Introduction on Mobile Wireless Networks

Georges Da Costa dacosta@irit.fr

http://www.irit.fr/~Georges.Da-Costa/ cours/addis/

Georges Da Costa dacosta@irit.fr

2 802.11 Networks

3 Ad Hoc Networks

4 Mesh Networks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Georges Da Costa dacosta@irit.fr

Goal of this Lecture

See each level of Mobile Wireless Networking
From hardware level to applications

- Understand key principles
- Have an interaction between us

It is not about

- How to administrate
- Infrastructure dimensioning

Georges Da Costa dacosta@irit.fr

э

A small definition

A Mobile Wireless Network is an hardware and software infrastructure allowing to connect wirelessly IT elements.

Georges Da Costa dacosta@irit.fr

э

A possible plan

- Introduction
- WiFi
- Ad Hoc systems
- Mesh Networks
- Security
- Network tools
- Peer to Peer
- Embedded programming
- Presentations... Your turn !

Mesh Networks

< 回 > < 三 > < 三 >

2

Comparison with Wired Network

Your opinion ?

Georges Da Costa dacosta@irit.fr

Comparison with Wired Network

- Mobility User move but what they want to access cannot move with them.
- Ease and speed of deployment Wireless infrastructure is easier to deploy and manage. In certain place it is even impossible to deploy a wired infrastructure.

Comparison, cont

- Flexibility No wires means no re-wiring ! Wireless makes moving between offices a triviality. Extension is easy and most of the time not even necessary.
- Cost Infrastructure is cheaper as there are only a few wires necessary. It is even possible to make direct connexions between buildings.

Trade off

Wireless networks allow remote operation

- remote services
- remote data operation
- In extreme case everything is done remotely, apart from interface
- It allows energy efficient systems that are really wire-free, and thus mobile

Expanding possibilities

Technology creator are always overwhelmed by their creature

- Facebook and Twitter *vs* wired network
- Which will be the killer app in wireless ?
 - Smartphone revolution ?
 - Intelligent houses ?

Georges Da Costa dacosta@irit.fr

Unplug and Play

Moves adding an element from wires to only authorization

- Physical changes only if the structure is overloaded, so every 10ths of users
- Allows Hot-Spots
 - Coffee shops, Airports
 - Only in hotels with wired networks

Allows network in historical buildings

Interoperability

Specialized systems

- Sensor networks : fire, temperature or intrusion detection
- RFID tags
- smart energy metering
- Generic systems
 - Computers
 - Smart phones

Heterogeneous systems

Some systems are composed

- Bluetooth GPS receiver
- Zigbee smart meters
- X10 home element
- Custom badge detectors
- Some standards exists depending on their scope

Standards

Only a part of the picture

- Wifi
- CellPhone 3G/GSM/...
- Bluetooth
- Zigbee
- Laser
- Satelite

Question: What are their characteristics/usage ?

Radio Spectrum

- Basic resource Radio frequencies
- Need some space
 - Mobile phone : 20KHz
 - Analog TV : 6MHz
- Under heavy regulation by national offices

Georges Da Costa dacosta@irit.fr

US Radio Spectrum

Band UHF ISM S-Band S-Band ISM C-Band C-Band satellite downlink C-Band Radar (weather) C-Band ISM C-Band satellite uplink X-Band X-Band Radar (police/weather) Ku-Band Ku-Band Radar (police)

Frequency range 902-928 MHz 2-4 GHz 2.4-2.5 GHz 4-8 GHz 37-42 GHz 5.25-5.925 GHz 5.725-5.875 GHz 5.925-6.425 GHz 8-12 GHz 8.5-10.55 GHz 12-18 GHz 13.4-14 GHz and 15.7-17.7 GHz • • • • • • • • • • • • • •

Regulation

- To use a part of the spectrum it is necessary to have a license
- One important exception: S-Band ISM (Industrial, Scientific and Medical) if used at low power
 - Microwaves
 - Wifi Networks

Georges Da Costa dacosta@irit.fr

Resource limits

Not yet perfect

- Bandwidth limit (54Mb/s max vs 1Gb/s for wired networks)
- Number of channel limited by the spectrum width

Question: What are the other limits of Wireless Networks ?

