital controllers appeared to be a logical next step. In 1966, the
first version of the Apollo Guidance Computer was introduced, a 16-bit, 2048 words RAM digital
computer aimed at controlling the Apollo command module that would one day take mankind on
the moon.

Nowadays, more than 50 years later, computers have dramatically shrunk in size and cost, and
have greatly increased their computation power, allowing them to find a place everywhere, from
simple smart light-bulbs to complex avionic systems, from cars to smart factories, from cameras to
medical equipment.

Given the omnipresence of such systems and in particular their presence in critical setups (e.g.
avionics, autonomous vehicles), it appears absolutely essential to provide a way to reliably establish
properties on them, and typically correctness (i.e. is the system fulfilling its duty?), or more precisely
safety (is the system harmful to others?).

Hybrid System This term is used to denote systems that consist of a physical phenomenon
that is being controlled by a discrete system, in general a computer [Alu+95]. The term hybrid
here is of particular importance: such systems integrate, on the same level, features that belong to
fundamentally different worlds, with fundamentally different languages, techniques and issues.

On the one hand, controllers are discrete systems, machines that operate step-wise and in a finite
or countable setting. They are better described using state-based methods (automata, abstract state
machines) and algebra, and logic systems can be used to express and establish properties on them.

Meanwhile on the other hand, the physical phenomena under control are continuous objects:
dense, with an ever-evolving state and in an uncountable setting. They are better described using
continuous functions and differential equations, and properties may be established using topology
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and real/complex analysis.
As a result, dealing with these two worlds on the same level and in a rigorous way is a major
challenge on the path to certifying hybrid systems.

Scope of the Thesis In this thesis, we are interested in the integration of continuous features
in the Event-B formal method in order to be able to formally design hybrid systems with it. The
choice of Event-B is quite relevant: first, controllers are typically event-based/reactive systems, for
which this method is well-adapted; second, the low mathematical and semantic level of Event-B is
such that it can be easily extended, with new constructs and new concepts.

Contributions We propose a generic framework together with a methodology for designing hybrid
systems. The framework is based on Event-B. It consists of several tools used to model hybrid
systems, and it has been designed to be easily extended. Our main contributions are overviewed
below.

Event-B Extension Using Theories The concept of theories and the theory plug-in are used to
incorporate a number of important concepts related to real numbers, continuous functions and
differential equations. This allows the proper modelling of continuous behaviours within Event-B
models.

Generic Framework and Methodology An overall framework for designing hybrid systems is proposed,
based on an extensible set of components, using Event-B models. The framework is associated
with a general methodology, aimed at easing the formal design and verification of hybrid systems
[Dup+20a].

Generic Model The foundations of the framework are provided in the form of a generic hybrid
system model, to be refined. The various patterns proposed are derived from this generic model,
making the framework highly extensible. A number of proofs that would otherwise be recurrent are
carried out at this level, and thus do not have to be conducted again [Dup+18bj [Dup-+18a].

Architecture Patterns The framework provides the possibility to shape a given hybrid system using
multiple architectures, often set up in hybrid system design. These are: one controller with one
plant (single-to-single), one controller with multiple plants (single-to-many, centralised control) and
multiple controllers with multiple plants (many-to-many, distributed control) [Dup-+19; Dup+20c].

Approxzimation Pattern The framework also provides a pattern that formalises approximation, as a
refinement step. It allows the support of common operations of control theory and hybrid systems
design, such as simplification and in particular linearisation [Dup+20bj; [Dup+20a].

Organisation of the Manuscript This thesis is organised as follows. Chapter [I| presents a
survey of the state of the art, exploring the different types of system modelling and the way they
can be verified, using model checking or proof-based methods.

Chapter [2| gives a number of core definitions used throughout the remainder of the thesis. In
particular, the method on which our work is based, Event-B is presented: its modelling language,
its proof system and its associated semantics. Its extension mechanism (Event-B theories) is also
presented in details. Finally, we discuss the advantages of the method as well as its limitations,
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and use this to identify the key elements enriching the method in order to address the challenge of
designing hybrid system with it.

