
GloMoSim: A Library for Parallel Simulation of Large-scale Wireless Networks

Xiang Zeng Rajive Bagrodia Mario Gerla
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

Abstract
A number of library-based parallel and sequential

network simulators have been designed. This paper
describes a library, called GloMoSim (for Global Mobile
system Simulator), for parallel simulation of wireless
networks. GloMoSim has been designed to be extensible
and composable: the communication protocol stack for
wireless networks is divided into a set of layers, each with
its own API. Models of protocols at one layer interact with
those at a lower (or higher) layer only via these APIs. The
modular implementation enables consistent comparison of
multiple protocols at a given layer. The parallel
implementation of GloMoSim can be executed using a
variety of conservative synchronization protocols, which
include the null message and conditional event
algorithms. This paper describes the GloMoSim library,
addresses a number of issues relevant to its
parallelization, and presents a set of experimental results
on the IBM 9076 SP, a distributed memory multi-
computer. These experiments use models constructed from
the library modules.

1 Introduction
The rapid advancement in portable computing

platforms and wireless communication technology has led
to significant interest in mobile computing and mobile
networking. Two primary forms of mobile computing are
becoming popular: first, mobile computers continue to
heavily use wired network infrastructures. Instead of being
hardwired to a single location (or IP address), a computer
can dynamically move to multiple locations while
maintaining application transparency. Protocols such as
Mobile-IP have been suggested to handle message routing
in this scenario. This is somewhat analogous to cellular
telephony, where mobile subscribers must always
communicate over a single hop to a base station, which
subsequently routes the call over a fixed network. In the
second form, called ad hoc networking, communication

among a set of mobile units is established 'on the fly'
without using any existing network infrastructure. In its
most general form, ad hoc networking supports
transmission of multimedia traffic over multi-hop
transmissions in a network of mobile communicating
devices [1]. It is fairly easy to devise mobile networking
scenarios where a mobile multi-hop wireless network is
interfaced with a wired network such that end-to-end
performance is determined by the characteristics of both
wireless and wired network components.

Protocols designed for this kind of environment are
complex to evaluate analytically due to factors such as
complex channel access protocols, node mobility, channel
propagation properties, and radio characteristics.
Excessive execution time of detailed models forms a
barrier for the effective use of simulation. In this paper we
explore the use of parallel discrete event simulation to
reduce execution time for composable detailed simulation
model of wireless networks.

GloMoSim is a library-based sequential and parallel
simulator for wireless networks. It is designed as a set of
library modules, each of which simulates a specific
wireless communication protocol in the protocol stack.
The library has been developed using PARSEC, a C-based
parallel simulation language [4]. New protocols and
modules can be programmed and added to the library
using this language. GloMoSim has been designed to be
extensible and composable. It has been implemented on
both shared memory and distributed memory computers
and can be executed using a variety of synchronization
protocols. In this paper we will focus on parallel
performance study on a distributed memory multi-
computer IBM 9076 SP.

The remainder of this paper is organized as follows:
section 2 discusses related work in the area of network
simulation. Section 3 outlines the wireless system
architecture that is considered in this paper. Section 4

describes our primary simulation design approach. Section
5 discusses a number of issues that are relevant to parallel
simulation of large-scale mobile networks. Section 6
presents some experimental results for parallel
performance study and section 7 is the conclusion.

2 Related work
Much of the existing research in parallel network

simulation has been done in the context of wired networks
that include ATM networks, LAN simulators, and
interconnection networks for parallel computers [3,7,9,14].
Relatively little research has been done to evaluate the
feasibility of parallel simulation of wireless networks.
Wireless and wired networks differ in fundamental ways:
for example, the signal interference and attenuation
concerns are inherently more complicated and typically
more computationally intensive for wireless mediums than
for wired mediums. Also, the broadcast nature of wireless
radio transmission makes communication topology in
simulation models relatively denser than for an equivalent
wired network.

The research described in [12] studied the
performance of parallel simulation of a specific protocol –
a clustering algorithm in mobile, multi-hop, wireless
networks. This paper attempts to develop an entire set of
protocols by designing a library containing parallelized
modules that can simply be composed together to evaluate
the performance of different implementations of protocol
stacks for very large networks.

