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IT impact on electricity

m Recent datacenters: 40000 servers, 500000 services (virtual machines). Google,
Facebook > 1 million servers
m One major power consumer

m 2000 : 70 TWh

m 2007 : 330 TWh, 2% of CO, world
production

m 2011 : 6 electricity consumer in
the world

m 2020 : 1000 TWh

m Rising
m 2014 to 2016: 90% of datacenters
will need hardware upgrades
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How to supply electricity?
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Sustainable datacenters

m Action can be done at several different levels
m Hardware level: changing servers or cooling system
m If entropy is constant, theoretical energy consumtion is 0 !
m Application level: rewrite applications while changing
paradigm®or library
m Middleware level: manages servers and services/applications
m Middleware: minimal cost, maximal impact

m OpenStack: 30% of market share in 2014
m OpenSource solutions: 43% (+72% in 2 years)

* Georges et al. Exascale machines require new programming paradigms and runtimes, SF| journal, 2015
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Low utilization = high electrical waste
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Low utilization = high electrical waste

10 -
m In large organizations, computers are ey —
usually working between 10 to 50% g
load L
m Idle power is half of max power g
m Problem: On low load, Watt/Request ~ °
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Current methods

m Current methods:
m On high load, consolidation.
m On high number of requests, overhead is spread on lots of nodes
m But wasted Watts continue to add-up

m What do we want ?

m proportional computing
m idle load = OW
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Middlewares

m Two goals:

m Managing (needs, errors, faults,
overheating)

m Optimizing (Energy, performance) UEDZ:
u Leverages Monitor Knowl@dge Execute
m Switching on/off, DVFS
m Migration (x86/ARM)*, reduction of |_Sensor == Effector
allocated resources, suspend \Eﬂf_’f//-%—
m Methods
m Often in the real world: Humans or MAPE-K loop ©IE

rules
m In research: autonomic loop

* Violaine et al., Big, Medium, Little : Reaching Energy Proportionality with Heterogeneous Computing Scheduler, Parallel Processing
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Autonomic loop
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Outline: How to efficiently manage a
datacenter

m Efficiently?

m It is necessary to be able to compare (models &
metrics)

m Managing means deciding
m Measure tools
m Evaluation tools : Experiments, simulation
m Exact approaches and heuristics for decision
m Evolution of datacenters

m Datacenter federations
m Multi-levels optimization
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Plan

Autonomic loop
m Models and Metrics
m Measures
m Evaluation tools
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Model a system

To manage a system, we need to:
m Know all possible actions
m Know which is(are) the best one(s)
It can be translated into:
m Modeling impact and means (time, energy,...) of these actions

m Being able to compare two scenarios

B e
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Impact of leverages, an example with DVFS

Dynamic electric power consumed by a CMOS component:
Pcmos: eff><v2><f
with, Cer the effective capacitance *, V the voltage and f the frequency

* physical quantity: capacity of a component to resist to the change of voltage between its pins

Energy consumed for each tasks:

E=P+TxTx*V?®, avec Vo fetTol/F,alors E o f?

Frequency Frequency

E; x f?

Tl
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Models and Metrics Measures

Dedicated hardware

m HPC applications
m Old method: Communication and computation overlap
m New method: Communication, complex computation,
highly parallel computation,...
m Dedicated hardware

m Dedicated hardware for each sub-task to improve
overlap

Evolution

And beyond
Evaluation tools
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Heterogeneous heterogeneous landscape

m Hardware

m architecture : arm, GPU, FPGA

m generation : 2014, 2015

m In-generation : 13 15 17, Xeon, ...

m And all except processor : Memory type and hierarchy, storage, network, ...
m Reconfiguration

m DVFS, ALR (dvfs for network), ...
m Application

m Different applications have different impact: Memory bound, cpu-intensive, ...
m Different implementation of the same API also

B ooeepawe
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Some examples of dedicated hardware

Top500

m Tianhe-2 : 16,000 nodes, each build of two Intel Ivy Bridge Xeon and three Xeon
Phi coprocessors

European project MontBlanc

m 2160 ARM Cortex-A15 @ 1.7 GHz dual core CPU and 1080 ARM Mali T-604 GPU
HP MoonShot project

m CPUs, APUs, GPUs, DSPs, and FPGAs
Task dedicated hardware

m Deep Learning (NVIDIA DGX-1, Intel Xeon Phi Knights Mill)

B ooeepuee
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Dedicated heterogeneity is at all scale

m Dark Silicon

m Ongoing research
m Mostly on processor
m Switch off unused processors units

m Heterogeneous on-die cores

m Big.LITTLE ARM : Cortex A7 + Cortex Al5, 20us migration
m NVIDIA Optimus : CPU-integrated GPU + Full-fleged GPU, 1/5th frame migration

m Same problems

m Motherboard facilities (bus, network,...) always on and less dynamic
m Baseline energy-costs are high

B oeepuee


mailto:dacosta@irit.fr

Autonomic loop Decision Evolution And beyond
Models and Metrics Measures Evaluation tools

Example of long-term organic grow

Number of processors for each type on Grid'5000 (total 2116)

AMD Opteron 2218 100 || Intel Xeon E5-2620 8 || Intel Xeon E5420 | 68
AMD Opteron 250 158 || Intel Xeon E5-2620 v3 | 12 || Intel Xeon E5440 | 92
AMD Opteron 6164 HE | 168 || Intel Xeon E5-2630 40 || Intel Xeon E5520 | 254

Intel Xeon E5-2630 v3 | 350 || Intel Xeon E5620 56
Intel Xeon E5-2630L 32 || Intel Xeon E7450 | 52
Intel Xeon E5-2650 8 || Intel Xeon L5335 44
Intel Xeon E5-2660 44 || Intel Xeon L5420 | 332
Intel Xeon E5-2660 v2 | 16 || Intel Xeon X3440 | 144
Intel Xeon X5570 | 50
Intel Xeon X5670 | 88

B oreepueee



mailto:dacosta@irit.fr

Autonomic loop Decision Evolution And beyond

|
a . Models and Metrics Measures Evaluation tools

CHRS - INPT - UPE& _ UT1 - LT2d

IT departments evolve

m Large institutions are build over years

m Smallest one do not necessary change hardware, only
buy new one

m True also for scientists

m Keep old habits
m Sometime use all servers even oldest one

m True also for size

m Small dedicated clusters for particular tasks

B ooeepueen
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Even models are complex