Our contributions are presented in the next chapters. First of all, the proposed framework is laid
out in Chapter [3] The motivation for this framework is discussed, and the requirements that led
to its design are highlighted, in particular with regard to Event-B and its associated methodology.
The chapter also gives an overview of the patterns defined in this framework, and presented more
thoroughly in the remainder of the thesis.

Chapter [4] gives the details of the features required by the framework to model hybrid system,
and to define the various patterns of the framework. A number of continuous concepts are introduced,
which are used to handle continuous behaviours within Event-B, together with various properties to
handle these concepts in proofs. The formalisation of these features in Event-B is also discussed.

Then, Chapter [5| describes thoroughly the generic model as the foundation of the framework,
including the motivation and overall design ideas it relies on. Two well-known case studies are given
to illustrate its use, both on a methodological and technical point of view.

Chapter [6] presents a category of formal patterns for modelling different hybrid system architec-
tures, and in particular systems consisting of one controller and one plant (single-to-single), one
centralised controller with multiple plants (single-to-many) and multiple controllers with multiple
plants (many-to-many). A general case study is given as illustration for each of these architectures.

Next, Chapter [7] elaborates on the approzimation pattern. Approximation is formalised as an
operation of the framework, using Event-B’s refinement. It allows substituting a system with another
which behaviours is approximately equal, while retaining its properties. This pattern is applied to
two case studies.

Finally, the conclusion of this manuscript gives a summary of our contributions, and discusses
possible outcomes and future work related to our work.

In the context of our work, and to illustrate our contributions, many models have been defined,
in Event-B, using Rodin and the theory plug-in. These models are presented throughout this
manuscript. Additionally, they are freely available, in their entirety, in Appendices [A] and [B] as well
as at the address:
https://irit.fr/~Guillaume.Dupont/models.php


https://irit.fr/~Guillaume.Dupont/models.php
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Chapter 1

Designing Safe Hybrid Systems

Hybrid systems are a particular class of systems that incorporate complex, heterogeneous elements
related to each others. For this reason, the formal modelling, verification and overall design of
hybrid systems are an important challenge that has drawn the attention of many areas of formal
methods and computer science in general.

The issues raised by hybrid systems are split in three categories.

First, such systems require specific modelling features, and in particular the possibility to model
both discrete and continuous behaviours at the same level in the model.

Second, these particular continuous features need to be handled in the associated verification
system: it must thus be able to deal with continuous concepts (functions, differential equations,
linear constraints) as well as with discrete features, and must be able to exploit the integration of
both world to assert useful properties (reachability, safety, etc.).

Last, hybrid systems come with a number of specific techniques and methods (e.g. composition,
approximation, linearisation, discretisation) that need to be addressed as well, both at the model’s
level and at the proof’s level.

In this chapter, we present a survey of the literature addressing formal design and verification
of hybrid systems. Formal modelling of hybrid systems is presented in Section while Section
1.2| gives an overview of verification techniques for such systems. Section investigates various
development operations and general methodology for designing hybrid systems.

Last, in Section [I.4] we draw a general idea of what a formal method for designing hybrid system
should layout, by outlining a set of requirements, inspired by this survey.

1.1 Modelling Hybrid Systems

The first major challenge in dealing with hybrid systems is the capability to formally model such
systems. Indeed, proving or verifying the different properties of hybrid systems require means to
model them, including all of their specificity.

The problem is to be able to describe both the discrete and the continuous parts of such systems
at the same level, and in a way that allows extracting and verifying useful properties.

To this extent, a multitude of approaches exist. They often rely on a discrete framework capable
of supporting the description of continuous behaviours, using continuous functions or differential
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equations, or a discretised version of these behaviours together with additional assumptions.

1.1.1 Hybrid Automata

Hybrid automata |[Alu+95; Hen00] extends the notion of guarded automata with the possibility to
handle continuous behaviours. Concretely, a hybrid automaton is a guarded automaton associated
with real-valued variables. Every location of the automaton is given a set of activities that describe
how these real-valued variables evolve, and an invariant, that enforces additional properties on the
evolving variables (e.g. evolution domain).