Another closely related effort is the parallel simulation
of PCS networks [5]. However, there are significant
differences both in network characteristics and simulation
research issues. First, PCS is a cell-centralized
communication system, where each node can only talk
with the base station assigned to the cell. Wireless
networks considered in this paper include multi-hop
networks. Second, the wireless communication medium
can be modeled with differing detail that involves different
complexity in parallel simulation. Third, in PCS models,
communication is limited within a cell except that mobility
may cause inter-cell and hence, inter-processor
communication in parallel execution. In parallel simulation
of a wireless network, both node mobility and ordinary
communication may cause inter-processor communication
(because signal interference among neighboring cells’
propagation is explicitly modeled), which dramatically
increases inter-processor communication topology.

3 Network architecture
In this paper we focus on the simulation of ad hoc

networks. The networking stack is decomposed into a

number of layers as shown in Figure 1. A number of
protocols have been developed at each layer and models of
these protocols or layers can be developed at different
levels of granularity.

Figure 1. GloMoSim Architecture

 For example, the channel propagation layer includes
a free space model that calculates signal strength based
only on the distance between every source and receiver
pair; an analytical model that computes signal attenuation
using a log normal distribution; a fading channel model
that is computationally much more expensive but
incorporates the effect of multi-path, shadowing and
fading in calculating signal strength. As an example of
alternative protocols, consider the Data Link/MAC layer,
where a number of protocols have been suggested
including: carrier sense multiple access (CSMA), multiple
access collision avoidance (MACA [11]) and floor
acquisition multiple access (FAMA). Each of these has
been modeled in the GloMoSim library. At the network
layer, flooding protocol, flat distance vector routing
protocol DSDV is also contained in the library. We are
still developing hierarchical routing protocol to handle
scaled network routing. At transport layer, a TCP/IP
simulator based on Free BSD 2.2.2 implementation has
been built into library.

A common API between every two neighboring
models on protocol stacks is predefined to support their
composition. These APIs specify parameter exchanges and
services between neighboring layers. For example,
interfaces between Data Link/MAC layer and network
layer are defined as message passing with following
formats in the simulation library:

Packet Handling APIs:
Packet_from_NW_to_DLC(P_type, P_dest, P_source,
P_payload, P_size, P_VCID)

Packet_from_DLC_to_NW(P_type, P_dest, P_source,
P_payload, P_size, P_VCID)

P ropagation M ode l/M ob ility M ode l

R ad io M ode l

D a ta L ink

M A C

C luste ring (op tiona l)

W ire less N e tw ork Laye r: rou ting

W ire less N e tw ork Laye r: V C suppo rt

IP , M ob ile IP

T ranspo rt Layer: T C P , U D P , R T P

A pp lica tion T ra ffic G ene ra to r

P_type refers to the type of packet (data packets,
control packets, etc.), P_dest and P_source refer
respectively to source and destination node, and the other
parameters are required for packet processing or quality of
service support. Each protocol module at a given layer is
required to comply with the APIs defined for that layer.

4 Simulation design: wireless model library
GloMoSim aims to develop a modular simulation

environment for protocol stacks described in the previous
section that is capable of scaling up to networks with
thousands of heterogeneous nodes. If all protocol models
obey the strict APIs defined at each layer, it will be
feasible to simply swap protocol models at a certain layer
(say evaluate the impact of using CSMA rather than
MACA as the media access control protocol) without
having to modify the models for the remaining layers in
the stack.

GloMoSim library is written in PARSEC (for
PARallel Simulation Environment for Complex Systems)
[4], a simulation environment derived from the Maisie
simulator [2]. PARSEC adopts a message-based approach
to discrete-event simulation: physical processes are
modeled by simulation objects called entities, and events
are represented by transmission of time-stamped messages
among corresponding entities. A visual-programming
environment called PAVE (for PARSEC Visual
Environment) has also been developed to support the
visual design of PARSEC programs or to visually
configure simulation models using pre-defined
components for a library in a specific application domain
like GloMoSim.

