
Map Reduce

Erasmus+ @ Yerevan

dacosta@irit.fr



Divide and conquer at PaaS

100 % //



Typical problem
 Iterate over a large number of records

Extract something of interest from each

Shuffle and sort intermediate results

Aggregate intermediate results

Generate final output

Key idea: functional abstraction for these 
two operations

MAP

Reduce



Folding



Difficulties ?

Huge amount of data
Do not fit into memory

Access patterns are broad

Most data not accessed frequently

Complex data
links between data or treatment

Same data can be treated in different ways
No pre-processing

Example : crawling through internet data



Principle

"Map" step: The 
master node takes 
the input, divides it 
into smaller sub-
problems, and 
distributes them to 
worker nodes

"Reduce" step: The 
master node then 
collects the answers 
to all the sub-
problems and 
combines them in 
some way to form 
the output



MapReduce
Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’, v’>*

All values with the same key are reduced together

Usually, programmers also specify:
partition (k’, number of partitions ) → partition for k’

Often a simple hash of the key, e.g. hash(k’) mod n

Allows reduce operations for different keys in parallel

combine(k’,v’) → <k’,v’>
“Mini-reducers” that run in memory after the map phase

Optimizes to reduce network traffic & disk writes

Implementations:
Google has a proprietary implementation in C++

Hadoop is an open source implementation in Java





Word count



Exemple : Average
number of contract by Age

For 1 million 
entry
Batch of 1000

1100 of them

Output of Map
Range 8-110

Reduce :
Batch of 1 Y

102 of them

Treat 1000's

Output
102 values



MapReduce Runtime

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves the process to the data

Handles synchronization
Gathers, sorts, and shuffles intermediate data

Handles faults
Detects worker failures and restarts

Everything happens on top of a distributed 
FS (later)





How do we get data to 
the workers

What's the problem here ?

Classical cluster

vision



Distributed File System

Don’t move data to workers... Move workers to 
the data!
Store data on the local disks for nodes in the cluster

Start up the workers on the node that has the data 
local

Why ?
Not enough RAM to hold all the data in memory

Disk access is slow, disk throughput is good

A distributed file system is the answer
GFS (Google File System)

HDFS for Hadoop (= GFS clone)



GFS: Assumptions

Commodity hardware over “exotic” hardware

High component failure rates
Inexpensive commodity components fail all the 

time

“Modest” number of HUGE files

Files are write-once, mostly appended to
Perhaps concurrently

Large streaming reads over random access

High sustained throughput over low latency



GFS: Design Decisions
Files stored as chunks

Fixed size (64MB)

Reliability through replication
Each chunk replicated across 3+ chunkservers

Single master to coordinate access, keep 
metadata
Simple centralized management

No data caching
Little benefit due to large data sets, streaming reads

Simplify the API
Push some of the issues onto the client



Grid Computing by the 
fathers of the Grid



Master’s 
Responsibilities

Metadata storage

Namespace management/locking

Periodic communication with 
chunkservers

Chunk creation, replication, rebalancing

Garbage collection



Exemple : Inverted 
Indexing



Architecture of IR Systems



How do we represent text?

“Bag of words”
Treat all the words in a document as index terms for 

that document

Assign a weight to each term based on “importance”

Disregard order, structure, meaning, etc. of the words

Simple, yet effective!

Assumptions
Term occurrence is independent

Document relevance is independent

“Words” are well-defined



Sample Document

McDonald's slims down spuds

Fast-food chain to reduce certain types of fat in its 
french fries with new cooking oil. “Bag of Words”

NEW YORK (CNN/Money) - McDonald's Corp. is 
cutting the amount of "bad" fat in its french fries 
nearly in half, the fast-food chain said Tuesday as 
it moves to make all its fried menu items 
healthier. 

But does that mean the popular shoestring 
frieswon't taste the same? The company says no. 
"It's a win-win for our customers because they are 
getting the same great french-fry taste along with 
an even healthier nutrition profile," said Mike 
Roberts, president of McDonald's USA. 

But others are not so sure. McDonald's will not 
specifically discuss the kind of oil it plans to use, 
but at least one nutrition expert says playing with 
the formula could mean a different taste.

...

“Bag of Words”
16 × said

14 × McDonalds

12 × fat

11 × fries

8 × new

6 × company, french, 
nutrition

5 × food, oil, percent, 
reduce, taste, Tuesday

...