Electrical power models for a single server:

m Classical : linear (error E~10-15%)

Power = Pmin + Load x (Pmax - Pmin)

B oeepueen
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Even models are complex

Electrical power models for a single server:
m Classical : linear (error E~10-15%)

m Finer : Processor voltage/frequency (E~5-9%)

Power = P, + Load x ono/tage2 Frequency

B oeepueen
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Electrical power models for a single server:

m Classical : linear (error E~10-15%)

Models and Metrics

Decision Evolution And beyond

Measures Evaluation tools

Even models are complex

N . 0, Appli‘catiu‘ns —"
m Finer : Processor voltage/frequency (E~5-9%) o e
. Total
m Even finer: Processor temperature (E~4-7%)
S 30
15
10
5
Power = Ppin+Load xaVoltage? Frequency+\ Temperatire o 400 600 800 1000

Temps (s)

B ooeepueen
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Even models are complex

Electrical power models for a single server:

Classical : linear (error E~10-15%)
Finer : Processor voltage/frequency (E~5-9%)

100

80

Even finer: Processor temperature (E~4-7%)

60
I

|
]
]
m Do not forget about bias: power supply unit '
E~2-3%, cooling, ... |

Efficiency (%)
40

20
I

Powerpc = wg + w1 Powerac + wy Powerf\c O 200 400 600 800 1000
DC Power (W)

B ooeepueen
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Even models are complex

Electrical power models for a single server:
m Classical : linear (error E~10-15%) hidden layers
m Finer : Processor voltage/frequency (E~5-9%)
m Even finer: Processor temperature (E~4-7%)

m Do not forget about bias: power supply unit
E~2-3%, cooling, ...

Learning methods (neural networks, E~2%) *

input layer
output layer

* Leandro et al., Towards a generic power estimator, CSRD journal, 2015
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Modeling a datacenter is a complex task

m Large number of elements
m Applications

142 1 1
m Process: Traces, high-level T = e
monitoring then abstraction = S
1035

e Ipercantage af mik lond)

¥
)
k

1] an 1 150 200 540
tirmne (s}
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Modeling a datacenter is a complex task

m Large number of elements

H H AMD Fusion, Dual- Intal i7, Qusd-Cara,
n App|lcatl0n5 Core, 8GBRAM 64 GFLOPS, 16 GB RAM

m Process: Traces, high-level
monitoring then abstraction

m Servers

12V Power Mastar Microcontrollar with

Supply Recs Ethernet Manitaring Port

B e
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Modeling a datacenter is a complex task

m Large number of elements
m Applications
m Process: Traces, high-level
monitoring then abstraction
m Servers
m Infrastructure
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Modeling a datacenter is a complex task

m Large number of elements
m Applications

m Process: Traces, high-level
monitoring then abstraction

m Servers
m Infrastructure
m And their interactions T 1 Talets
m Thermal (D-Matrix)* 1, ifz=k
m Between applications dpp=4084, ifx=k+9
. 0, . otherwise

* Hong Yang et al.,Energy-efficient and thermal-aware resource management for heterogeneous datacenters, SUSCOM journal, 2014.

B e
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A “simple” interaction of applications

m Two types of mono-thread applications 3

Cpu-Intensive mmmm
Mem-Intensive mm—

m Application 1 : Cpu-Intensive,
limited by the processor

m Application 2 : Mem-Intensive, ni” i 1

limited by memory CIEYt .

m Execution on a quad-core os | 1
m Applications 1 : Independent 0

EXPerimeny 3 Perimeng 5" imen 3P imen; ¢ Perimen

m Applications 2 : Strong cross-impact

B ooeepaw
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Metrics : A complex landscape

m HPC

m Improve performance, throughput
m Steady and known workload

m Cloud systems

m Improve cost efficiency
m Varying workload, difficult to predict

m Two main questions :

m How to program*them at large scale?
m How to manage them at runtime?

* Georges et al. Exascale machines require new programming paradigms and runtimes, SF| journal, 2015

B e
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Metrics

m Direct values:

m Processor and memory load, power, temperature, ...
m Objective: Does the system works? Comparing two datacenters, middleware,
software, ...

m 40000 servers, 500000 services — Need of simple metrics
m Consumption and performance

m Difficult to standardize, mainly performance
m Depends of the service, its implementation, ...

m Classical metric: PUE

Georges et al. Data Centres Sustainability Cluster Activities Task 3. Rapport de recherche 3. European Commission, 2014

B e
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PUE : Power Usage Effectiveness

Ratio Total electricity/IT electricity L o RO QT CREEREY RS :
Mean value: 1.7 in 2014

Standard initiated by GreenGrid
Where does the IT part StOpS? :le:ur-.—.:.i B eS| Server Room

Uilityotn RO

Chiler Fant

m Power Supply Unit? Fans on the
motherboard? Processor?

]
I
I
1| Swnage
I
I

Useful only in a very specific case ~ “oommmeemem ;
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PUE : Power Usage Effectiveness

m Constant overhead (100), IT

m Ratio Total electricity/IT electricity part 100 to 200 depending of

m Mean value: 1.7 in 2014 the load
m Standard initiated by GreenGrid m For the same service provided by
m Where does the IT part stops? two softwares
m Power Supply Unit? Fans on the Mean load 75%
motherboard? Processor? PUE = 275/175 = 1.57