The requirements of scalability and modularity make
the library design a challenging issue. A straightforward
approach is to map each network node to a single
simulation object, i.e. a PARSEC entity instance.
However, previous experience has indicated that a large
number of simulation objects can considerably increase
simulation overhead, and such design is not scalable. For
example, in order to simulate networks with more than
100,000 mobile nodes, at least 100,000 entity instances
have to be created. This was found to be untenable as well
as impractical.

Instead, GloMoSim assumes that the network is
decomposed into a number of partitions and a single entity
is defined to simulate a single layer of the complete
protocol stack for all the network nodes that belong to the
partition. Interactions among the entities must obey the
corresponding APIs described in the previous section.
Syntactically, the interactions may be specified using

messages, function calls, or entity parameters as
appropriate. This method supports modularity because a
PARSEC library entity representing a layer of the protocol
stack is largely self-contained. It encapsulates the
complexity of a specific network behavior independently
from other ones. This method also supports scalability
because node aggregation inside one entity will be able to
reduce the total number of entities which has been found to
improve sequential performance even more dramatically
than parallel performance.

A number of protocols have already been
implemented into the library as mentioned in section 3.
Composition of library entities into a complete protocol
stack for a group of mobile nodes can be described either
textually within an initialization entity called driver, or
visually using PAVE that subsequently generates the
corresponding driver entity. In addition, for parallel
conservative execution, it is also necessary to map the
entities to processors and specify the communication
topology information required by the corresponding
protocol. This information may also be specified using the
PAVE front-end or textually in the driver entity.

5 Parallelization
Efficient parallel simulators must address three sets of

concerns:
• efficient synchronization to reduce simulation overheads;
• model decomposition or partitioning to achieve load
balance;
• efficient process to processor mappings to reduce
communications and other overheads in parallel execution.

5.1 Synchronization protocols
 The performance of GloMoSim library is evaluated as

a function of three different conservative synchronization
algorithms: null message protocol [15], conditional event
protocol [6], and Accelerated Null Message protocol
(ANP), which is a combination of preceding two schemes
[10]. The PARSEC visual front-end (PAVE) allows choice
of a specific conservative runtime to be selected simply as
an option in the execution command!

 As the null message protocol is well known, we omit

descriptions from this paper [15]. The conditional event
protocol distinguishes between definite and conditional
events. Definite events are those that can be scheduled
locally by an entity (for instance departure of a job from a
FIFO server); conditional events require communication
among all the LPs or entities to identify the globally
earliest conditional event, which is then converted into a
definite event. Both synchronous and asynchronous
algorithms have been defined to identify the earliest

conditional event; these algorithms are very similar to
those used to compute GVT for optimistic synchronization
protocols. The primary advantage of conditional event
algorithm is that its performance is less sensitive to
lookahead properties of the model [10]. Since the ANP
algorithm uses null messages together with the conditional
event algorithm, it is expected to perform well with models
whose lookahead properties are not well understood or
where they change dynamically.

 A sequential simulation model must typically be

refined in two ways for parallel execution: first, all the
entities that comprise the model must be mapped to
processors; the mapping issues are addressed in the next
section. Second, to improve parallel performance with
conservative protocols, the exact communication topology
and lookahead properties should be specified for the
model. Our GloMoSim library entities have already been
added related optimization codes using appropriate
PARSEC constructs. These will be briefly described in the
following sub-sections.

5.1.1 Communication topology specification. Each
PARSEC entity contains default variables called source-
set and destination-set that respectively refer to a set of
entities that send to or receive messages from the given
entity. By specifying these sets precisely for each entity,
synchronization overheads of any null message based
conservative method can be reduced significantly. For this
purpose, PARSEC provides following functions that can
be called inside an entity to respectively add or delete
entities in its source and destination sets.

 add_source(entity-identifier-list)
 add_dest(entity-identifier-list)
 delete_source(entity-identifier-list)
 delete_dest(entity-identifier-list)

 PARSEC run-time system guarantees that execution

of each entity will be synchronized with all the other
entities belonging to its source-set. If an entity receives a
message from an entity that has not been declared as its
source, appropriate error messages will be generated. In
our current GloMoSim implementation, the models assume
a static communication topology, which is specified in an
initialization entity called driver.