The semantics associated with a hybrid automaton can be expressed as a transition system
consisting of discrete steps (mode changes) and time steps (continuous variables changes without
mode change).

1.1.1.1 Formal Definition
Formally, a hybrid automaton H is a 6-uplet H = (Loc, Var, Lab, Edg, Act, Inv) where:

e Loc is a (finite) set of locations or modes.

o Var is a (finite) set of real-valued variables. A valuation v : Var — R is a function that
associates a real value to a given variable. We denote V the set of valuations.
A state 0 = (I,v) € Loc X V is a pair consisting of a location and a valuation. We note ¥ the
set of states.

e Lab is a (finite) set of synchronisation labels, including the special stutter label, denoted 7. In
the following, we identify synchronisation labels using the colon symbol (e.g. :synchro).

o FEdg is a (finite) set of transitions or edges. Each transition e = (I, a, u1,1") consists of a source
location [ € Loc, a target location I’ € Loc, a synchronisation label a € Lab and a transition
relation p € V2. This set always contains at least the stutter transition e, = (I,7,1d,1),
where Id = {(v,v) |[v € V}.

A transition e = (I, a, u,1") is enabled if and only if, for a given state (I,v), there exists some
valuation v/ such that (v,1') € p. The state (I’,1') is then called a transition successor of
state (I,v).

Note that, given this definition, for any state (I,v), the stuttering transition e; . is always
enabled, and its transition successor can only be (I, ) (meaning the stuttering transition does
not modify the variables and does not change the current location).

e Act is a labelling function that associates, to each location [ € Loc a set of activities. An
activity is a function f € RT — V that takes the time as input and yields a valuation of the
real variables of the automaton. Activities are required to be time-independent: if f € Act(l)
is an activity of location I, then (f + ¢) the function such that (f +¢)(t') = f(¢ +¢') (i.e. the
function that outputs the same value as f but offsets its argument by t) is also an activity of
[, that is (f +t) € Act(l).

For any location | € Loc, any activity f € Act(l) and any variable © € Var, we note
f® € R™ — R the function of time that yields the valuation of variable = at any given time;
that is, for any ¢ € RT, f(¢) = f(¢)(z).

e Inv is a labelling function that assigns, to every location [ € Loc a predicate on the valuation
of the variables called invariant; that is, Inv(l) C V.
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Semantics At any given time, the state of a hybrid automaton is given by a location [ and a
valuation of its variables v. Two types of state transitions are defined:

o with a discrete step that changes both the current location and the valuation of the variables;
this step is instantaneous.

e with a continuous time delay that changes only the valuation of the variables, according to
the activities of the current location.

The system remains in the same location as long as this location’s invariant (Inv(l)) holds. In
other words, a discrete transition must be triggered before the invariant is falsified.
A run of the hybrid automaton H is defined as a sequence (finite or not)

p: 0o .—>§§(’) o1 »—>§}1 D) »—)tfz
of states o; = (I;,v;) € X, time steps t; € RT, and activities f; € Act(l;), such that, for all i > 0:
1. the current activity starts with the current valuation as initial condition: f;(0) = v;.
2. the location’s invariant remains true: V¢,0 <t < t;, f;(t) € Inv(l;).
3. the state 0,41 is a transition successor of o} = (I;, fi(t:)).

The state o is called a time successor of ;. The state 0,11 is a successor of o;. We write [H]
the set of runs for the hybrid automaton H.

Based on these previous remarks, for any given hybrid automaton H, a transition system is
defined Ty = (T, X URT, —) where the step relation — consists of the transition-step relations —¢
(when the system changes location) and the time-step relations —! (when time progresses), with
t>0:

(l,a,p,1") € Edg (v,v)eu v € Inv(l) v e Inv(l)
Gv) = ()

fe Act(l) f(0)=v Vi, 0 <t <t f(t') € Inv(l)
(L) = (1, f(2)

Note that the stuttering transition ensures Ty is reflezive (0 — o for any o).