Mean load 100%

m Useful only in a very specific case PUE = 300/200 = 1.5

B ooeepaw
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Problem of multi-objective

m Impossible to define in absolute, need
a context, a goal Y ¢

Constraint on X

m Formalize simple metrics* : Dynamism,
Energy, Performance, Resilience

m Several classical methods A A
Constraint optimizati
| | onstraint optimization A A
A
A
Nt
Optimal under

constraint

* Tom et al., Quality of Service Modeling for Green Scheduling in

Clouds, SUSCOM journal, 2014,

B e


mailto:dacosta@irit.fr

Autonomic loop Decision Evolution And beyond

] .
a . Models and Metrics Measures Evaluation tools

CHRS - INPT - UPE& _ UT1 - LT2d

Problem of multi-objective

m Impossible to define in absolute, need
a context, a goal Yt

m Formalize simple metrics® : Dynamism,
Energy, Performance, Resilience

m Several classical methods

m Constraint optimization
m Objective weighing

Optimal with weighing

* Tom et al., Quality of Service Modeling for Green Scheduling in

Clouds, SUSCOM journal, 2014,
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Problem of multi-objective

m Impossible to define in absolute, need
a context, a goal

. . . . Y Optimal for X
m Formalize simple metrics® : Dynamism, /
Energy, Performance, Resilience d

) Fuzzy optimal
m Several classical methods A

m Constraint optimization A
m Objective weighing AR Pareto front
m Fuzz ighing® (C ining b A
y weighing” (Constraining by A
relaxation of optimal) A

t Hong Yang et al. Energy-efficient and thermal-aware resource

management for heterogeneous datacenters, SUSCOM journal, X
Optimal on X plus 20%

B e
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Example: Performance and Power

m Two metrics, one linear, one quadratic
m M, is the power, so it is quadratic in function of the frequency (x)
m M is the performance, so it is linear in function of the frequency (x)
B Obj,(x) = aMy + (1 — a)M; = ax? + (1 — a)(1 — x)
m « is the weighing coefficient

a=1/3

1r a=1/2 1
a=2/3

= o8r B
=
=

e 0.6 B
-
=

S 04 4
2
5
S

= 0.2 F 4

ol 4

. . . .
o 0.2 0.4 0.6 0.8 1

Leverage: Frequency I
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How to choose o ?

Optimal value of

5 1 i frequency in function of «
g value.
g o08f - .
2 m Obj,(x) =
()
g o6f i al\/2/q—|—(1—a)M, =
3 ax®+ (1 —a)(1—x)
£ oar ] B a=0: Max
=)
El fr n
g ol | equency
© .
£ moa=1: Min
s of frequency

0 0.2 0.4 0.6 058 1 m In-between...

a: Relative importance of Performance (1) and Power (0) VOOdOO |

B oeepae
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Models and Metrics Measures Evaluation tools

Test suite

m Two main categories:

m Dedicated suites (Web services, database, HPC,...)
m Generic suites

m Scientific, Infrastructure manager: Black-Box applications
m The system must be the same in all cases
m Maximum coverage test-suite

m Same resources/Different power
m Different resources/Same power

Georges et al., Energy- and Heat-aware HPC Benchmarks, EuroEcoDc workshop, 2013

B oreepawn
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Models and Metrics Measures Evaluation tools

Conclusion

Study of a system

m For which use?
m Three notions are linked to provide the answer:

m Balance of the precision front of the models*
m Objective function used for comparing
m Scenarios used to kame the comparison

* Georges et al., Modeéles fluides pour I'économie d'énergie dans les grilles par migration : une premiére approche, RenPar conférence,

2009
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Measure Infrastructure

m Basis for taking decision
m Basis for metric evaluation
m Classical Infrastructure (nagios, ganglia, ...)
m Problem for scaling
m Most values are unused of aggregated late
m Some measures (processor, memory), but no knowledge

m Need of higher level measures
m What type of (phase of an) application
m Electric power consumed by applications

B oeepaew
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Which (phase of an) application is run-
ning

m A phase : behavior locally regular e
0.9
m Equivalent as a constant resource o

consumption
m System measures constants {
. . . . 300l identiques {
m Detection then identification

m Signature of a phase o0
m Same Phase ~ Same Impact

Temps (s)

phase {
en cours
semblable

)
o
Distance normalisée

02
500
0.1
0.0
- i 0 100 200 300 400 500
Landry et al., Exploiting performance counters to predict and Temps (5)

improve energy performance of HPC systems, FGCS journal, 2014. Matrix of similar system measures (WRF : Weather

Research and Forecasting)

B e
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External application identification

m Monitoring system values is intrusive

m Reduce the number of values
monitored

m Using external values has lower impact
(power, network)

m Authorize statistic tools

m Study the behavior during time

Georges et al., Characterizing applications from power
consumption : A case study for HPC benchmarks, ICT-GLOW

Symposium, 2011
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External application identification

m Monitoring system values is intrusive

m Reduce the number of values
monitored sl

m Using external values has lower impact

(power, network)

60407 -

Authorize statistic tools

Number of bytes sent per second

|
4e+07
m Study the behavior during time . et
2e+07 -+
Georges et al., Characterizing applications from power oy P 2‘n s m = P p 20
time (s)
consumption : A case study for HPC benchmarks, ICT-GLOW benchmark CG (NPB)

Symposium, 2011
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External application identification

m Monitoring system values is intrusive
m Reduce the number of values
monitored s |
m Using external values has lower impact ¢ |
(power, network)
@ 6es07
m Authorize statistic tools ;
m Study the behavior during time 2 e e p b
Georges et al., Characterizing applications from power ok = o = o e = 50
consumption : A case study for HPC benchmarks, ICT-GLOW benchrmark S‘;“Z’NPB)

Symposium, 2011

B e
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External application identification

m Monitoring system values is intrusive
m Reduce the number of values -
o FT o+
monitored wal * %5, vt
° 8 Yol
m Using external values has lower impact ;™ g “
T 6e+07 [
(power, network) ]
g 5es07 [
. - B
m Authorize statistic tools £ ol
m Study the behavior during time £ cees
2e+07 - X X J
-
Georges et al., Characterizing applications from power . ) N ) ) ‘ H -:.‘
consumption : A case study for HPC benchmarks, ICT-GLOW = “ “ PUVf:'Ow"SWPﬂ::TW) 250 i 270

Symposium, 2011
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Power of servers and applications

m Watt-meters are not always available (application level: never)

m Model linking system measures with electrical power
m Analytical
m Uses Datasheets. Very simple to put in place: PowerAPI
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Power of servers and applications

m Watt-meters are not always available (application level: never)

m Model linking system measures with electrical power
m Learning method
m Good coverage of the learning set and low impact of the measure

CPU intensive Memory NIC Al
£ ‘1 -8
Power
o CPU Usage

9 ! --- NIC Usage L e
g g
s 18 re %
8 g
@ =]