5.1.2 User defined lookahead. Seeing that good
lookahead exploitation is essential to improve performance
of conservative protocol [8], we try to extract lookahead
from a PARSEC entity’s semantic information.
Specifically, if an entity’s next output message has at least
time-stamp increment δ compared with the entity’s current
simulation clock, we say a lookahead δ can be obtained.
For example, in the channel propagation model, we specify

the lookahead to be propagation delay because we can
guarantee that a next output message will have timestamp
increment of this value than the entity’s current clock.
Generally, if we can regard an entity simulating a network
protocol as a FCFS server, lookahead can be obtained by
pre-computing its service time. PARSEC provides a
function called setlookahead(lookahead) to specify this
dynamic lookahead.

5.2 Partitioning
 The primary goal of partitioning is to decompose the

simulation model into a number of components that keep
the computational load approximately balanced while
minimizing the communication overheads. In GloMoSim,
this is attempted by assigning an approximately equal
number of network nodes to each partition and an equal
number of entities (or partitions) to each processor.
However, in our application, complete load balance, based
on decomposition of initial static network topology is
impossible due to the non-uniformity of traffic directed to
a partition from its neighbors. For example, assume that
2000 network nodes have been placed in an 800-m x 800-
m region. The region can be partitioned in a number of
ways: consider the following three partitions, respectively
referred to as 4 x 4, 8 x 2 and 16 x 1 partition as shown in
Figure 2, 3, 4. As each of the various partitions potentially
have a different number of neighbors, the communication
topology is asymmetric which implies that cross-border
message traffic and hence the computational load will be
unbalanced. The 2 x 8 partition or 1 x 16 partition may
improve the load balance factor because the number of
neighboring partitions do not differ dramatically among
the various partitions as 4 x 4 partition. Experimental
results of parallel performance with different partitioning
schemes are presented in the next section. (Note that in
these models, it is typically not appropriate to assume a
toroidal region, which would smoothen out this form of
communication irregularity.)

 Figure 2. a 4 X 4 partition Figure 3. a 8 X 2 partition

 Figure 4. a 16 X 1 partition

 Proper selection of partition units may reduce inter-
processor messages. In our application, an inter-partition
message is sent whenever a simulated network packet is
transmitted with a radio power strong enough to across the
border of two partitions. Otherwise, the message is just a
local computation within the partition. Therefore, we
select each partition to be at least equal to the effective
transmission range of a mobile radio. On one hand, by
increasing the partition unit size, the ratio of cross-border
messages over local messages will be reduced. On the
other hand, decreasing the partition size will allow nodes
in distant partitions to be computed relatively independent.

5.3 Mapping

 In GloMoSim, each partition consists of a set of
entities, each of which simulates a certain network model
executed by a group of mobile nodes. Given P partitions
and M layers, this implies M x P entities. Typically this is
larger than the available number of processors, so entities
must be aggregated on processors using some scheme. We
first evaluate the impact of horizontal vs. vertical
mappings or aggregation of the entities. In the former
scheme, entities from all partitions that simulate the same
network layer are mapped to one processor; in the latter
scheme, all entities that simulate different layers within a
given partition are mapped to one processor. Considering a
simple experiment that includes four different layers of
protocol stacks (channel, radio, MAC, and traffic
generator) under four partitions, the sequential and 4
processor parallel performance of above two mapping
schemes is shown in Table 1. Although both mappings
yield parallel performance to improve, the vertical
aggregation is found to be more efficient for all the
evaluated synchronization protocols. This follows because
messages simulating data flow and control flow are passed
frequently up and down among entities that simulate the
corresponding layers. So, vertical mapping, which assigns
entities simulating layered protocol stack for a given
region on the same processor has a lower communication
overhead compared with the horizontal mapping.

 Mapping GEL

 (sec)

 4-Null
 (sec)

 4-Cond
(sec)

 4-ANP
 (sec)

 Horizontal 838 480 486 490
 Vertical 839 326 381 333

 Table 1 Execution time comparison of two
aggregation schemes

 The next concern is distribution of partitions among
processors. We view the partitions as forming a two-
dimensional matrix. Typical strategies [13] that have been
used in decomposing matrix include random mapping,
which assigns entities randomly to processors; block
mapping, which assigns a block of neighboring entities to
one processor (Figure 5); and cyclic mapping, which
assigns entities cyclically to processors (Figure 6).