There is a natural correspondence between the runs of the hybrid automaton H and the paths
through the associated transition system Tg: for any states 0,0’ € ¥ with 0 = (I,v) and for any
teR™:

3f € Act(l),0 =% o' & Fo" € S,a € Lab,o —"' 0" % 0’

Time-Deterministic Hybrid Automata A hybrid automaton H is time-deterministic if, for
every location ! € Loc and every valuation v € V, there is at most one activity f € Act(l) with
f(0) = v. We then denote this activity ¢;[v].

For time-deterministic hybrid automata, the time-step relation is simplified: time always pro-
gresses by a given amount ¢ € RT from state (I,v) as long as this is permitted by the location’s
invariant:

V0 <t <t ofv](t) € Inu(l)
(Z7V) —? (la‘pl[l/](t))
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Linear Hybrid Automata A hybrid automaton H is linear if:

1. the predicates for its invariants and for its edge’s guard are convex linear, i.e. conjunctions of
inequations that only involve a linear combination of the system’s variable;

2. the activities of each place is defined only by referencing the derivative of the system’s variables;

As discussed later, linear hybrid automata play an important role in model-checking, as the
reachability problem for linear hybrid automata is decidable [Hen+98].

1.1.1.2 Example

As a way to illustrate the definitions given, we present here a simple example taken from |[Alu+95].

The objective is to control the temperature of a given room. The room presents a thermometer,
able to access the room’s temperature, and is hooked up to a heater that can increase the room’s
temperature. It is assumed that, when the heater is off, the room’s temperature decreases naturally.

The goal of the controller is to keep the room’s temperature between two constants, denoted m
and M (m < M). We note # € Rt — R the room’s temperature. The room is characterised by a
thermal constant K that represents the speed at which it changes its temperature, and the heater is
associated with a heating power, denoted h.

The rules of thermodynamics provide two differential equations for describing the temperature’s
behaviour:

o when the heater is off, the room’s temperature decreases: § = —K6

« when the heater is on, the room heats up: § = K (h — )

We model this system (controller + continuous behaviour of the temperature) using a hybrid
automaton. This automaton consists of two locations for the two modes of the system (heater on
and heater off), and switching to one another depends on the value of the temperature compared to
the given bound m and M.

The resulting hybrid automaton is presented in Figure [L.1

start

Figure 1.1: Hybrid Automaton for the Thermostat Example

1.1.2 Hybrid Programs

Hybrid programs [Pla08] is a language that allows modelling simultaneously the discrete and
continuous features of a hybrid system in the form of a program, inspired by process algebra. A
hybrid program expresses discrete features such as choices and repetition, and models continuous
behaviours at the same level, using differential equations.

It is associated with a powerful logic system, differential dynamic logic to express relevant
properties on hybrid programs such as safety or reachability.
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1.1.2.1 Formal Definition

Hybrid programs are defined syntactically using a recursive grammar. A hybrid program can consist
of:

e a sequence «; 3 of two hybrid programs a and ;

e a repetition o for an arbitrary number of time of the hybrid program «;

e a non-deterministic choice aU 3, where the hybrid program « or [ is executed;
e a test 7y, i.e. an instruction that fails if predicate y is false;

o a discrete assignment x := 6 where a given variable (z) is assigned to a real-arithmetic term
(9); non-deterministic assignment of a value to a variable is done with the notation z := *;

o the continuous evolution x} = fi(x1,...,2n),25 = fo(x1,...,2n),... & H, which set the
continuous variables z1, ..., z, to evolve following the ordinary differential equation system
(f1,- -, fn) while these variables are forced to remain within evolution domain H, characterised
by a predicate;

Note that the predicates used in a hybrid program rely on basic predicate logic, extended with
real arithmetic (basic real operations plus equality and inequality).
A hybrid system consists of two parts: the controller and the plant. Thus, hybrid programs are
written following the pattern
(etrl; plant)*

In other words, the hybrid program enacts the controller and then the plant, and repeat this
cycle indefinitely (i.e. interleaves the controller and the plant).