© L w

< &

3 F o

0 10 20 30 40 50 60
Execution time (m)
Generic synthetic load, 220 measured values (4% increase of power), 8 kept
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Power of servers and applications

m Watt-meters are not always available (application level: never)

m Model linking system measures with electrical power
m Learning method
m Good coverage of the learning set and low impact of the measure

CPU intensive Memory NIC Al

75
T
100

Power
CPU Usage
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Neural network VS capacitive model

Power Model: Neural Network (all) Power Model: w + w,*CPU *CPU_
Measured ' Measured '
70 Estimated [ i 0l Estimated “ [ i
)
2 60 4 £ 60f 4
& %0 7] & I 7]
(
40 b Jlf/ )
. . . . . . . .
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
MAPE=1.83% R?=0.9509 MAPE=5.42% R?=0.7144
3 8

600 3 ]
Y R 20 S 70
2 % 2 z
§ 500 % 5 200 g
S 400 g 60 H - g 60
5 8 5 5
g 300 © 50 3 S 50
2 " 2 100 T
E 200 L 5 L
5 =5 5 <
z 340 z 3 40

100 3 50 5

o <]
0 0 Al o
-20 -10 0 10 20 3 40 5 60 70 80 -10 0 10 20 30 30 40 50 60 70 80
Error (W) Target Error (W) Target

(a) ANN regression using all KPls. (b) Calibrated capacitive model.
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Result of learning methods

B Aggregated B ANN (reduced)

MAPE (%J)

learn aeneric apache  apache perf  c-rav oenssl  ovbench stess  amx poCH2 amx vilin  amx dopc  amx lzm
10.1 132

m Aggregated N (reduced)

MAPE (%J)

learn hocc A hooc A dist  hocc B hooe B dist  hocc G hoce C dist  nob A4 nob A8 dist nob B4 nob B8 dist  nob C4  nob C8 dist

Error of two models: Aggregated (linear regression on sum of sub-models) and ANN (neural network)

m Most models: error of 5%
m Reference in the field: Rivoire et Al. A Comparison of High-Level Full-System Power
Models

Leandro Modeling the power consumption of computing systems and applications through Machine Learning techniques, 2015
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Conclusion

m Current approaches need a global point of view
m Scalling
m Latency problem
m Lots of decisions are local (DVFS, migration,...)
m Open problems
m Granularity of the measure: Adaptive and multi-scale
m Spatial and Temporal independence
m Maximal coverage test suite automatic generation
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Evaluation tools: Experimentation,
Simulation

m To improve, comparison is necessary
m Three main methods

m Mathematical models
m Simulation
m Experiments
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Linear programming

m Describe all constraints with linear
equations

Example : A task is on a unique

server

m Let ej, the fact that task j runs
on server h

m ej, = 1 iif task j is on server h
mVj,h epe {0,1},
Vi Xopeh=1
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Linear programming

m Describe all constraints with linear Example : Minimize the total power
equations consumed

m Describe the objective as a function to m Pt et ,D:y” - static and
minimize dynamic power of server h

(linear model)

m Let aj, the processor fraction of
task j on server h

m min Y, (P52t + 32 cain Py
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Linear programming

m Describe all constraints with linear

H Constraints :
equations vh e

Vj Xhep =1, Vjh e €{0,1}, ajp < ejp, mip < e

m Describe the objective as a function to Vi v € {01}, Vh X o S v S mp < v
C Vi, h pp < (1= ep) + v
minimize Yjh v Szgl_e;!h)ﬂg

) .. Vh S apn/n <y

m Formalize leverages and their impact v Samn <y
™ Approximation Of real W0r|d (quad ratic Minimize power under performance constraints:
Vj 3Zh ajn/rj > Threshold

phenomena) min(3, (PI™ + 3°; gy x (PP — Pyin))

m Exact resolution for small cases

Damien et al., Energy-Aware Service Allocation, FGCS journal, 2011
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Scaling of linear programming

m Exact method: time complexity exponential in function of integer variables
m 6 servers, 16 tasks : 3 minutes (GLPK)
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Scaling of linear programming

m Exact method: time complexity exponential in function of integer variables
m 6 servers, 16 tasks : 3 minutes (GLPK)
m Methods of constant variables

m Fix some variables, solve, change the fixed variables and iterate
m Worse than the optimal but can be very fast
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Scaling of linear programming

m Exact method: time complexity exponential in function of integer variables
m 6 servers, 16 tasks : 3 minutes (GLPK)
m Methods of constant variables

m Fix some variables, solve, change the fixed variables and iterate
m Worse than the optimal but can be very fast

m Relax the integer constraint
m “Better” than optimal (a task half on a server and and half on another one)
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Scaling of linear programming

m Exact method: time complexity exponential in function of integer variables
m 6 servers, 16 tasks : 3 minutes (GLPK)
m Methods of constant variables

m Fix some variables, solve, change the fixed variables and iterate
m Worse than the optimal but can be very fast

Relax the integer constraint
m “Better” than optimal (a task half on a server and and half on another one)

Using both it is possible to have a interval
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Simulation

m Large number of simulators: SimGrid, DCWorms, CloudSim, ...
m Particular needs for our research

m Cloud models (migration, Over-allocation of resources, federationf)
= DVFS
m Electrical power
m Temperature
m Situation is steadily improving

m DVFS and fine-grained management of clouds in CloudSim
m Thermal simulation in DCWorms*
m DVFS and energy in SimGrid

* Wojtek et al., Energy and thermal models for simulation of workload and resource management in computing systems, SMPT

Jjournal, 2015. T Thiam et al., Cooperative Scheduling Anti-load balancing Algorithm for Cloud, CCTS workshop, 2013
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Models and Metrics

Adding DVFS

m Simulators mainly come from Grid
world

m Stability during time
m Resources are always used at 100%

m DVFS needs to move events

m Fine-grained temporal management

(1/10s)

Tom et al., Energy-aware simulation with DVFS, SMPT journal,

2013

Decision Evolution And beyond

Measures Evaluation tools

in CloudSim

Courbes de charge CPU en mode ONDEMAND, Seuil = 95%

Charge CPU (%)