Figure 5. Block mapping

1 1 2 2

1 1 2 2

3

33

3

4 4

4 4

Figure 6. Cyclic mapping

1 2 3 4

1 2 3 4

1

21

2

3 4

3 4

 Table 2 presents parallel execution time using cyclic

and block mapping for 4 x 4 partition on 4 and 8
processors respectively. The network configuration is the
same as used for Table 1. Block mapping achieves better
performance than cyclic mapping using Null and ANP
protocol, but for the conditional protocol, no significant
difference can be seen.

 Processors NULL(sec) COND (sec) ANP(sec)

 Block 8 131 148 151
 Block 4 171 154 179
 Cyclic 8 147 146 160
 Cyclic 4 181 152 189

 Table 2: Parallel performance vs. mapping schemes

 The results indicate that performance of Null message
and ANP algorithms are considerably more sensitive to the
specific mapping scheme (block vs. cyclic) than the
conditional event algorithm. Obviously, since the model
includes communication primarily among neighboring
entities, block mapping is better in exploiting locality.
Thus it will reduce inter-processor real message as well as
piggybacked null message passing. However, conditional
algorithms do not benefit from this mapping choice
because its identification of the earliest event requires
global communication among all entities on all processors
regardless of the specific communication topology in the
model. Our subsequent experiments reported in the
following sections will use block mapping with vertical
aggregation.

6 Experiment configurations and results
 6.1 Configuration

 The following configuration is used for subsequent
experiments that investigate parallel performance: a raw
packet traffic generator with Poisson distribution, MACA
or CSMA protocol at the data link/MAC layer, a spread
spectrum radio without capture ability for each node, and
free space channel propagation model. The parameters in
the experimental configuration are adjusted so that
simulation can complete in a reasonable period. Typically,
these include:
• Number of network nodes: 2000; unless specified
otherwise
• Dimensions of the region over which nodes are
randomly deployed: 800 m X 800 m
• Static network topology is assumed
• Traffic pattern: Poisson process (λ = 1 pkt /sec for
each node unless specified otherwise)
• Radio transmission range : 50 m
• Additional parameters are defined, as appropriate,
within the models for the individual entities.
• Parallel architecture: IBM 9076 SP, a distributed
memory multi-computer. It consists of a set of RS/6000
workstation processors connected by a high-speed switch.
Each node has a main memory of 128 megabytes.

To ensure consistent and meaningful comparisons of
parallel performance, all speedup of p-processors reported
in this paper are computed with respect to a P-partitioned
sequential implementation (global event list algorithm
implemented using splay trees) over a P-partitioned
parallel algorithm on p-processors.

6.2 Partition and load balance experiment
The first set of experiments is used to identify the

most suitable partitioning strategy. Figure 7 shows the
variation of speedup, using up to 16 processors, for each
of the three partition schemes discussed in section 5.2.
Three conservative algorithms: null message (null),
conditional event (cond), and combination approach
(ANP) are used in each case.

We first consider the impact of the partitioning
scheme: As can be seen, in general, the linear partitioning
16 x 1 yields the best performance. This is because the
linear partitioning has the simplest communication
topology, with each entity communicating with at most two
other entities. Thus communication and null message ratio
among partitions can be greatly reduced. Secondly, in all
the three partitioning schemes, when running on less than 4
processors, the performance of conditional event algorithm
is slightly superior to the null message algorithm. As the

Figure 7 Speedup measurement using different
partition schemes

number of processors increases, the situation reverses and
the performance gap between the two algorithms gets
deeper. This can be attributed to the high overhead of
global communication required by the conditional event
algorithm to compute the earliest event. As more
processors are used, global computation used by the
conditional event protocol requires more inter-processor
conditional event messages to be broadcast. The
performance of ANP algorithms is close to that of the null
message algorithm except when the number of processors
increases substantially. In this situation the overhead due
to conditional event computations degrades its
performance. Thirdly, note that for a given number of
network nodes, for 4 x 4 and 2 x 8 partitions, the speedup
does not increase significantly as the number of processors
are increased beyond 4. Analysis indicates that increasing
the number of processors also leads to dramatic increment
of inter-processor messages, which then cancels partial
potential benefits from the increased concurrency.