Semantics Similar to hybrid automata, the semantics of a hybrid program can be described using
transition systems. For a given hybrid program, we denote V' the set of its variables. A state of the
hybrid program is a map v € V — R that associates a value to each variable of the system. We
denote X the set of states.

Given a term 6 (i.e. a real formula possibly involving variables), we denote [#], the value of 6 at
the given state v.

Given a hybrid program «, the transition relation p(a) that specifies which state w is reachable
from state v through an execution of « is defined as follows:

o (v,w) € p(z := 0) iff state w is identical to state v except that w(z) = [0].;
e (v,w) € p(a; B) iff there exists a state p such that (v, u) € p(a) and (u,w) € p(B);

e (v,w) € p(a*) iff there exists a n € N and a finite sequence (pg, f41, - - - , ttn) such that po = v,
tin = w, and for all i, 0 < i < n, (i, pi11) € pla);

« plaUf)=pla)Up(B);
o (r,w) € p(?x) iff x is true in state v (i.e. v = x), and if w is identical to v;

o (Vw) € p(a) = 01,2, = 0y,...,2,, = 6, & H) iff for some r > 0, there exist a function
€ [0,r] = X such that:
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— »(0) =v and ¢(r) = w,

— at any given time 7 € [0, 7] and for any 4, 0 < i < n:

dzi] o)

dt (T) = [[ei]]tp(T)

(i.e. the differential equation for z; holds),

— at any given time 7 € [0,¢] and for any variable y ¢ {x1,...,z,}:

[[y]] p(r) = [[y]] ©(0)

(i.e. the other variables are left unchanged),

— at any time 7 € [0,7], ¢(7) E H
(i.e. the invariant H remains trud‘|at any time)

A run of the hybrid program « is any sequence of states (v;);en such that (v, v;41) € p(a). Such
a sequence is also called a trace.

Although hybrid programs tend to be monolithic, the recent work of [LP16] introduces a notion
of refinement for hybrid programs. It allows factorising development and proofs. The work of
[Lun+19] also extends the language and the proving process, allowing the definition of modules and
their composition, bringing a high level of modularity to the method.

1.1.2.2 Example

We illustrate the use of hybrid programs with an example borrowed from [Que+16]. Note that the
following system is also used as a case study for our work, and addressed in Chapter [f]

The problem is the following: a car, characterised by its position p, its speed v and its acceleration
a, needs to stop before the given point SP. Our goal is to devise a controller that allows the car to
move freely until it brakes to stop.

sys = (ctrl; plant)*
safe = x+ % <SP
ctrl = (7safe;a:= A)
U (?v=0;a:=0)
U (a:=-B)
plant = (o' =v,v' =a

&v>0Az+ & < SP)

C
—~~
&\

|
<

<

|

o

&vZO/\x—F%ZSP)

Figure 1.2: Hybrid Program for the Stopping-Point Problem

Figure [I.2] proposes a hybrid program to address the case study. The system is encompassed in
the sys expression. Note that it takes the form discussed in the previous section.

IHere |= represent the standard first-order logic interpretation, with the addition of real predicates (=, <, etc.)



1.1. MODELLING HYBRID SYSTEMS 31

The controller is a non deterministic choice where two branches are guarded: if it is safe to do
so, the controller causes the car to accelerate (a is assigned to a positive value). Otherwise, if the
car’s speed is 0, then its acceleration is also 0; this is simply because the car cannot go backward
(negative speed) just by braking. Finally, if it is unsafe and the car’s speed is not 0, or if none of the
other branch has been taken, then the controller issues a braking command to the car (a is assigned
to a negative value).

The plant is modelled by the differential equation p = v, ¥ = a that governs the car’s dynamics.
It is associated to an evolution domain that characterises the area before the car in which it is still
safe to brake (based on the braking distance %)

To check the correctness of this system, it is required to check that the predicate p < SP always
holds, either using model-checking or differential dynamic logic, as discussed later.