HOST
Si mul ation -
200 250

100 150
Temps (seconde)
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Models and Metrics Measures Evaluation tools

Ad-hoc simulators: Reinvent the wheel?

m Simplistic simulators
m Lets test an idea at a low cost

m Necessary to stop at the right complexity level

m Simulator of heterogeneous architectures™
m No network simulation
m Example: prove the utility of heterogeneity to reach a proportional system

* Georges, Heterogeneity: The Key to Achieve Power-Proportional Computing, CCGrid conférence, 2013.
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Experimentation

A model is always an approximation

Final validation by experiment

Complex because of the need to have electrical measures

m At ENS-Lyon, they where one of the first to experiment with watt-meters at large
scale (GreenNet)*

Problem of distributed measures, electrical conversions, impact of measures
(performance counters)

Reproducibility problem

* Da Costa, The green-net framework: Energy efficiency in large scale distributed systems, IPDPS, 2009
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Models and Metrics Measures Evaluation tools

No stability of experiments

m Simple experiment of Fast Fourier
Transform (NPB) e ' o
m 100 experiments on exactly the same o 0
hardware (Grid’5000) ol .
m Large variations ; o8 | e
m Time: 12s, 7% (Std. Dev. 3.2s) ® el
m Energy: 9.3kJ, 5.5% (3kJ) l
m For the same time, 167s Q.

m Difference of 4kJ Energie ()

Time # Energy
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Conclusion

All tools are limited

m Models: Approximate or optimal unreachable
m Simulation: Approximate
m Experimentation: Reproducibility and very sensible

Large investment necessary
Simulation : Quite good value for money
Difficult to test In-Vivo

And beyond
Evaluation tools
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Decision
m Placement
m Cloud federation
m Data center in the box
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Placement Cloud federation Data center in the box

Exact Approaches and heuristics

m Two problems

m Placement
m Temporality

m Classical heuristics for placement
m Greedy: Best Fit, First Fit
m Vector Packing (Gourmet Greedy)
m Genetic algorithms
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Classical greedy algorithms

e e e e
m Characteristics Tsks ;

™ Memory el E o

m Processor A R & A AR

First-Fit et Best-Fit
processor

First-Fit and Best-Fit

m Sort services

=
I- ] | =l 0B I
m Sort servers == = =

m No coming back
on previous % R &R e A

.
Round Robin Vector Packing
- [Ca] ] 3l 3
decisions II Il ENE
:
1 — =8 BB
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Gourmet Vector packing

m 4 objectives in the sort function

Egaesr Ly las.s by 9 4oy

m Server is attractive from an energy e " S
. - o FI DEOUN " —
point of view e Sy Smhem L =
(% SIFIDEOUN S 4
m Add the task do not overload the . R
server

m Server already switched on
m The tasks brings back the balances
of resources

m Time “only”in O(J x HIn(H))

m But the solution of the Gourmet is
difficult to qualify

Damien et al., Energy-Aware Service Allocation, FGCS journal, 2012.
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Genetic Algorithms

m Chromosome = Allocation

m Initial random generation

- At eaCh generation: Tom et al., Quality of Service Modeling for Green

. Scheduling in Clouds, SUSCOM j 1, 2014
m Hybridizing and mutation cheduling i Slouds Journa

m Sort on the objective metric
m Keep only the best
e [raen: |[AB CDEFGH I

Chromosome i 3 T o 3 7 A B C -- EISSIE
Hybridizing between two points

M1 VM5®1,3,6 vz / Vs 457 - 1
——— Embae I
M3‘ VMs 2,8 ; M4‘ VM 9 i ,W‘ ralEed 5 = = |
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Placement Cloud federation

Metrics for genetic algorithms

m Contrary to with greedy, we can optimize a metric directly
m Examples of metrics
m Energy, Performance, Resilience, Dynamism

Coefficient applied to metrics
GA Name Energy ‘ Res.ponse ‘ Robustness ‘ Dynamism
time
GA Al 1 1 1 1
GA Energy 1 0 0 0
GA RespT 0 1 0 0
GA Rob 0 0 1 0
GA Dyn 0 0 0 1

And beyond
Data center in the box
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Placement Cloud federation Data center in the box

Results of the genetic algorithm

GA Energy Comparison GA Response Time Comparison
m Each algorithm is the - A
1 1 1 E 130
best in its own domain e s
(Energy) o

m GA All Very good Ny

h " 105
everywhere -
R F R
- Nb VMs to Allocate. h s to Allocate
m 400 services on 110 GA Robusiness Comparison GA Dynamism Comparison
.
o

servers, approximately
40s

m Taking into account a
metric is already very
important

ism (Free MIPS per Host)
g

ynami

D,

0 s 100 150 200
Nb VMs 1o Allocate.
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Fuzzy Greedy

7000

+ Uniform

X MinHR

6000 Coolestlnlet

O Perf-Aware
Energy-Aware

O Thermal-Aware|

Famille de Gloutons / \E]

Nouvel optimal

m Advantage of the G.A.: aim an
objective

o
o
o
o

m Similar method for greedy algorithms
m Families of greedy algorithms
m Keep the best
m Define the best 7

N
o
o
S

(]
o
o
o

Average Response Time (secs)

n
o
o
o

m Fuzzy multi-objective

Optimal sur E relaché

1
OO%O 70_ 120 170 220 2701 320 370
Total Energy Consumption (kWh)

Hong Yang et al., Multi-Objective Scheduling for Heterogeneous Server Systems with Machine Placement, CCGRID conférence, 2014
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Why power/energy is unique