4 X 4 Partition

0

1

2

3

4

5

6

1 2 4 8 16

number of processors

sp
ee

d
u

p

8 X 2 Partition

0

1

2

3

4

5

6

1 2 4 8 16

num ber of processors

sp
ee

d
u

p

1 6 X 1 P artition

0

1

2

3

4

5

6

1 2 4 8 16
num ber o f p rocesso rs

sp
ee

d
u

p

n u ll

cond

anp

Partition GEL
(sec)

1-Null
(sec)

1-Cond
(sec)

1-ANP
(sec)

4 X 4 312 286 254 308
8 X 2 315 296 265 314
16 X 1 320 276 263 288

Table 3 Execution time of sequential and one node
conservative algorithm

Finally, note that sequential algorithm (GEL) is slower
than 1 node conservative algorithms. Their exact execution
times are given in Table 3. The relatively worse
performance of GEL is primarily due to its larger entity
scheduling and queue management overheads. Since GEL
executes events in strictly timestamp order across all
entities, this can often cause numerous (unnecessary)
context switches. Whereas in the case of conservative
algorithms, for processes with good lookahead, a number
of events may be executed on the same entity before other
events with lower timestamp are executed on a different
process. This will result in fewer context switch
operations. Second, GEL must sort all the entities in the
order of earliest message timestamp in their input queue.
Since our entity queue is implemented using a splay tree,
the sorted queue operation involves more overheads than
the unsorted entity lists exploited in our conservative
algorithm implementation.

6.3 Parallel performance: network characteristic
dependency

Figure 8 Speedup comparison of CSMA and MACA

As expected, different protocol models will yield
different parallel performance due to their respective
characteristics. Figure 8 presents parallel simulation
speedup of two networks that are identical in all respects
except that one of them uses the carrier sense multiple
access (CSMA) whereas the other uses the multiple access
collision avoidance (MACA) protocol in MAC layer.
Dramatic differences are apparent in this experiment.

Analysis indicates that although both models have the
similar lookahead properties, because MACA involves
more real messages to negotiate in channel acquisition, the
NMR ratio (null message number over real message
number) is obviously smaller than that of CSMA (Table
4). As we know, smaller NMR indicates that the model has
greater ratio of computation over synchronization
overhead; thus potentially it has more concurrency to be
exploited for parallel speedup.

Model NMR
MACA 0.75
CSMA 3.4

Table 4. NMR comparison of two models

Considering that MACA protocol usually requires
longer simulation execution times and performs better in
larger wireless networks (subject to hidden terminal
problems), the remaining experiments will use it as
channel acquisition strategy (of course, we also like the
fact that it makes our parallel performance numbers
better!).

Figure 9 and Figure 10 present the impact of two
network characteristics, traffic load and node density, on
parallel simulation performance. Both experimental
configurations are largely the same as specified in section
6.1 except that in figure 9, we vary the traffic arrival rate
per network node from 1 packet/sec to 50 packets/ sec; and
in figure 10, we let the node density vary by assigning
different network nodes from 1000 to 3000 in a fixed
geographical area. Both figures present parallel execution
results on up to 16 processors using 16 x 1 partition
scheme and null message synchronization protocol.

It is clear that either increasing the traffic rate or node
density monotonically improves the parallel performance.
The reason can be seen from the reduced NMR for both
scenarios shown in table 5 and table 6.