1.1.3 Event-Based Modelling

Event-based modelling takes the concept of hybrid automata further. It models hybrid systems
with a general state, modified by a set of events. In this way of modelling, the state consists of
both discrete and continuous variables. The former are handled by the controller, while the latter
represents the continuous behaviour of the plant of the hybrid system.

This event-based form of modelling is quite interesting and relevant, as it approaches the way
controllers are often programmed. They also focus on hybrid systems from the point of view of the
controller, rather than the system as a whole.

1.1.3.1 Continuous Action Systems

A good representative of an event-based (discrete) modelling framework is Back’s Action Systems
[BK89|. As it is already suited for real-time systems, Back extended it to Continuous Action Systems
[BPPOO).

This approach adds to Action Systems a (finite) set of time-dependent variables, associated
with a set of possible actions. These time-dependant variables are in essence functions, defined in a
piece-wise fashion (note that, for instance “discrete” variables are in fact piece-wise constant). The
semantics of Continuous Action Systems is defined in a similar way as “traditional” Action Systems,
so discrete and continuous variables are treated in an uniform way.

Mapping of continuous action systems to action systems is not trivial, and has been addressed in
[IMHO6] by assigning stream-based semantics to the models — contrasting with the usual trace-based
semantics — together with data refinement rules, making it more complete and general.

This approach has numerous interests theoretically; in particular, it raises interesting questions
on continuous functions and their assignment as well as on refinement of continuous system in
general.

1.1.3.2 Event-B

Another typical modelling framework for event-based modelling is Event-B. This method has been
used directly to model hybrid systems, by incorporating continuous behaviours straight into an
Event-B model.

In [SAZ14], the authors expand on the idea developed for Continuous Actions Systems and adapt
it to the Event-B method. Discrete events (i.e. the controller part) are modelled and then, in a
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refinement, continuous features are added, considering that a discrete system is an abstraction of a
continuous one. The model, in particular, uses a variable now to model time explicitly, and a click
event that makes time progress.

Note, however, that these continuous features are only described using real arithmetic, not with
differential equations. To work around this limitation though, [SA14] proposes to study the analytical
solutions of these differential equations, obtained by the complementary use of Matlab/Simulink,
and integrate these solutions into the model.

In [BABI16|, the authors use the theory plug-in [BM13] to incorporate new concepts into Event-B,
namely reals, continuous and monotonic functions. In this approach, the continuous behaviour is
modelled first; modes and then control strategy are later added. Similar to [SAZ14], time is modelled
using a variable now and an event click, and all the difficulty is to ensure “nothing bad” happens
in between two executions of click, which is why monotonic continuous functions are used. The
approach has been used on the case of a set of wind turbines.

This approach lays down the first steps of actually modelling hybrid systems, and shows the
problems that occur in doing so. It is sound and usable, but is also very limited.

Typically, time is handled in a discrete manner, like the clock of a controller. While this is closer
to the way controllers work in practice, clocks are in fact a low-level concept that does not belong to
such a high level of abstraction; different clocks, control and scheduling strategies are to be decided
on later refinements, rather than embedded from the first model.

Another problem of this approach is that it requires analytical explicit functions; whereas, in
practice, continuous behaviours are defined using differential equations.

1.1.3.3 Hybrid Event-B

The latter approach deals with continuity in a discrete way (time advances step by step). This means
the approach is tied to a somewhat low level of abstraction, where the system has been studied and
is close to implementation already. This hinders the interest of Event-B, but is necessary given the
specificity of this method. To overcome this issue, another way to proceed is to modify slightly
Event-B, its language and its semantics, in order to incorporate any required features in the method.

This is the path taken by |[Ban+15] with Hybrid Event-B: Event-B is extended by the possibility
of defining continuous variables and so-called pliant events, which are not instantaneous events, and
allows the description of continuous behaviours with continuous functions and differential equations
[Banl3|.

Time In Hybrid Event-B, time is dense and represented as an interval 7 C R*, partitioned in
a sequence of left-closed right-open smaller intervals (T = [to, 1[U[t1,t2[U...) such that discrete
events always occur exactly at ¢;, ¢+ € N.