. HosL A
) ) @ LIL P

m The temporal point of view : __H_,I_JJ. Ijm roa

m Inertia due to temperature . — -

m Switching on/off servers ) - | |

== L gt ™ o S g
m Over- or Under-reservation S Tl e

m Cycles are sometime good e ETEEE S
m Non-linearities o i I L R | ey S S’ Hagd -

m Equation of power | SR | R -l A, (F ”

g r"\ln; Mo LU;J\LUIIIL‘.iL\\ "?ﬁ'l L "I'i“

m Feedback loops
m Cooling system

Violaine et al., Thermal-aware cloud middleware to reduce cooling needs,

WETICE workshop, 2014
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At the scale of a cloud federation

m Operator rent resources of its competitors (Telecom
roaming) Thiam et al., Cooperative Scheduling
Anti-load balancing Algorithm for Cloud

m Similar method as super-peers
: CSAAC, CCTS workshop, 2013

m Distributed ou centralized, similar performances

300000
250000 M 7,00E+04
200000 6,00E+04
= 5.006404
2 150000 =
£ 2 400404
- B
100000 g 3005204 |
H
2,00E+04
50000 [d
1,00E+04
o 0,00E+00
500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of jobs Number of jobs
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Follow the sun, Follow the moon

m Classical approach

m Consolidation between datacenters

m Coordinated management of Quality of Service (ex: CDN)
m Follow the state of datacenters

m During night, less cooling cost

m During day, more renewable energy production
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Proportional architecture |
GO 100 200 300 400 300 600 00 800 a0
Requests rate

=E= . PI t Cloud federati Daga center in the b
acemen oud rederation ata center In e ox
At the scale of the Data center in the
box
1 ‘ # BIG
m Rack level W W W W m W W W
. . . # MEDIUM
m Low number of services: High variance T e, I
i % JUZ T T N VI /R R TR
m Perfect adaptation to the load o ame -
m Currently costly: Initial overhead TR B B
. § BML architecture consumption =
“Coolng e
m Everything which is negative in the : g
PUE Em. TR RS il o — BML combination |
359 o - BIG only
& - BML linear
§
H

Violaine et al., Big, Medium, Little : Reaching Energy Proportionality with Heterogeneous Computing Scheduler, Parallel Processing
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At the scale of the Data center in the
box

BML architecture consumption

m Rack level
m Low number of services: High variance  .*
m Perfect adaptation to the load :
m Currently costly: Initial overhead g“’”_ P
m Cooling :
m Everything which is negative in the ix :
PUE 3] — BMLcombination|
| -+ BIG only
m Proportional architecture gl

GO Ul 200 0 400 500 600 oo 800 900
Requests rate

Violaine et al., Big, Medium, Little : Reaching Energy Proportionality with Heterogeneous Computing Scheduler, Parallel Processing
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Reaching energy-proportionality using het-
erogeneous hardware

Use nodes depending on the real load (web server as example), not the peak load

Processor | Watt range Max request/s Efficiency (W/r)

Intel 17 11 - 42 353 12
Intel Atom 8-9 34 .26
Raspberry Pi | 2.56 - 2.81 5.6 .50

Intuition: Several small node and intermediary nodes to have a multi-scale smooth curve
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Zoom on Intel I7

45

T T T
Power consumption (W) ———

40 - Latency (1/100th of second) _
10 Requests per secondf

Total Watt/Requests per second/Latency

0 — ! ! ! ! !
0 50 100 150 200 250 300

Number of clients
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Zoom on Intel Atom

12 T T T
> Power consumption (W) ———
e Latency (1/10th of second) ———
% 10 10 Requests per second — _|
.
'B  — 0 T
g [
S sl — 1
(]
wn
g
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a
[
>
g a4t 4
«
B
O
= 5L J
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e
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Number of clients

B oeepuewn


mailto:dacosta@irit.fr

e Autonomic loop Decision Evolution And beyond
a . Placement Cloud federation Data center in the box

CHRS - INPT - UPE& _ UT1 - LT2d

Comparison
16 T T ]
14 - ///// 1
12 | ,,//// .
///
10 - Intel 17 7

o _ 7 Intel Atom ———

8 ,W Raspberry Pi ——
2 Raspberry Pi —H—

6 - 3 Raspberry Pi —k—

Total Watt
|

4 - il
2 - -
0 | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50

Requests per second
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A near-linear behavior

Take the most efficient hardware as function of workload:

0—5 req/s 1 Raspberry Pi

5—10 req/s 2 Raspberry Pi

10—35 req/s 1 Intel Atom

35—40 req/s 1 Intel Atom + 1 Raspberry Pi
40—350 req/s 1 Intel I7

For over 350req/s, use modulo 350, and use as many 17 as necessary
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Still far far away...

45

T T
Proportional hardware
40 - Intel 17 |
Heterogeneous hardware

30 - B

25 - B

Total Watt

15 - B

0 ! ! ! ! ! !
0 50 100 150 200 250 300 350

Requests per second
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Placement Cloud federation Data center in the box

Not so far, efficiency view !

T T T
Proportional hardware

7 Heterogeneous hardware

Intel 17

Energy per request (Joules)
D
T
|

0 T T T I T T
0 50 100 150 200 250 300 350

Requests per second
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98 Football World Cup

m Available data
m 92 days of web server access logs
m Workload precise at the second level j
m Four geographic locations, three in US, ==~
one in France e

m Several phases s
m Low phases, first 40 days and last 10 o

days v
m High phase, during the competition #7eT
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Placement Cloud federation Data center in the box

I I I I I
ALL 98 World cup web sites ———
Santa Clara servers ——
2 600 - Plano servers ———
§ Herndon servers ———
% 500 - Paris servers |
)
[%]
s
o 400 - e
o
w“w
o
5 300 + e
Q
€
2 200 - |
C
3
= 100 - _
0

Time (day)
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Autonomic loop Decision Evolution And beyond
Placement Cloud federation Data center in the box

Comparison if using one single data-center

T T T
Proportional hardware ———
Heterogeneous hardware ———
Intel 17 ——
Intel Atom ——
Raspberry Pi

Time (day)
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Autonomic loop Decision Evolution
Placement Cloud federation

And beyond
Data center in the box

Zoom on the most efficient methods

T T T
Proportional hardware
Heterogeneous hardware
Intel 17

10 20 30 40 50 60 70 80 90
Time (day)
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Far reached goal: proportional
computing
100 ¢ T T T T ]
r Proportional hardware ]
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n L Intel 17 ]
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o Raspberry Pi
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Comparison if using multiple data-centers

T T T
Proportional hardware =
2e+08 - ) Heterogeneous hardware mmmmm —
One Single Intel 17
Data-center
1.5e+08 |- f
w
[
>
o le+08 b
5e+07 f
0