0

1

2

3

4

5

6

1 2 4 8 16
num ber of processors

sp
ee

d
u

p

C S M A

M A C A
F igure 9 . S peedup vs.

tra ffic load

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16
number of processors

sp
ee

d
u

p

1 pkts/sec 5 pkts/sec

10 pkts/sec 50 pkts/sec

F igure 10 . Speedup vs .

node dens ity

0

1

2

3

4

5

6

7

8

1 2 4 8 16
number of processors

sp
ee

d
up

1000 1600 2000 3000

Traffic load (pkt/sec) NMR
1 7.7

5 1.48
10 0.75
50 0.17

Table 5 NMR of various traffic loads

Node number NMR
1000 3.10
1600 1.24
2000 0.75
3000 0.35

Table 6 NMR of various node densities

7 Conclusion and work in progress
This paper describes GloMoSim, a modular library

for parallel simulation of wireless network. It has been
designed to be extensible and composable: the
communication protocol stack for wireless networks is
divided into a set of layers, and APIs are defined for each
layer. This architecture allows us to implement alternative
protocols at each layer and evaluate their performance in a
consistent manner. Parallel model execution is provided to
users in an (almost) transparent manner. A user typically
configures the experiment by visually placing icons that
represent the nodes, then select sequential or one of the
three available conservative synchronization algorithms.
Once a parallel algorithm is selected, the analyst must
additionally indicate the mapping strategy and number of
processors. We have presented a set of experimental
results on a distributed memory multi-computer that
compare parallel performance of different conservative
synchronization algorithms, partitioning schemes, entity to
processor mapping and network characteristics
dependency.

Current work in progress is aimed at expanding the
library with new protocol modules and a thorough
investigation of parallel performance under the impact of
different parallel architecture environment, node mobility
as well as the suitability of optimistic synchronization
algorithms.

Acknowledgements
This research was supported by the DOMAINS

contract funded by DARPA ITO under contract No.
DAAB07-97-C-D321. Special thanks to this paper’s
reviewers for their valuable comments and PARSEC group
for implementation support. Thanks also to Monnica
Terwilliger for her assistance in preparing the camera-
ready copy.

References
[1] A. Alwan, R. Bagrodia, N. Bambos, M. Gerla, L. Kleinrock,
J. Short, and J. Villasenor, “Adaptive Mobile Multimedia
Networks.” IEEE personal communications, June 1997.

[2] R. Bagrodia, and W. Liao. “Maisie: A Language for Design
of Efficient Discrete-Event Simulation”. IEEE Transactions on
Software Engineering. April 1994

[3] R. Bagrodia, Y.A.Chen, et al., "Parallel Simulation of a
High-speed Wormhole Routing Network", Proceedings of
PADS1996

[4] R. Bagrodia, R. Meyerr, et al., “PARSEC: A Parallel
Simulation Environment for Complex System”, UCLA technical
report, 1997.

[5]. Christopher D. Carothers, Richard M. Fujimoto, Yi-Bing
Lin and Paul England, “Distributed Simulation of Large-scale
PCS Networks”

[6] K.M. Chandy and R. Sherman. “The Conditional Event
Approach to Distributed Simulation.” Distributed Simulation
Conference, Miami, 1989.

 [7] J.G. Clearly, J. J. Tsai, “Conservative Parallel Simulation of
ATM Networks”, Proceedings of PADS 1996

[8] R. Fujimoto. “Parallel Discrete Event Simulation.”
Communications of the ACM, October 1990.

 [9] T. Holvoet and P. Verbaeten, “Using Agents for Simulating
and Implementing Petri nets”, Proceedings of PADS 1997.

[10] V. Jha and R. Bagrodia, “Transparent Implementation of
Conservative Algorithms in Parallel Simulation Languages.” In
Winter Simulation Conference, December 1993

 [11]. P. Karn, “MACA –a New Channel Access Method for
Packet Radio”, in ARRL/CRRL Amateur radio 9th Computer
Networking Conference, ARRL, 1990.

[12] W. Liu, et al “Parallel Simulation Environment for Mobile
Wireless Networks”, WSC, 1996

[13] Kumar, Grama, Gupta, and Karypis, Benjamin Cumings,
“Introduction to Parallel Computing”

[14] P. Martini, M. Rumekasten, J. Tolle, “Tolerant
Synchronization for Distributed Simulations of Interconnected
Computer Networks”, Proceedings of PADS 1997

[15] J. Misra, “Distributed Discrete-Event Simulation”, ACM
Computing Surveys, March 1986.

[16] D. M. Nicol, “Parallel Discrete Event Simulation of FCFS
Stochastic Queuing Networks.” In Parallel Programming:
Experience with Applications, Languages and Systems. ACM
SIGPLAN, July 1988.