Concretely, time is modelled by a unique read-only variable simply denoted ¢ (defined in the
TIME clause). Hybrid Event-B also allows the definition of clocks (defined in the CLOCK clause),
which are pliant variables that follow time (i.e. with the same slope, or with a derivative equal to 1).
Unlike time, clocks can be discretely set to an arbitrary value (e.g. reset).

Variables Variables can be of two distinct natures: mode variables, which are essentially discrete
variables and are treated as regular Event-B variables (and so are defined in the standard VARTABLES
section of the machine); and pliant variables, which can evolve both continuously or with discrete
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MACHINE M, ModeEvent STATUS ordinary
TIME ¢ ;;II]]TE”
CLOCK clk
PLIANT z, y grdl: G(u,z,y,p,t, clk)
EVARIANTSU actl: z,y,u, clk:|
. BAP(z,y,u, clk,p,z’',y v, clk")
invl: zeR, yeR END
inv2: uweN
EVENTS . ,
INITIALISATION STATUS ordinary E\I;I?Ft?é ery‘tusf‘z}k)us pliant
ANY p
grdl: t=0 WHFRE
actl: clk:=1 grdl: G(u,p)
act?2 e : xX :CE ]ILY P(xay7u7p7 t7 Clk)
s u’,y_'; 0, Yo SOLVE Dz = ®(z,y, u, p, t, clk)
] ’ y = E(z,u,p,t, clk)
END

Listings 1.1: Hybrid Event-B Syntax Demonstration

steps. They are considered to be continuous from the right and admit a limit from the left at any
point.

Their evolution is given, on any time interval [t;,¢;41][, by a differential equation (SOLVE clause)
with initial condition (Z in the INIT clause of the event):

Dz = ®(z,1t)

where x is a vector of pliant variables and D is the general time derivative operator.

This equation is well-defined if for any x, ®(z, -) is Lipshictz-continuous on [¢t;,¢;+1[ and measur-
able in ¢, so that the equation admits a unique solution that is continuous on the interval.

A pliant variable may also be assigned directly (e.g. x := F), which allows handling any
discontinuity in the variables’ evolution, ensuring that they are piece-wise continuous on each
interval.

As in Event-B, it is possible to define invariants on the system’s variables (INVARIANTS section).

Transitions As there is a difference between mode variables and pliant variables, Hybrid Event-B
differentiates between mode transitions or events, and pliant transitions.

In a mode transition (represented by a set of mode events, i.e. with STATUS ordinary, convergent
or anticipated), a set of variables (mode or pliant) is discretely assigned using a before-after predicate,
like it would be in a “normal” Event-B event. Such transitions occur at every ¢; and are timeless, in
the sense that they do not make time progress.

In a pliant transition (represented by a set of pliant events, with STATUS pliant), pliant variables
are given a specific evolution using a differential equation (SOLVE clause) with initial conditions
(Z in the INIT clause of the event). A variable can be given a direct definition, in which case we
must ensure the function is (absolutely) continuous, so that it does not interfere with the system’s
semantics. Unlike mode transitions, pliant transitions are set to occur on every time interval [¢;, t;11].
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Note that the guard of pliant events cannot relate to pliant variables or time/clocks, as it could
create discontinuities.

Pliant transitions may define a complying predicate (P in the COMPLY clause) or “before-during-
after-predicate” that is expected to remain true during the whole transition’s duration.

Interleaving The partitioning of time ensures that mode and pliant transitions alternate. More
precisely, there is always a mode transition enabled, and this transition enables a pliant transition,
which ends up enabling a mode transition again at some point, and so on. Note that this also means
that there can never be more than one mode transition occurring “at the same time”.

When a pliant transition is running, it is expected to be interrupted by a mode transition (when
one becomes feasible) in which case the transition is preemptive; but it can also put the system in a
state that is incompatible with the current pliant transition (that violates the complying predicate)
without any mode transition being enabled, in which case the system terminates. Also, a pliant
transition may run indefini