Santa Clara Plano Herndon  Paris

., _

MNa k-
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Adding management heterogeneity

m Switching on/off
nodes take time

m Switching on/off
nodes consumes ' Tt seosns
e n ergy GEnsUrETor SHhe rEaE00rs T stays iRle

m For application
reconfiguration

m For switching
on/off the server

Tz nsecards

Lefevre and al., Supercomputing 2008
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Several methods to manage servers

m Exact approach, linear programming
m Heuristics
m Reactive
m When overloaded, start new servers, when under-loaded stop some
m Pro-active
m Predict the future and decide which server to use

shortWin_i shortWin_k
14 X
\ , 7 N \ , 7 N \
| %
t0 tOn i tOn i+1 tOn_k tOn k+1

Violaine et al. Energy Aware Dynamic Provisioning for Heterogeneous Data Centers, SBAC-PAD 2016
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Pro-active Heuristics
Jm
= | |
A8t
hy: 1am B B azo B L
& REDIUM

m Predict load and switch on nodes to
guaranty QoS

"

1111 prraksukTEms

; \'i

Er Tl

Violaine et al., Energy Proportionality in Heterogeneous Data Center Supporting Applications with Variable Load, ICPDS 2016
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Pro-active Heuristics
i - amie
- |
m Predict load and switch on nodes to ‘ ewetun — N
guaranty QoS E A4, ! mF| ﬂ Il S J
m Switching on can be followed by i1/ g B |

1111 prraksukTEms
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Violaine et al., Energy Proportionality in Heterogeneous Data Center Supporting Applications with Variable Load, ICPDS 2016

B e


mailto:dacosta@irit.fr

Autonomic loop Decision Evolution And beyond
Placement Cloud federation Data center in the box

Pro-active Heuristics

3 1 |
i —
m Predict load and switch on nodes to S e
guaranty QoS E ' —| J—| Il S \
m Switching on can be followed by | |

switching off

m When load decrease, switch off servers J\| )/\ |

accordingly

Violaine et al., Energy Proportionality in Heterogeneous Data Center Supporting Applications with Variable Load, ICPDS 2016
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Pro-active Heuristics

m Predict load and switch on nodes to - 2 \m N
guaranty QoS I S S

m Switching on can be followed by _ |
switching off il el

m When load decrease, switch off servers )/\ 5
accordingly | J Y

m Stay near the optimal repartition / r \_

Violaine et al., Energy Proportionality in Heterogeneous Data Center Supporting Applications with Variable Load, ICPDS 2016
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Pro-active Heuristics

lJl |—I|_{
m Predict load and switch on nodes to i;w__ B —
guaranty QoS e S '|I "| B |
m Switching on can be followed by H H[HHUUWH H”]HHH [ﬂ IW w“ |
switching off o a7 0 i
m When load decrease, switch off servers
accordingly
m Stay near the optimal repartition

Violaine et al., Energy Proportionality in Heterogeneous Data Center Supporting Applications with Variable Load, ICPDS 2016
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Placement Cloud federation Data center in the box

State-full distributed applications

m Classical applications are not maleable

m Distributed databases
m OpenMP or MPI applications

m Impossible to change the number of application instance
m Add migration time/energy to Switch on/off

B oreepae
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Placement Cloud federation Data center in the box

Heterogeneous micro-architectures

m Instance can be migrated between architectures
m Performance depends on architecture of VM and server

VM
X86

VM
ARM

ARM Virtualization EXEt.

Host ARM

x86 Virtualization Ext.|

Host x86

x86 Virtualization Ext.

Host x86

m Translation slowdown ratio: 8 Violaine and al. PPL 2005

m Low load on ARM, high load on x86, x86 VM I -
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And beyond

Decision Evolution
Fine-grained level

Autonomic loop

Large-grained

Medium-grained level

Plan

Evolution, nodes optimization
m Large-grained
m Medium-grained level
m Fine-grained level
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Toward the future

m A larger number of datacenters
m Lots of smaller ones (hybrid management)
m The knowledge: critical resource
m A large number of diverse sizes
m Some larger (2016 : 6300000 m?)
m Overall, datacenters will be more integrated in their environment

m Electrical aspects
m Thermal aspects

B oo
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Large-grained Medium-grained level Fine-grained level

At the level of a node

m Three temporality
m Large-grained (minute) : Optimal frequency in function of the task graph*
m 13% of energy savings
m Medium-grained (second) : Phase detection’
m 20% of energy savings, 3% of time increase
m Fined-grained (1/10s) : Frequency policy at the kernel level*
B 25% of energy savings, 1% of time decrease

m No coordination between the three temporality, no objectives

* Tom et al., Energy-aware simulation with DVFS, SMPT journal, 2013 TLandry et al., Exploiting performance counters to predict and
improve energy performance of HPC systems, SUSCOM journal, 2014 j;Georges et al., DVFS governor for HPC: Higher, Faster,

Greener, PDP conférence, 2015
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Large-grained Medium-grained level Fine-grained level

At the scale of a node: Large-grained

m Use of contextual external information
m Example at the scheduler level: Task DAG
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Coordination of node speeds
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Action at the node level

Optimal Frequency regarding DAG task Slack-Time
2 T T T

Optimal F'requency +

Frequency (Ghz)

08 | A R I TRt

0.6 B

1 2 3 4
Ratio (Slack-Time/Ttask), Slack-Time range = [0.1*Ttask;5*Ttask]
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Action at the node level

Optimal Frequency regarding DAG task Slack-Time
2 T T

j Optimal F'requency +

m To go further

12} 1 m Switching on/off servers
m Manage temperature

Frequency (Ghz)

0.6

0 1 2 3 4
Ratio (Slack-Time/Ttask), Slack-Time range = [0.1*Ttask;5*Ttask]
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Large-grained Medium-grained level Fine-grained level

At the level of a node: Medium-grained

m React at medium latency at the level of the node
m Change the processor frequency
m Change the hard drive mode
m Reconfigure the network card

Detection of the current phase

React in function of this profile

Light impact on the infrastructure
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- a . Large-grained Medijum-grained level Fine-grained level
Resource consumption of a complex ap-
plication
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Phases where resource consumption are
constant

T-—— .