Georges Da Costa dacosta@irit.fr

Worse in a real world

- Radio waves cannot go every were and through everything, leading to packet loss
- Radio waves suffer from interferences and multi-path
- Security is tricky as no physical modification is necessary to enter the network

2 802.11 Networks

3 Ad Hoc Networks

4 Mesh Networks

・ロ・・西・・日・・日・・日・ ショー

Georges Da Costa dacosta@irit.fr

Standard/History

In early 2000 three standards were emerging

- Bluetooth
- **3**G
- WiFi
- The first to succeed was WiFi (Apple pricing move)
- Wireless Ethernet Compatibility Alliance (WECA) certify WiFi systems

Georges Da Costa dacosta@irit.fr

Zoom into 802.11 family

IEEE standard	Speed	Frequency band
802.11	2 Mbps	2.4 GHz
802.11a	up to 54Mbps	5 GHz
802.11b	11 Mbps	2.4 GHz
802.11g	up to 54 Mbps	2.4 GHz

- 802.11 First standard (1997). Featured both frequency-hopping and direct-sequence modulation techniques. Added and forgotten: IR Layer
- 802.11a Second standard (1999), but products not released until late 2000
- 802.11b Third standard, but second wave of products. The most common 802.11 equipments
- Slow to be standardized, leading to incompatible systems at first

Mesh Networks

802.11 from an OSI point of view

- MAC is a set of rules to determine how to access the medium and send data
- Details of transmission and reception are left to the PHY

Rq: 802.3 is (globally) Ethernet and 802.5 is Token Ring

Georges Da Costa dacosta@irit.fr

Nomenclature

- Distribution system: links the access points
- Access points: makes the wireless to wire bridges
- Wireless medium: Initially two radio frequencies and an IR one
- Stations: elements that need to communicate

Georges Da Costa dacosta@irit.fr

Operation Mode

Basic element: BSS (Basic Service Set)

- A set of stations that communicate together (independent BSS)
- An access point and its affiliated stations (infrastructure BSS)

Independent BSS

Infrastructure BSS

Georges Da Costa dacosta@irit.fr Introduction on Mobile Wireless Networks

Independent BSS

Ad-Hoc Networks

- Usually short time lived
- Dynamic
- Focused purpose (due to limitation)

Question: Find 3 type of use for IBSS in an university

Georges Da Costa dacosta@irit.fr

э

Some IBSS

- Classroom or conference to share slides
- Connect to a nearby printer
- Command the video projector

Infrastructure BSS

- Classical network in an university
- Generic usage
- Really like an wired solution
 - station associate with access point (like to plug a wire)
 - access point accept or deny network access
- Cons
 - No context
 - Less dynamic

RQ: stations can be at the same time in a IBSS and in a IBSS

Georges Da Costa dacosta@irit.fr

Extended Service Set

- Typical range of an access point or a station is in the 10th of meters, how to manage a whole building ?
- ESS: Several BSS linked together (ie access points linked by wires)
- Provides link-layer mobility between BSS
- If not sufficient, a VLAN is necessary

Georges Da Costa dacosta@irit.fr

Distribution system

Part of the protocol that manages stations across the whole network

- Track where stations are physically
- Delivers frames
- Uses MAC address as unique identifier
- Uses backbone Ethernet as a distribution medium
- Remaining part (the intelligence) is inside access points

Access Points

- Access points use association
- Each access point share its associated stations (IAPP)
- IAPP (inter-access point protocol) was not standardized during a long time

Mobility

In the standard three different mobility are explored

- No transition: occurs when stations move inside a BSS or connexion quality changes over time
- BSS transition: Inside a ESS, mac layer mobility is provided
- ESS transition: No mobility is provided at this level. It has to be managed at higher level (IPv6 by instance)

I'm a Mac, I'm different

Mac layer in 802.11 has been completely patched and looks like a patchwork because of:

- Mobility
- Non-symmetry

Compared to Ethernet or token ring, WiFi assumes nodes can move

Collision detection vs avoidance

- Difficult to detect a collision as everyone does not has the same vision of the system (*fig*)
- Usage of systematic positive ack (fig)
- WiFi can use RTS/CTS (Request to send/Clear to send) for large frames (*fig*)
- NAV (Network allocation vector) is used to warn for WiFi occupation on each frame
- Like ethernet, packet emission occurs after random timeouts

Mac layer Optimization

- Lots of messages
- Lots of energy consumed
- How to reduce energy ? Your vision ?

Georges Da Costa dacosta@irit.fr

э

Some current researches

Some ongoing works

- Rendez-vous
- Pre-allocation based on Unique Identifier (Mac Address)
- Pre-allocation based on prediction

Georges Da Costa dacosta@irit.fr

3 Ad Hoc Networks

4 Mesh Networks

・ロト・雪 ・ 雪 ト ・ 雪 ト ・ 雪 ・ つんの

Georges Da Costa dacosta@irit.fr

Introduction

- Let's rise a level: routing !
- Let's go down a level: sensor networks
- Sometimes you need to go to the next hop

Examples

- Fire detector
- Humidity/temperature sensor in a field
- Emergency management after a hurricane or earthquake
- Location of soldiers on a battlefield
- Question: What do they have in common ?

