
1/2

M1 Computer Science Parallelism

Université Toulouse III – Paul Sabatier
118 route de Narbonne

31062 Toulouse cedex 9

Lab work – n°1
Processus and monitor synchronization

Documentation

The concept of "monitor" can be used to synchronize processes using conditions (in the
multiprocessing module). See the documentation available in Moodle.

Exercise 1 - Producer/Consumer Model - Version without synchronization

 Retrieve the code named m1_prodCons_base.py provided in Moodle.

 Run the application for different parameter values.

Examples of execution:

python3 m1_prodCons_base.py 3 3 1
python3 m1_prodCons_base.py 2 2 2
python3 m1_prodCons_base.py 4 4 4
and see the problems with unshared variables.

 Modify this program to replace the constants nb_times_prod and nb_times_cons
(number of deposits made by a producer and number of withdrawals made by a consumer) with
two additional parameters given at runtime.

 Modify this program to use shared variables between processes. Note the access conflicts on
the shared variables.

Exercise 2 – Producer/Consumer Model – Basic version

From the provided code, add the monitor synchronization - using mutual exclusion locks and
conditions - needed to implement the basic producer-consumer version (seen in class and TD) in
which withdrawals occur in the order of deposits. As in the tennis court example, build a monitor in
a python class.

 Run the application for different configurations to ensure the validity of the results obtained.

[Code to upload on Moodle]

Exercice 3 – Producer/Consumer Model - Alternate Deposits

Modify your code (keeping the previous version) to implement the version where the producers
alternately drop their messages in the buffer (see V2 of the TD). For the tests, use an even number
of producers.

[Code to upload on Moodle]

2/2

M1 Computer Science Parallelism

Exercise 4 – Producer/Consumer Model - On Demand Withdrawals

Modify your code (keeping the previous version) to implement the version where consumers
request to withdraw a message of a certain type and their withdrawals must be done in the order
of the deposits (see V3 of the TD). We will no longer force the alternation of deposits.

Exercise 5 – To continue... Producer/Consumer Model - Dual Deposits

Modify your code (keeping the previous version) to implement a version where at each deposit, a
producer deposits two messages in an (unbreakable and) consecutive way in the buffer (so, the
deposer() function will have to be adapted). The removal of messages will be done in the same way
as in the basic version, i.e. in the order of the deposits (final exam June 2017).

Reminder: If the displays are too fast, it is possible to delay the execution of a process for a few
microseconds or nanoseconds using the primitives:

time.sleep(secondes)

See the online manual for their use:

https://docs.python.org/fr/3/library/time.html#time.sleep

We can use a randomly generated value (see the functions random.rand and random.seed) to vary
the waiting times from one process to another.

https://docs.python.org/3/library/random.html

But, be careful, the timeout is not there to solve the problems of concurrent access to shared
variables. In other words: any execution of a parallel application must give a consistent result
without timeout!

https://docs.python.org/3/library/random.html
https://docs.python.org/fr/3/library/time.html#time.sleep