CHRS - INPT - UPE& _ UT1 - LT2d

phase id

& 2 &g

g
By

0 1 1 1 1 1 1 1
1] 50 100 150 200 250 300 350
time (s)
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Decision method

Phase label Possible reconfiguration decisions
compute-intensive | switch off memory banks; send disks to sleep;
scale the processor up;
put NICs into LPI mode
memory -intensive | scale the processor down; decrease disks
or send them to sleep; switch on memory banks
mixed switch on memory banks; scale the processor up
send disks to sleep; put NICs into LPI mode
communication | switch off memory banks; scale the processor down

intensive switch on disks

|O-intensive switch on memory banks; scale the processor down;
increase disks, increase disks (if needed)

B ooeepue
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Large-grained Medium-grained level Fine-grained level

Energy and performance, 28 node
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Large-grained Medium-grained level Fine-grained level

Fine-grained = DVFS ?

Relative values between performance and ondemand governors

Benchmark FT SP BT EP LU IS CG
Time increase (%) 0o -3 -1 1 -2 2 0
Energy increase (%) | 0 -3 -1 -1 -2 -1 -1

m HPC applications are rarely in Idle... Surprise !

m MPI libraries are spinning

Classical HPC benchmarks from NPB (Nas Parallel Benchmark)

B ooeepue
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DVFS = function of load

meta_sched2_0.05

meta_sched ——

ondemand ——
/ meta_sched2_0.01

140 | meta_sched2_1 J

smart2_ 0.5 ——

/ conservative ———

\ smart2 0.2 ——

smart2_0.01 ——

/ \ smar2 0.1 ——

meta_sched3 ——

130 / smart2_0.05 ——
/ performance
meta_sched2_0.2

meta_sched2 0.1

/ \ smart2_1

ave ——

pow
\ meta_sched2 0.5
mart

SP BT
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Fine-grained level

Yet DVFS has potential

Relative values between performance and powersave governors

Benchmark FT SP BT EP LU IS CG
Time increase (%) 36 69 110 159 96 35 83
Energy increase (%) | -18 2 21 50 16 -19 7

m Time rises, but up to 19% or energy consumption reduction !

B ooeepueen
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HPC Hypothesis

m State of applications
Computing
Communications
Disk 1/0

Idle



mailto:dacosta@irit.fr

Autonomic loop Decision Evolution And beyond

re—u N

Large-grained Medium-grained level Fine-grained level

CHRS - INPT - UPE& _ UT1 - LT2d

HPC Hypothesis

m State of applications
m Computing
m Communications

Fastest

Computation Communication

Slowest Aot B

Computation Communication

| RS
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Decision

m Energy for maximum frequency
(a+B)P1

m Energy for minimum frequency
(Ao + B) P>
The processor stays at maximum frequency if it consumes less energy:

(a+ B)P1 < (A + B) P2

B e
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How to measure o and j3

m Difficult to measure directly o and 3
m Runtime, not code instrumentation

m Easy to measure network bandwidth (with B, maximal bandwidth)

m In fact « and 3 are not important

m % is needed, i.e. the ratio between time to compute and time to communicate

| RS
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Large-grained Medium-grained level Fine-grained level

The great mix

Mix and serve:

Bm Pl
__B
g P2) !

B; : Bandwidth limit at maximum frequency to use or not DVFS

By <

In the opposite direction

Bm P2
)\_1()\31—1)

B, : Bandwidth limit at minimum frequency to use or not DVFS
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Adding an hysteresis for adding inertia

NetSched Algorithm

m Each 10%" of a second, do:
m If Current_Frequency = Slowest frequency and IBR < .9B;
m Change frequency toward Fastest
m If Current _Frequency = Fastest frequency and IBR > 1.1B,
m Change frequency toward Slowest

m Else, do nothing

IBR : Incoming Byte Rate
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Large-grained Medium-grained level Fine-grained level

Experimental environment

m Servers (thanks Grid5000)

m Processors : bi Dual-Core AMD Opteron (2218)
m Memory : 8GB

m Network card : Gigabyte Ethernet

m Frequency : 2.6GHz and 1GHz

m Electrical Power : P; = 280W et P, = 152W

m Benchmark
m 7 Nas Parallel Benchmark (NPB)
m Governors

m Performance/Powersave/Ondemand
m NetSched

1.1B; ~ 7.107 et 0.9B, ~ 3.10/

B oeepae
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Example of execution

Network communication over time
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Makespan (in % of performance)
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Autonomic loop Decision
Large-grained Medium-grained level

Results: Makespan

Evolution

performance
powersave
net_sched
ondemand

And beyond
Fine-grained level
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Energy (in % of performance)
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Autonomic loop Decision
Large-grained Medium-grained level

Results: Energy-to-solution

Evolution

performance
powersave
net_sched
ondemand

And beyond
Fine-grained level
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The missing link between levels

m An “handmade’work

m A large number of inter-dependent middlewares
m Human manipulations

m Toward a decentralized cooperation
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Cooperation between decision levels

Initial situation is stable
o Hm

(A



mailto:dacosta@irit.fr

Decision Evolution And beyond

Autonomic loop

~— 1 B
Cooperation between decision levels
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Initial situation is stable
Decrease of solar production
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Cooperation between decision levels

Initial situation is stable
Decrease of solar production
Non-critical task: Aggressive DVFS ¢ -

o
.
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Critical task: unavailable dynamism

o
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Cooperation between decision levels

Initial situation is stable
Decrease of solar production
Non-critical task: Aggressive DVFS

apa

e

Critical task: unavailable dynamism

Critical task: looks for an adequate
location

I

(A
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Cooperation between decision levels

Initial situation is stable
Decrease of solar production

Non-critical task: Aggressive DVFS u —
Critical task: unavailable dynamism :;j ‘;"‘,"-_
Critical task: looks for an adequate
location
Switching off a server YT
[z )\

Less aggressive DVFS
6] 88 [t
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Open research questions

m Programming paradigms
m Ability to describe parallelism intuitively
m Remove the burden from developer
m Runtimes
m Capability to adapt to particular profiles and their
interactions
m Ability to change kernels in function of context
m Communication between these two levels
m Cooperation between operators

m Cloud federation
m Cloud and HPC systems
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