Common ground

- No (or not dense) dedicated infrastructure
- Large scale systems
- Energy is an important resource
- Space is an important resource too

Difficulties

- To administrate
- Manage failures
- Share and/or process content

Georges Da Costa dacosta@irit.fr

Solution: Ad Hoc Networks

Definition

An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration.

Concept

- Each nodes serves as a client and a router
- Each nodes participates in the Ad Hoc Routing
 - Find multi-hop paths between neighbors (fig)
 - Manage failures along paths
 - Manage dynamism of neighbors

Georges Da Costa dacosta@irit.fr

Naive Routing Algorithm

flooding (fig)

- When a node wants to communicate it forwards all its neighbors
- When a node receive a request
 - If it is for it, it receive it
 - Otherwise it forwards it to all its neighbors (if Time to live is not expired)

Question: Why is it a naive algorithm ?

Georges Da Costa dacosta@irit.fr

Naive, so Naive

- A requests will travel all around the network
 Communication number is linear in the number of nodes
- If the node is too far away, it won't be contacted

Bellman Ford

It is the algorithm used in Internet

- It consists in two processes:
 - Routing table Management
 - Communications

Georges Da Costa dacosta@irit.fr

Bellman Ford: Management

- Each node regularly discover its direct neighbors
- Each node regularly send its routing table to its neighbors
- Each node add information from indirect neighbors to its routing table
- Question: Compare to flooding

Evaluation

- Heavily dependent on timeouts
- Large memory requirements (routing table) to be efficient
- Works well if the network is not too dynamic
- Can lead to loops if the network is dynamic

Main problem: no geographical naming

Evaluation

- Depends on the goal, several metrics
- Global Energy
- Energy consumption balancing
- Latency, Number of hops
- Number of lost packets
- Protocol Overhead

Generic Geographic Routing

Assumptions

- Each node is geographically tagged
- Destination of a packet is a geographical tag
- High Density of nodes

In this case, geographic routing is efficient

Georges Da Costa dacosta@irit.fr

Geographic Routing algorithm

Management

Each node discover regularly its neighborhood

Packet routing

 Packets are forwarded to the neighbor that minimize the distance

Georges Da Costa dacosta@irit.fr

Geographic Routing analysis

- Efficient but not optimal (local vision)
- Can fall in dead-ends
- Trade-off between freshness and overhead
- Possible loops
- Management is simple
- Finding good routing algorithms is still an open research field

Mesh Networks

Destination-Sequenced Distance Vector (DSDV)

- Improves Bellman Ford.
- Guarantees loop free routing.
- Integrate a metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - つへぐ

Georges Da Costa dacosta@irit.fr

DSDV Algorithm

- Each nodes keeps a table of the next hop for each destination it knows of
- Each entry is annotated with two elements:
 - The metric (by instance number of hops) infinite if there is a failure
 - A sequence number
- Each entry is updated if a new route is received and either
 - The sequence number increased
 - It is equal and the metric is better

 Each node publish an ever increasing number for himself

Georges Da Costa dacosta@irit.fr

DSDV remarks

- Manages dynamism better than Bellman Ford
- Still the same advantages, no geographical knowledge required
- Reactivity is linked to updates message rate

Georges Da Costa dacosta@irit.fr

Temporally-Ordered Routing Algorithm (TORA)

- Discover routes on demand
- Provide multiple routes to a destination
- Establish routes quickly
- Minimize communication overhead by localizing algorithmic reaction to topological changes when possible
- Rq: Shortest-path routing is not one of the main objectives, contrary to reducing the overhead of discovering newer routes.

Georges Da Costa dacosta@irit.fr

TORA algorithm

- Each node has an list of known destination, tagged with the distance
- When a node tries to contact some node it doesn't know, it:
 - Send a Query in the network
 - When a node with a route to the destination receive it, it broadcast an Update
 - All nodes receiving the Update update their knowledge

Dynamic Source Routing (DSR)

- Instead of taking local decision at each forward, all nodes to go through are in the header
 - Goal: reduce overhead of route maintenance
 - On demand creation of paths
- Based on two algorithms
 - Route discovery
 - Route maintenance

Georges Da Costa dacosta@irit.fr

DSR: algorithms

Route discovery

- A node broadcasts a *Request Route*
- A *Route Reply* is sent back following the same path
- A system of cache is used to answer sometime before arriving to destination

Route maintenance

If a node is absent, a new route discovery is started

Georges Da Costa dacosta@irit.fr

Ad Hoc On-Demand Distance Vector (AODV)

- Combination of both DSR and DSDV.
- On-demand mechanism of Route Discovery and Route Maintenance from DSR
- Hop-by-hop routing, sequence numbers, and periodic update from DSDV

Comparison of Ad Hoc routing algorithms

- DSDV delivers all data packets under low dynamism, and fails to converge as it increases
- TORA, with a high overhead work well even with dynamism but fails when loads rise
- DSR, is good even with high dynamism but adds a high overhead (due to the increased header)
- AODV matches DSR mobility wise and reduce overhead for most case, apart for high mobility one.

