ANR Datazero

PROJECT ANR DATAcenter with Zero Emission and RObust management using renewable energy

October 1st, 2015 — December 31st 2019

Jean-Marc.Pierson@irit.fr

An innovative datacenter model

- → Adapting the *IT load* to the Power available and
- → Adapting the Power to the incoming IT load

while avoiding unnecessary operations and materials and using a mix of energy sources

Target and Outcome

- Small and middle size datacenters Cloud / Virtualization (1000 m², 1 MW)
- Rethink datacenter with alternative power

First, we need an electrical and IT connection...

- Traditionally, a lot of redundancy is present to prevent shortage of power feeds and absorb peak IT demands
- How to limit the redundancy while keeping safety?
 - >> Use only critical redundant material
- How to limit the losses in the electricity conversions and transports?
 - ➤ Connect directly Direct Current Busses with onsite electricity production

"Classical" Electrical Schema: 🥄 🐔 Up to N+1 (Green+Grid)

Innovative electrical Schema: Union to 2N Green

Second, we need a mix of energy sources

- How to ensure a reliable and emissions-free power supply?
- Additional challenges:
 - Sources are diverse, each with their own characteristics
 - How many of each type should we install?
 - Then how to operate them efficiently?
 - How to handle uncertainty from renewable generation?
 - What is the impact of sources ageing?

The components form a microgrid

Model example: fuel cell

- Converts hydrogen to electricity
- Performance is degraded with time and use
- Ageing model based on experimental data

Then, we need computers in a datacenter

- How do they consume power? What is the link between their usage and their electricity consumption?
- >>> What is the impact of the operating system or the hardware tuning?
- What is the impact of using Cloud Computing technologies? What is the costs of hypervisors? What is the cost of migration of tasks on the servers?

We need to profile the IT

CPU %

PSU #1

PSU #2

as green as possible

Impact of virtualization and energy saving parameters of servers

as green as possible

Impact of virtual machine migration

Then, we need applications on these computers!

- **▶** Does an application consume power?
 - No, they consume resources (CPU, memory, ...), that translates to power consumption
- And applications consume power differently depending on their (obtained or targeted) performances

We need to know the applications

An application is modelled by:

- Submission information
 - Time of arrival
 - Requirements
- Resource consumption over time
 - Processor, memory, IO, network
- Policy related informations (scheduling priority, ...)
- Context information
 - Degradation level

Toolchain to abstract applications

An application is a set of profiles depending on context

Multiple profiles

Cloud application service

Same application on slower hardware

Degraded application on slower hardware

An *application* is a set of profiles depending on context

- Hardware
- Quality of service

Context is included each XML file

<degradationLevel>none</degradationLevel>

We need to negotiate

Finally...

- We have electrical connections
- We have some (renewable) power sources
- We have some computers, with their applications
- How to make all these elements coexist?
- Traditionally: consider all the elements at once,
 and optimise the global problem!
- >>> We believe in an alternative way: the negotiation!

Negotiation Module

Example: 1st approach based on attraction concept:

Representing the interest of a system for a proposal

- interest for the electrical part to produce 2000W from 11:00 am to 1:00 pm?
- interest for the IT part to execute a task at 11:00 am?

Abstracted to a float number in [-1, 1]

- ✓ 1 → absolute reject (a very high penalty)
- ✓ $+1 \rightarrow$ a very high attraction
- \checkmark 0 → neutral
- ✓ intermediate values available

Attraction values depend on the possibilities

Negotiation: IT attraction

>>> Flexibility is given with the deadline

But how to assemble and test what we propose?

- We can't build a 1 MW datacenter (with the money we have :))
- But we can make smaller experiments to validate the models (e.g., power production models, servers consumption, ...)
- AND we integrate results within a platform, mixing both simulated parts and real platforms

Middleware, Simulation, Real Hardware

- Challenge 1. Making demand and envelope constraints coincide
- Challenge 2. Sizing the infrastructure
- Challenge 3. Commanding electrical converters
- Challenge 4. Scheduling IT load
- Challenge 5. Managing thermal burden
- Challenge 6. Keeping the complexity at pace
- Challenge 7. Developing a simulation toolkit

Conclusion

- An ongoing work
- Still about 1 years to go
- About 25 researchers involved

Keep in touch!

Jean-Marc.Pierson@irit.fr