Representing Documents



Inverted Index



Boolean Retrieval

To execute a Boolean query:
Build query syntax tree

For each clause, look up postings

Traverse postings and apply Boolean operator

Efficiency analysis
Postings traversal is linear (assuming sorted postings)

Start with shortest posting first



Term Weighting





MapReduce it?

The indexing problem
Must be relatively fast, but need not be real 

time

For Web, incremental updates are important

Crawling is a challenge itself!

The retrieval problem
Must have sub-second response

For Web, only need relatively few results



Indexing: Performance 
Analysis

Fundamentally, a large sorting problem
Terms usually fit in memory

Postings usually don’t

How is it done on a single machine?

How large is the inverted index?
Size of vocabulary

Size of postings



MapReduce: Index 
Construction

Map over all documents
Emit term as key, (docid, tf) as value

Emit other information as necessary (e.g., 
term position)

Reduce
Trivial: each value represents a posting!

Might want to sort the postings (e.g., by docid 
or tf)

MapReduce does all the heavy lifting!



Query Execution

MapReduce is meant for large-data batch 
processing
Not suitable for lots of real time operations 

requiring low latency

The solution: “the secret sauce”
Most likely involves document partitioning

Lots of system engineering: e.g., caching, load 
balancing, etc.



MapReduce Algorithm Design



Managing Dependencies

Remember: Mappers run in isolation
You have no idea in what order the mappers run

You have no idea on what node the mappers run

You have no idea when each mapper finishes

Tools for synchronization:
Ability to hold state in reducer across multiple 

key-value pairs

Sorting function for keys

Partitioner

Cleverly-constructed data structures



For the programmer
Input reader

Reads data from stable storage and generates key/value pairs.

Map function
Takes a series of key/value pairs, processes each, and generates 

zero or more output key/value pairs

Partition function
Each Map function output is allocated to a particular reducer by the 

application's partition function

Compare function

Reduce function
Called once for each unique key in the sorted order

Output writer
Writes the output of the Reduce to the stable storage



Input → Map → Copy/Sort →
 Reduce →

 Output



Use cases

Word count, a little 
less naive !

Before :
1 message per word in 

the text

Here
1 message per different 

word in the text



Co-occurence

Count the number of co-occurence of n elements in sets

Exemple
Words appears in same sentence

Customer who buy this also buy that

If there are N elements
Report occurrence of NxN couples

On a single node, quite simple
Foreach set

Foreach i in set

Foreach j in set

Res[i][j]++

Map Reduce 

version ?



Pairs approach

Too many intermediary keys

Easy and strayforward implementation

Optimize using local accumulation of counts of [i,j]
Easy optimization

Only few improvement (large space)



Stripes Approach

Faster, lower number of intermediate keys

Can lead to memory problems

More complex implementation



Other exemples

Grep
10^10 100-byte records

Seek a rare 3 letters word

1800 machines

Peak performance : 30 GB/s with 1764 workers

150s
1 minute startup

Sort
Same environment and dataset

50 lines of code

891 seconds



Characteristics

Manage well failure
Just send the keys again

Heavy on the file system
Need dedicated and adapted filesystem

Scale well
In term of data, workflow

Easy to use
Some translation tools from SQL are available

Middleware manages data- and computing-locality



Some users
Google

They normalized it

They use it internally
large-scale machine learning problems,

clustering problems for the Google News and Froogle products,

extracting data to produce reports of popular queries (e.g. 
Google Zeitgeist and Google Trends),

extracting properties of Web pages for new experiments and 
products (e.g. extraction of geographical locations from a large 
corpus of Web pages for localized search),

processing of satellite imagery data,

language model processing for statistical machine translation, 
and

large-scale graph computations.



Other users

Facebook
Hadoop

Now use Corona (own implementation)

Yahoo
More than 100,000 CPUs in more than 40,000 

computers 

Hadoop

Linkedin
5000 servers on hadoop

Ebay
532 nodes cluster (8 * 532 cores, 5.3PB)



Some links

Google
MapReduce: Simplified Data Processing on Large 

Clusters by Jeffrey Dean and Sanjay Ghemawat

Technical report

Apache
Hadoop: The definitive guide

Book

Microsoft
Google’s MapReduce Programming Model — 

Revisited

Technical report