- 2 802.11 Networks
- 3 Ad Hoc Networks

・ロ・・母・・母・・ ゆくの

Georges Da Costa dacosta@irit.fr

э

Definition

A Wireless Mesh Network (WMN) is a mix of nodes that cooperate to route packets using different networks using wireless technology

An ad-hoc network is a particular case of WMN

Georges Da Costa dacosta@irit.fr

How to build a mesh network

Two types of nodes and behaviors

- Mesh routers (usually several interfaces) can be complex
- Mesh clients (usually one interface) usually lightweight
- Routing is done using multi-hop algorithms

Georges Da Costa dacosta@irit.fr

Quite generic

 Can accept wired network connected to routers using ethernet

Broad spectrum of applications

- Ad hoc networks
- Broadband home networking
- Community networking
- Building automation
- Highspeed metropolitan area networks
- Enterprise networking

Toward a new standard

- Current implementation use mainly WiFi
- Industrial standards groups are actively working on new specifications for WMNs:
 - IEEE 802.11: wireless local area network (WLAN)
 - IEEE 802.15: Wireless Personal Area Network (PAN)
 - IEEE 802.16: Wireless Metropolitan Area Networks (WMAN)

Georges Da Costa dacosta@irit.fr

Network Architecture

WMNs architecture can be classified in three types:

- Infrastructure/Backbone WMNs
- Client WMNs
- Hybrid WMNs

Georges Da Costa dacosta@irit.fr

Mesh Networks

Infrastructure/Backbone WMNs

Georges Da Costa dacosta@irit.fr

Infrastructure/Backbone WMNs (cont'd)

- Mesh routers form a mesh of self-configuring, self-healing links among themselves
- Using gateway functionality they can be connected to the Internet and provide this service to clients
- This system provides a backbone for conventional clients

Client WMNs

- Peer to Peer network between clients
- Clients serves as routers too
- No mesh routers are necessary
- Usually only one network technology
- Clients quite complex (have to manage self configuration and routing)

Welcome back : *ad-hoc* networks

Hybrid WMNs

▲口 > ▲団 > ▲臣 > ▲臣 > ▲臣 = の Q @

Georges Da Costa dacosta@irit.fr

Hybrid WMNs (cont'd)

Combination of the two previous approaches

- Client routing improves connectivity and coverage inside WMNs.
- May be the more complex to design

Georges Da Costa dacosta@irit.fr
Mesh Networks

Keys features of Mesh Networks

Question: What is the improvement of Hybrid Mesh Networks over Ad-Hoc networks

Georges Da Costa dacosta@irit.fr

Introduction on Mobile Wireless Networks

Keys features of Mesh Networks

- Reduces management cost as a part of infrastructure is stable
- Mobility of end nodes is easy because of the infrastructure
- Mesh routers integrate transparently heterogeneous networks
- Clients can have a reduced energy consumption

э

Critical Design Factors

First generations were build over WiFi, but some requirements are different:

- Radio Technique
- Scalability
- Mesh Connectivity
- BroadBand and QoS
- Security
- Ease of use
- Interoperability

Radio Technique

Current researches:

- Improved hardware (Multi-antenna)
- Reconfigurable radio
- Frequency agile radio
- Software radio
- Interaction between MAC and PHY (to take advantage of underlying possibilities
- Multi-channel MAC (Single or Multi-Transceiver)
- Multi-radio

Scalability

One of the most complex problem:

- Current MAC layer are unsuitable for large scale systems
 - Throughput
 - QoS (delay,...)
- How to evaluate routing algorithm ?
- Integration of heterogeneity in the MAC layer to provide simple mobility

Routing and Transport

Important to use without abusing the router infrastructure. Current researches encompass:

- Multi-radio/channel routing
- Multi-path routing
- Hierarchical routing
- Geographic routing
- New metrics
- Cross-layer routing (from PHY to Routing or Transport layer)
- TCP wifi-aware (congestion is different from simple packet loss)

Georges Da Costa dacosta@irit.fr

Introduction on Mobile Wireless Networks

That's all Folks !

▲ロ → ▲圖 → ▲ 国 → ▲ 国 → の Q @

Georges Da Costa dacosta@irit.fr

Introduction on Mobile Wireless Networks

Main sources

- 802.11 Wireless Networks: The Definitive Guide By Matthew Gast, Publisher O'Reilly.
- A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols
 By Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu and Jorjeta Jetcheva
- A Survey on Wireless Mesh Networks Ian F. Akyildiz